Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 23 added, 0 removed)
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,724 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 41 - 42 - 43 -== 1.2 Features == 44 - 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 - 57 -== 1.3 Specification == 58 - 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 83 ((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 26 + 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 90 90 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 91 91 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 92 92 93 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 - 97 - 98 -[[image:1654503992078-669.png]] 99 - 100 - 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 - 103 - 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 - 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:165450 4881641-514.png]]39 +[[image:1654503236291-817.png]] 165 165 166 166 42 +[[image:1657245163077-232.png]] 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 -|((( 173 -**Size** 46 +== 1.2 Features == 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 179 179 180 -(Reserve, Ignore now) 181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 -MOD & Digital Interrupt 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 183 183 184 -(Optional) 185 -))) 62 +== 1.3 Specification == 186 186 187 -[[image:1654504907647-967.png]] 188 188 65 +(% style="color:#037691" %)**Common DC Characteristics:** 189 189 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 190 190 191 - ===2.3.3 BatteryInfo===70 +(% style="color:#037691" %)**NB-IoT Spec:** 192 192 193 -Check the battery voltage for LSE01. 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 194 194 195 - Ex1:0x0B45=2885mV79 +(% style="color:#037691" %)**Probe Specification:** 196 196 197 - Ex2:0x0B49=2889mV81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 198 198 83 +[[image:image-20220708101224-1.png]] 199 199 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 - Getthe moisture content of the soil.The value range of the register is 0-10000(Decimal), dividethis value by 100 toget the percentage of moisturein the soil.87 +== 1.4 Applications == 204 204 205 - Forexample, if the data you get fromtheregisters __0x05 0xDC__,the moisturecontent in the soil is89 +* Smart Agriculture 206 206 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 207 207 208 - (% style="color:#4f81bd" %)**05DC(H)= 1500(D)/100=15%.**94 +== 1.5 Pin Definitions == 209 209 210 210 97 +[[image:1657246476176-652.png]] 211 211 212 -=== 2.3.5 Soil Temperature === 213 213 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 - **Example**:101 += 2. Use NSE01 to communicate with IoT Server = 217 217 218 - If payload is 0105H: ((0x0105 & 0x8000)>>15===0),temp = 0105(H)/100=2.61°C103 +== 2.1 How it works == 219 219 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 221 222 - 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 234 ((( 235 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.112 +The diagram below shows the working flow in default firmware of NSE01: 236 236 ))) 237 237 238 -((( 239 - 240 -))) 115 +[[image:image-20220708101605-2.png]] 241 241 242 242 ((( 243 243 244 244 ))) 245 245 246 -=== 2.3.7 MOD === 247 247 248 -Firmware version at least v2.1 supports changing mode. 249 249 250 - Forxample,bytes[10]=90123 +== 2.2 Configure the NSE01 == 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 126 +=== 2.2.1 Test Requirement === 254 254 255 -Downlink Command: 256 256 257 - If payload=0x0A00,workmode=0129 +To use NSE01 in your city, make sure meet below requirements: 258 258 259 -If** **payload =** **0x0A01, workmode=1 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 261 261 262 262 263 - ===2.3.8 Decodepayload inThe Things Network ===140 +[[image:1657249419225-449.png]] 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 - [[image:1654505570700-128.png]]144 +=== 2.2.2 Insert SIM card === 269 269 270 - ThepayloaddecoderfunctionforTTNis here:146 +Insert the NB-IoT Card get from your provider. 271 271 272 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 273 273 274 274 275 - ==2.4Uplink Interval ==151 +[[image:1657249468462-536.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 281 281 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - By default, LSE50 prints the downlink payloadtoconsole port.164 +**Connection:** 286 286 287 - [[image:image-20220606165544-8.png]]166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 288 288 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 289 289 290 - **Examples:**170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 291 291 292 292 293 - ***SetTDC**173 +In the PC, use below serial tool settings: 294 294 295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 296 296 297 -Payload: 01 00 00 1E TDC=30S 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 298 298 299 - Payload:1000 3C TDC=60S185 +[[image:image-20220708110657-3.png]] 300 300 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 301 301 302 -* **Reset** 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 191 +=== 2.2.4 Use CoAP protocol to uplink data === 306 306 307 - ***CFM**193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 196 +**Use below commands:** 311 311 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 312 312 313 - == 2.6 ShowData inDataCakeIoT Server==202 +For parameter description, please refer to AT command set 314 314 315 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:204 +[[image:1657249793983-486.png]] 316 316 317 317 318 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 319 319 320 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:209 +[[image:1657249831934-534.png]] 321 321 322 322 323 -[[image:1654505857935-743.png]] 324 324 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 325 325 326 - [[image:1654505874829-548.png]]215 +This feature is supported since firmware version v1.0.1 327 327 328 -Step 3: Create an account or log in Datacake. 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 331 331 222 +[[image:1657249864775-321.png]] 332 332 333 -[[image:1654505905236-553.png]] 334 334 225 +[[image:1657249930215-289.png]] 335 335 336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 337 337 338 -[[image:1654505925508-181.png]] 339 339 229 +=== 2.2.6 Use MQTT protocol to uplink data === 340 340 231 +This feature is supported since firmware version v110 341 341 342 -== 2.7 Frequency Plans == 343 343 344 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 345 345 346 -1. 347 -11. 348 -111. EU863-870 (EU868) 242 +[[image:1657249978444-674.png]] 349 349 350 -Uplink: 351 351 352 -868. 1 - SF7BW125 to SF12BW125245 +[[image:1657249990869-686.png]] 353 353 354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 355 355 356 -868.5 - SF7BW125 to SF12BW125 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 357 357 358 -867.1 - SF7BW125 to SF12BW125 359 359 360 -867.3 - SF7BW125 to SF12BW125 361 361 362 - 867.5-SF7BW125toSF12BW125254 +=== 2.2.7 Use TCP protocol to uplink data === 363 363 364 - 867.7-SF7BW125toSF12BW125256 +This feature is supported since firmware version v110 365 365 366 -867.9 - SF7BW125 to SF12BW125 367 367 368 -868.8 - FSK 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 369 369 262 +[[image:1657250217799-140.png]] 370 370 371 -Downlink: 372 372 373 - Uplink channels1-9(RX1)265 +[[image:1657250255956-604.png]] 374 374 375 -869.525 - SF9BW125 (RX2 downlink only) 376 376 377 377 378 -1. 379 -11. 380 -111. US902-928(US915) 269 +=== 2.2.8 Change Update Interval === 381 381 382 -Use dinUSA,CanadaandSouthAmerica. DefaultuseCHE=2271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 383 383 384 -Up link:273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 385 385 386 -903.9 - SF7BW125 to SF10BW125 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 387 387 388 -904.1 - SF7BW125 to SF10BW125 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 389 389 390 -904.3 - SF7BW125 to SF10BW125 391 391 392 -904.5 - SF7BW125 to SF10BW125 393 393 394 - 904.7- SF7BW125toSF10BW125285 +== 2.3 Uplink Payload == 395 395 396 - 904.9-SF7BW125toSF10BW125287 +In this mode, uplink payload includes in total 18 bytes 397 397 398 -905.1 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 399 399 400 - 905.3-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 401 401 402 402 403 - Downlink:298 +[[image:image-20220708111918-4.png]] 404 404 405 -923.3 - SF7BW500 to SF12BW500 406 406 407 - 923.9-SF7BW500toSF12BW500301 +The payload is ASCII string, representative same HEX: 408 408 409 - 924.5- SF7BW500to SF12BW500303 +0x72403155615900640c7817075e0a8c02f900 where: 410 410 411 -925.1 - SF7BW500 to SF12BW500 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 412 412 413 -925.7 - SF7BW500 to SF12BW500 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 414 414 415 - 926.3-SF7BW500to SF12BW500315 +== 2.4 Payload Explanation and Sensor Interface == 416 416 417 -926.9 - SF7BW500 to SF12BW500 418 418 419 - 927.5-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 420 420 421 - 923.3 - SF12BW500(RX2downlinkonly)320 +By default, the Device ID equal to the last 6 bytes of IMEI. 422 422 322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 423 423 424 -1. 425 -11. 426 -111. CN470-510 (CN470) 324 +**Example:** 427 427 428 - Used in China,Default use CHE=1326 +AT+DEUI=A84041F15612 429 429 430 -Up link:328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 431 431 432 -486.3 - SF7BW125 to SF12BW125 433 433 434 -486.5 - SF7BW125 to SF12BW125 435 435 436 -4 86.7 - SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 437 437 438 - 486.9-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 439 439 440 -4 87.1-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 441 441 442 -487.3 - SF7BW125 to SF12BW125 443 443 444 -487.5 - SF7BW125 to SF12BW125 445 445 446 -4 87.7- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 447 447 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 448 448 449 -Downlink: 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 450 450 451 -506.7 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 452 452 453 -506.9 - SF7BW125 to SF12BW125 454 454 455 -507.1 - SF7BW125 to SF12BW125 456 456 457 - 507.3-SF7BW125toSF12BW125356 +=== 2.4.4 Signal Strength === 458 458 459 - 507.5-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 460 460 461 - 507.7- SF7BW125toSF12BW125360 +**Ex1: 0x1d = 29** 462 462 463 - 507.9-SF7BW125toSF12BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 464 464 465 - 508.1-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 466 466 467 - 505.3 -SF12BW125(RX2downlink only)366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 468 468 368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 469 469 470 -1. 471 -11. 472 -111. AU915-928(AU915) 370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 473 473 474 -Default use CHE=2 475 475 476 -Uplink: 477 477 478 - 916.8- SF7BW125toSF12BW125374 +=== 2.4.5 Soil Moisture === 479 479 480 -917.0 - SF7BW125 to SF12BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 481 481 482 -917.2 - SF7BW125 to SF12BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 483 483 484 -917.4 - SF7BW125 to SF12BW125 384 +((( 385 + 386 +))) 485 485 486 -917.6 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 487 487 488 -917.8 - SF7BW125 to SF12BW125 489 489 490 -918.0 - SF7BW125 to SF12BW125 491 491 492 - 918.2-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 493 493 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 494 494 495 -Downlink: 400 +((( 401 +**Example**: 402 +))) 496 496 497 -923.3 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 498 498 499 -923.9 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 500 500 501 -924.5 - SF7BW500 to SF12BW500 502 502 503 -925.1 - SF7BW500 to SF12BW500 504 504 505 - 925.7-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 506 506 507 -926.3 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 508 508 509 -926.9 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 510 510 511 -927.5 - SF7BW500 to SF12BW500 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 512 512 513 -923.3 - SF12BW500(RX2 downlink only) 428 +((( 429 + 430 +))) 514 514 515 - 1.516 - 11.517 - 111. AS920-923 & AS923-925 (AS923)432 +((( 433 + 434 +))) 518 518 519 - **DefaultUplink channel:**436 +=== 2.4.8 Digital Interrupt === 520 520 521 - 923.2-SF7BW125to SF10BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 522 522 523 - 923.4- SF7BW125 toSF10BW125440 +The command is: 524 524 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 525 525 526 -**Additional Uplink Channel**: 527 527 528 - (OTAAmode,channel added byJoinAcceptmessage)445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 529 529 530 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 531 531 532 - 922.2 - SF7BW125 to SF10BW125448 +Example: 533 533 534 - 922.4-SF7BW125to SF10BW125450 +0x(00): Normal uplink packet. 535 535 536 - 922.6 - SF7BW125toSF10BW125452 +0x(01): Interrupt Uplink Packet. 537 537 538 -922.8 - SF7BW125 to SF10BW125 539 539 540 -923.0 - SF7BW125 to SF10BW125 541 541 542 - 922.0- SF7BW125 toSF10BW125456 +=== 2.4.9 +5V Output === 543 543 458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 544 544 545 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 546 546 547 - 923.6- SF7BW125 toSF10BW125461 +The 5V output time can be controlled by AT Command. 548 548 549 - 923.8- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 550 550 551 - 924.0-SF7BW125 toSF10BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 552 552 553 -924.2 - SF7BW125 to SF10BW125 554 554 555 -924.4 - SF7BW125 to SF10BW125 556 556 557 - 924.6- SF7BW125toSF10BW125469 +== 2.5 Downlink Payload == 558 558 471 +By default, NSE01 prints the downlink payload to console port. 559 559 473 +[[image:image-20220708133731-5.png]] 560 560 561 -**Downlink:** 562 562 563 -Uplink channels 1-8 (RX1) 564 564 565 -923.2 - SF10BW125 (RX2) 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 566 566 481 +((( 482 + 483 +))) 567 567 568 - 1.569 - 11.570 - 111. KR920-923 (KR920)485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 571 571 572 -Default channel: 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 573 573 574 -922.1 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 575 575 576 -922.3 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 577 577 578 -922.5 - SF7BW125 to SF12BW125 501 +((( 502 + 503 +))) 579 579 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 580 580 581 -Uplink: (OTAA mode, channel added by JoinAccept message) 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 582 582 583 -922.1 - SF7BW125 to SF12BW125 584 584 585 - 922.3-SF7BW125toSF12BW125514 +* (% style="color:blue" %)**INTMOD** 586 586 587 - 922.5-SF7BW125toSF12BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 588 588 589 -922.7 - SF7BW125 to SF12BW125 590 590 591 -922.9 - SF7BW125 to SF12BW125 592 592 593 - 923.1-SF7BW125toSF12BW125520 +== 2.6 LED Indicator == 594 594 595 -923.3 - SF7BW125 to SF12BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 596 596 597 597 598 -Downlink: 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 599 599 600 -Uplink channels 1-7(RX1) 601 601 602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 603 603 604 604 605 -1. 606 -11. 607 -111. IN865-867 (IN865) 535 +== 2.7 Installation in Soil == 608 608 609 - Uplink:537 +__**Measurement the soil surface**__ 610 610 611 - 865.0625- SF7BW125SF12BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 612 612 613 - 865.4025 - SF7BW125to SF12BW125541 +[[image:1657259653666-883.png]] 614 614 615 -865.9850 - SF7BW125 to SF12BW125 616 616 544 +((( 545 + 617 617 618 -Downlink: 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 619 619 620 -Uplink channels 1-3 (RX1) 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 621 621 622 - 866.550SF10BW125 (RX2)556 +[[image:1654506665940-119.png]] 623 623 558 +((( 559 + 560 +))) 624 624 625 -1. 626 -11. LED Indicator 627 627 628 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.563 +== 2.8 Firmware Change Log == 629 629 630 630 631 -* Blink once when device power on. 632 -* Solid ON for 5 seconds once device successful Join the network. 633 -* Blink once when device transmit a packet. 566 +Download URL & Firmware Change log 634 634 635 -1. 636 -11. Installation in Soil 568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 637 637 638 -**Measurement the soil surface** 639 639 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 640 640 641 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 642 642 643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 644 644 575 +== 2.9 Battery Analysis == 645 645 577 +=== 2.9.1 Battery Type === 646 646 647 647 580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 648 648 649 649 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 650 650 651 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 652 652 586 +The battery related documents as below: 653 653 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 654 654 655 -Dig a hole with diameter > 20CM. 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 656 656 657 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 658 658 659 659 598 +2.9.2 660 660 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 661 661 662 -1. 663 -11. Firmware Change Log 664 664 665 - **Firmware downloadlink:**603 +Instruction to use as below: 666 666 667 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 668 668 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 669 669 670 - **FirmwareUpgradeMethod:**608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 671 671 672 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 673 673 611 +Step 2: Open it and choose 674 674 675 -**V1.0.** 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 676 676 677 - Release617 +And the Life expectation in difference case will be shown on the right. 678 678 679 679 680 680 681 -1. 682 -11. Battery Analysis 683 -111. Battery Type 621 +=== 2.9.3 Battery Note === 684 684 685 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 686 - 687 - 688 -The battery is designed to last for more than 5 years for the LSN50. 689 - 690 - 691 -The battery related documents as below: 692 - 693 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 694 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 695 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 696 - 697 -|((( 698 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 699 699 ))) 700 700 701 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 702 702 703 703 629 +=== 2.9.4 Replace the battery === 704 704 705 -1. 706 -11. 707 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 708 708 709 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 710 710 711 711 712 -1. 713 -11. 714 -111. Replace the battery 715 - 716 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 717 - 718 - 719 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 720 - 721 - 722 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 723 - 724 - 725 - 726 - 727 - 728 - 729 729 = 3. Using the AT Commands = 730 730 731 731 == 3.1 Access AT Commands == ... ... @@ -733,13 +733,13 @@ 733 733 734 734 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 735 735 736 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 737 737 738 738 739 739 Or if you have below board, use below connection: 740 740 741 741 742 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 743 743 744 744 745 745 ... ... @@ -746,10 +746,10 @@ 746 746 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 747 747 748 748 749 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 750 750 751 751 752 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 753 753 754 754 755 755 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -861,20 +861,38 @@ 861 861 862 862 == 4.1 How to change the LoRa Frequency Bands/Region? == 863 863 864 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 865 865 When downloading the images, choose the required image file for download. 773 +))) 866 866 775 +((( 776 + 777 +))) 867 867 779 +((( 868 868 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 869 869 783 +((( 784 + 785 +))) 870 870 787 +((( 871 871 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 872 872 791 +((( 792 + 793 +))) 873 873 795 +((( 874 874 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 875 875 876 876 [[image:image-20220606154726-3.png]] 877 877 801 + 878 878 When you use the TTN network, the US915 frequency bands use are: 879 879 880 880 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -887,37 +887,47 @@ 887 887 * 905.3 - SF7BW125 to SF10BW125 888 888 * 904.6 - SF8BW500 889 889 814 +((( 890 890 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 891 891 892 -(% class="box infomessage" %) 893 -((( 894 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 895 895 ))) 896 896 897 -(% class="box infomessage" %) 898 898 ((( 899 -**ATZ** 900 -))) 822 + 901 901 902 902 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 903 903 827 +((( 828 + 829 +))) 904 904 831 +((( 905 905 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 906 906 907 907 [[image:image-20220606154825-4.png]] 908 908 909 909 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 910 910 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 911 911 = 5. Trouble Shooting = 912 912 913 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 914 914 915 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 916 916 917 917 918 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 919 919 920 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 921 921 922 922 923 923 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -929,7 +929,9 @@ 929 929 930 930 (% style="color:#4f81bd" %)**Cause for this issue:** 931 931 866 +((( 932 932 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 933 933 934 934 935 935 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -936,7 +936,7 @@ 936 936 937 937 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 938 938 939 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 940 940 941 941 942 942 = 6. Order Info = ... ... @@ -961,10 +961,17 @@ 961 961 * (% style="color:red" %)**4**(%%): 4000mAh battery 962 962 * (% style="color:red" %)**8**(%%): 8500mAh battery 963 963 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 964 964 = 7. Packing Info = 965 965 966 966 ((( 967 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 968 968 ))) 969 969 970 970 * ((( ... ... @@ -973,10 +973,8 @@ 973 973 974 974 ((( 975 975 976 -))) 977 977 978 -((( 979 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 980 980 ))) 981 981 982 982 * ((( ... ... @@ -990,6 +990,8 @@ 990 990 ))) 991 991 * ((( 992 992 Weight / pcs : g 934 + 935 + 993 993 ))) 994 994 995 995 = 8. Support = ... ... @@ -996,5 +996,3 @@ 996 996 997 997 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 998 998 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 999 - 1000 -
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content