Last modified by Mengting Qiu on 2024/04/02 16:44

From version 28.3
edited by Xiaoling
on 2022/06/06 16:58
Change comment: There is no comment for this version
To version 72.1
edited by Xiaoling
on 2022/07/09 08:45
Change comment: Uploaded new attachment "image-20220709084458-4.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
1 +[[image:image-20220709084207-3.jpeg||height="548" width="548"]]
3 3  
4 4  
5 5  
... ... @@ -7,62 +7,81 @@
7 7  
8 8  
9 9  
9 +**Table of Contents:**
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
15 +
16 +
17 += 1.  Introduction =
18 +
19 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
20 +
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
22 +
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
25 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
29 29  )))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 +
33 33  )))
34 34  
35 -
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
39 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
43 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
53 +* Ultra-Low Power consumption
54 +* AT Commands to change parameters
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 +== 1.3  Specification ==
58 58  
60 +
61 +(% style="color:#037691" %)**Common DC Characteristics:**
62 +
63 +* Supply Voltage: 2.1v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
65 +
66 +(% style="color:#037691" %)**NB-IoT Spec:**
67 +
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
74 +
75 +Probe(% style="color:#037691" %)** Specification:**
76 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
79 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
83 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
... ... @@ -69,933 +69,818 @@
69 69  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 70  ​
71 71  
72 -== 1.5 Firmware Change log ==
90 +== 1.5  Pin Definitions ==
73 73  
74 74  
75 -**LSE01 v1.0 :**  Release
93 +[[image:1657246476176-652.png]]
76 76  
77 77  
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
97 += 2.  Use NSE01 to communicate with IoT Server =
80 80  
81 -== 2.1 How it works ==
99 +== 2.1  How it works ==
82 82  
101 +
83 83  (((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
103 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
85 85  )))
86 86  
106 +
87 87  (((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
108 +The diagram below shows the working flow in default firmware of NSE01:
89 89  )))
90 90  
111 +[[image:image-20220708101605-2.png]]
91 91  
92 -
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 -
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 -
97 -
98 -[[image:1654503992078-669.png]]
99 -
100 -
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 -
103 -
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
105 -
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
107 -
108 -[[image:image-20220606163732-6.jpeg]]
109 -
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 -
112 -**Add APP EUI in the application**
113 -
114 -
115 -[[image:1654504596150-405.png]]
116 -
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -[[image:1654504683289-357.png]]
122 -
123 -
124 -
125 -**Step 2**: Power on LSE01
126 -
127 -
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 -
130 -[[image:image-20220606163915-7.png]]
131 -
132 -
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 -
135 -[[image:1654504778294-788.png]]
136 -
137 -
138 -
139 -== 2.3 Uplink Payload ==
140 -
141 -=== 2.3.1 MOD~=0(Default Mode) ===
142 -
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
113 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
119 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
122 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
125 +(((
126 +To use NSE01 in your city, make sure meet below requirements:
127 +)))
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
129 +* Your local operator has already distributed a NB-IoT Network there.
130 +* The local NB-IoT network used the band that NSE01 supports.
131 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
133 +(((
134 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
138 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
142 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
144 +(((
145 +Insert the NB-IoT Card get from your provider.
146 +)))
196 196  
197 -Ex2: 0x0B49 = 2889mV
148 +(((
149 +User need to take out the NB-IoT module and insert the SIM card like below:
150 +)))
198 198  
199 199  
153 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
157 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
159 +(((
160 +(((
161 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
162 +)))
163 +)))
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
166 +**Connection:**
210 210  
168 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
211 211  
212 -=== 2.3.5 Soil Temperature ===
170 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
172 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
215 215  
216 -**Example**:
217 217  
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
175 +In the PC, use below serial tool settings:
219 219  
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
177 +* Baud:  (% style="color:green" %)**9600**
178 +* Data bits:** (% style="color:green" %)8(%%)**
179 +* Stop bits: (% style="color:green" %)**1**
180 +* Parity:  (% style="color:green" %)**None**
181 +* Flow Control: (% style="color:green" %)**None**
221 221  
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
228 228  )))
229 229  
230 -(((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 -)))
187 +[[image:image-20220708110657-3.png]]
233 233  
234 234  (((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
190 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
236 236  )))
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 -
244 -)))
245 245  
246 -=== 2.3.7 MOD ===
195 +=== 2.2.4 Use CoAP protocol to uplink data ===
247 247  
248 -Firmware version at least v2.1 supports changing mode.
197 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
249 249  
250 -For example, bytes[10]=90
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
200 +**Use below commands:**
253 253  
202 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
203 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
204 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
254 254  
255 -Downlink Command:
206 +For parameter description, please refer to AT command set
256 256  
257 -If payload = 0x0A00, workmode=0
208 +[[image:1657249793983-486.png]]
258 258  
259 -If** **payload =** **0x0A01, workmode=1
260 260  
211 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
261 261  
213 +[[image:1657249831934-534.png]]
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
266 266  
217 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
267 267  
268 -[[image:1654505570700-128.png]]
219 +This feature is supported since firmware version v1.0.1
269 269  
270 -The payload decoder function for TTN is here:
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
222 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
223 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
224 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
273 273  
226 +[[image:1657249864775-321.png]]
274 274  
275 -== 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
229 +[[image:1657249930215-289.png]]
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
281 281  
233 +=== 2.2.6 Use MQTT protocol to uplink data ===
282 282  
283 -== 2.5 Downlink Payload ==
235 +This feature is supported since firmware version v110
284 284  
285 -By default, LSE50 prints the downlink payload to console port.
286 286  
287 -[[image:image-20220606165544-8.png]]
238 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
239 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
240 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
241 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
242 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
243 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
244 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
288 288  
246 +[[image:1657249978444-674.png]]
289 289  
290 -**Examples:**
291 291  
249 +[[image:1657249990869-686.png]]
292 292  
293 -* **Set TDC**
294 294  
295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
252 +(((
253 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
254 +)))
296 296  
297 -Payload:    01 00 00 1E    TDC=30S
298 298  
299 -Payload:    01 00 00 3C    TDC=60S
300 300  
258 +=== 2.2.7 Use TCP protocol to uplink data ===
301 301  
302 -* **Reset**
260 +This feature is supported since firmware version v110
303 303  
304 -If payload = 0x04FF, it will reset the LSE01
305 305  
263 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
264 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
306 306  
307 -* **CFM**
266 +[[image:1657250217799-140.png]]
308 308  
309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
310 310  
269 +[[image:1657250255956-604.png]]
311 311  
312 312  
313 -== 2.6 ​Show Data in DataCake IoT Server ==
314 314  
315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
273 +=== 2.2.8 Change Update Interval ===
316 316  
275 +User can use below command to change the (% style="color:green" %)**uplink interval**.
317 317  
318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
277 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
319 319  
320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
279 +(((
280 +(% style="color:red" %)**NOTE:**
281 +)))
321 321  
283 +(((
284 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
285 +)))
322 322  
323 -[[image:1654505857935-743.png]]
324 324  
325 325  
326 -[[image:1654505874829-548.png]]
289 +== 2.3  Uplink Payload ==
327 327  
328 -Step 3: Create an account or log in Datacake.
291 +In this mode, uplink payload includes in total 18 bytes
329 329  
330 -Step 4: Search the LSE01 and add DevEUI.
293 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 +|=(% style="width: 60px;" %)(((
295 +**Size(bytes)**
296 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
297 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
331 331  
299 +(((
300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
301 +)))
332 332  
333 -[[image:1654505905236-553.png]]
334 334  
304 +[[image:image-20220708111918-4.png]]
335 335  
336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
337 337  
338 -[[image:1654505925508-181.png]]
307 +The payload is ASCII string, representative same HEX:
339 339  
309 +0x72403155615900640c7817075e0a8c02f900 where:
340 340  
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
341 341  
342 -1.
343 -11. Frequency Plans
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
344 344  
345 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
321 +== 2.4  Payload Explanation and Sensor Interface ==
346 346  
347 -1.
348 -11.
349 -111. EU863-870 (EU868)
350 350  
351 -Uplink:
324 +=== 2.4.1  Device ID ===
352 352  
353 -868.1 - SF7BW125 to SF12BW125
326 +(((
327 +By default, the Device ID equal to the last 6 bytes of IMEI.
328 +)))
354 354  
355 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
330 +(((
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
332 +)))
356 356  
357 -868.5 - SF7BW125 to SF12BW125
334 +(((
335 +**Example:**
336 +)))
358 358  
359 -867.1 - SF7BW125 to SF12BW125
338 +(((
339 +AT+DEUI=A84041F15612
340 +)))
360 360  
361 -867.3 - SF7BW125 to SF12BW125
342 +(((
343 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
344 +)))
362 362  
363 -867.5 - SF7BW125 to SF12BW125
364 364  
365 -867.7 - SF7BW125 to SF12BW125
366 366  
367 -867.9 - SF7BW125 to SF12BW125
348 +=== 2.4.2  Version Info ===
368 368  
369 -868.8 - FSK
350 +(((
351 +Specify the software version: 0x64=100, means firmware version 1.00.
352 +)))
370 370  
354 +(((
355 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
356 +)))
371 371  
372 -Downlink:
373 373  
374 -Uplink channels 1-9 (RX1)
375 375  
376 -869.525 - SF9BW125 (RX2 downlink only)
360 +=== 2.4.3  Battery Info ===
377 377  
362 +(((
363 +Check the battery voltage for LSE01.
364 +)))
378 378  
379 -1.
380 -11.
381 -111. US902-928(US915)
366 +(((
367 +Ex1: 0x0B45 = 2885mV
368 +)))
382 382  
383 -Used in USA, Canada and South America. Default use CHE=2
370 +(((
371 +Ex2: 0x0B49 = 2889mV
372 +)))
384 384  
385 -Uplink:
386 386  
387 -903.9 - SF7BW125 to SF10BW125
388 388  
389 -904.1 - SF7BW125 to SF10BW125
376 +=== 2.4. Signal Strength ===
390 390  
391 -904.3 - SF7BW125 to SF10BW125
378 +(((
379 +NB-IoT Network signal Strength.
380 +)))
392 392  
393 -904.5 - SF7BW125 to SF10BW125
382 +(((
383 +**Ex1: 0x1d = 29**
384 +)))
394 394  
395 -904.7 - SF7BW125 to SF10BW125
386 +(((
387 +(% style="color:blue" %)**0**(%%)  -113dBm or less
388 +)))
396 396  
397 -904.9 - SF7BW125 to SF10BW125
390 +(((
391 +(% style="color:blue" %)**1**(%%)  -111dBm
392 +)))
398 398  
399 -905.1 - SF7BW125 to SF10BW125
394 +(((
395 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
396 +)))
400 400  
401 -905.3 - SF7BW125 to SF10BW125
398 +(((
399 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
400 +)))
402 402  
402 +(((
403 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
404 +)))
403 403  
404 -Downlink:
405 405  
406 -923.3 - SF7BW500 to SF12BW500
407 407  
408 -923.9 - SF7BW500 to SF12BW500
408 +=== 2.4.5  Soil Moisture ===
409 409  
410 -924.5 - SF7BW500 to SF12BW500
410 +(((
411 +(((
412 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
413 +)))
414 +)))
411 411  
412 -925.1 - SF7BW500 to SF12BW500
416 +(((
417 +(((
418 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
419 +)))
420 +)))
413 413  
414 -925.7 - SF7BW500 to SF12BW500
422 +(((
423 +
424 +)))
415 415  
416 -926.3 - SF7BW500 to SF12BW500
426 +(((
427 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
428 +)))
417 417  
418 -926.9 - SF7BW500 to SF12BW500
419 419  
420 -927.5 - SF7BW500 to SF12BW500
421 421  
422 -923.3 - SF12BW500(RX2 downlink only)
432 +=== 2.4.6  Soil Temperature ===
423 423  
434 +(((
435 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
436 +)))
424 424  
425 -1.
426 -11.
427 -111. CN470-510 (CN470)
438 +(((
439 +**Example**:
440 +)))
428 428  
429 -Used in China, Default use CHE=1
442 +(((
443 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
444 +)))
430 430  
431 -Uplink:
446 +(((
447 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
448 +)))
432 432  
433 -486.3 - SF7BW125 to SF12BW125
434 434  
435 -486.5 - SF7BW125 to SF12BW125
436 436  
437 -486.7 - SF7BW125 to SF12BW125
452 +=== 2.4.7  Soil Conductivity (EC) ===
438 438  
439 -486.9 - SF7BW125 to SF12BW125
454 +(((
455 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
456 +)))
440 440  
441 -487.1 - SF7BW125 to SF12BW125
458 +(((
459 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
460 +)))
442 442  
443 -487.3 - SF7BW125 to SF12BW125
462 +(((
463 +Generally, the EC value of irrigation water is less than 800uS / cm.
464 +)))
444 444  
445 -487.5 - SF7BW125 to SF12BW125
466 +(((
467 +
468 +)))
446 446  
447 -487.7 - SF7BW125 to SF12BW125
470 +(((
471 +
472 +)))
448 448  
474 +=== 2.4.8  Digital Interrupt ===
449 449  
450 -Downlink:
476 +(((
477 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
478 +)))
451 451  
452 -506.7 - SF7BW125 to SF12BW125
480 +(((
481 +The command is:
482 +)))
453 453  
454 -506.9 - SF7BW125 to SF12BW125
484 +(((
485 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
486 +)))
455 455  
456 -507.1 - SF7BW125 to SF12BW125
457 457  
458 -507.3 - SF7BW125 to SF12BW125
489 +(((
490 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
491 +)))
459 459  
460 -507.5 - SF7BW125 to SF12BW125
461 461  
462 -507.7 - SF7BW125 to SF12BW125
494 +(((
495 +Example:
496 +)))
463 463  
464 -507.9 - SF7BW125 to SF12BW125
498 +(((
499 +0x(00): Normal uplink packet.
500 +)))
465 465  
466 -508.1 - SF7BW125 to SF12BW125
502 +(((
503 +0x(01): Interrupt Uplink Packet.
504 +)))
467 467  
468 -505.3 - SF12BW125 (RX2 downlink only)
469 469  
470 470  
471 -1.
472 -11.
473 -111. AU915-928(AU915)
508 +=== 2.4.9  ​+5V Output ===
474 474  
475 -Default use CHE=2
510 +(((
511 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
512 +)))
476 476  
477 -Uplink:
478 478  
479 -916.8 - SF7BW125 to SF12BW125
515 +(((
516 +The 5V output time can be controlled by AT Command.
517 +)))
480 480  
481 -917.0 - SF7BW125 to SF12BW125
519 +(((
520 +(% style="color:blue" %)**AT+5VT=1000**
521 +)))
482 482  
483 -917.2 - SF7BW125 to SF12BW125
523 +(((
524 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
525 +)))
484 484  
485 -917.4 - SF7BW125 to SF12BW125
486 486  
487 -917.6 - SF7BW125 to SF12BW125
488 488  
489 -917.8 - SF7BW125 to SF12BW125
529 +== 2.5  Downlink Payload ==
490 490  
491 -918.0 - SF7BW125 to SF12BW125
531 +By default, NSE01 prints the downlink payload to console port.
492 492  
493 -918.2 - SF7BW125 to SF12BW125
533 +[[image:image-20220708133731-5.png]]
494 494  
495 495  
496 -Downlink:
536 +(((
537 +(% style="color:blue" %)**Examples:**
538 +)))
497 497  
498 -923.3 - SF7BW500 to SF12BW500
540 +(((
541 +
542 +)))
499 499  
500 -923.9 - SF7BW500 to SF12BW500
544 +* (((
545 +(% style="color:blue" %)**Set TDC**
546 +)))
501 501  
502 -924.5 - SF7BW500 to SF12BW500
548 +(((
549 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
550 +)))
503 503  
504 -925.1 - SF7BW500 to SF12BW500
552 +(((
553 +Payload:    01 00 00 1E    TDC=30S
554 +)))
505 505  
506 -925.7 - SF7BW500 to SF12BW500
556 +(((
557 +Payload:    01 00 00 3C    TDC=60S
558 +)))
507 507  
508 -926.3 - SF7BW500 to SF12BW500
560 +(((
561 +
562 +)))
509 509  
510 -926.9 - SF7BW500 to SF12BW500
564 +* (((
565 +(% style="color:blue" %)**Reset**
566 +)))
511 511  
512 -927.5 - SF7BW500 to SF12BW500
568 +(((
569 +If payload = 0x04FF, it will reset the NSE01
570 +)))
513 513  
514 -923.3 - SF12BW500(RX2 downlink only)
515 515  
516 -1.
517 -11.
518 -111. AS920-923 & AS923-925 (AS923)
573 +* (% style="color:blue" %)**INTMOD**
519 519  
520 -**Default Uplink channel:**
575 +(((
576 +Downlink Payload: 06000003, Set AT+INTMOD=3
577 +)))
521 521  
522 -923.2 - SF7BW125 to SF10BW125
523 523  
524 -923.4 - SF7BW125 to SF10BW125
525 525  
581 +== 2.6  ​LED Indicator ==
526 526  
527 -**Additional Uplink Channel**:
583 +(((
584 +The NSE01 has an internal LED which is to show the status of different state.
528 528  
529 -(OTAA mode, channel added by JoinAccept message)
530 530  
531 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
587 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
588 +* Then the LED will be on for 1 second means device is boot normally.
589 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
590 +* For each uplink probe, LED will be on for 500ms.
591 +)))
532 532  
533 -922.2 - SF7BW125 to SF10BW125
534 534  
535 -922.4 - SF7BW125 to SF10BW125
536 536  
537 -922.6 - SF7BW125 to SF10BW125
538 538  
539 -922.8 - SF7BW125 to SF10BW125
596 +== 2.7  Installation in Soil ==
540 540  
541 -923.0 - SF7BW125 to SF10BW125
598 +__**Measurement the soil surface**__
542 542  
543 -922.0 - SF7BW125 to SF10BW125
600 +(((
601 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
602 +)))
544 544  
604 +[[image:1657259653666-883.png]] ​
545 545  
546 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
547 547  
548 -923.6 - SF7BW125 to SF10BW125
607 +(((
608 +
549 549  
550 -923.8 - SF7BW125 to SF10BW125
551 -
552 -924.0 - SF7BW125 to SF10BW125
553 -
554 -924.2 - SF7BW125 to SF10BW125
555 -
556 -924.4 - SF7BW125 to SF10BW125
557 -
558 -924.6 - SF7BW125 to SF10BW125
559 -
560 -
561 -
562 -**Downlink:**
563 -
564 -Uplink channels 1-8 (RX1)
565 -
566 -923.2 - SF10BW125 (RX2)
567 -
568 -
569 -1.
570 -11.
571 -111. KR920-923 (KR920)
572 -
573 -Default channel:
574 -
575 -922.1 - SF7BW125 to SF12BW125
576 -
577 -922.3 - SF7BW125 to SF12BW125
578 -
579 -922.5 - SF7BW125 to SF12BW125
580 -
581 -
582 -Uplink: (OTAA mode, channel added by JoinAccept message)
583 -
584 -922.1 - SF7BW125 to SF12BW125
585 -
586 -922.3 - SF7BW125 to SF12BW125
587 -
588 -922.5 - SF7BW125 to SF12BW125
589 -
590 -922.7 - SF7BW125 to SF12BW125
591 -
592 -922.9 - SF7BW125 to SF12BW125
593 -
594 -923.1 - SF7BW125 to SF12BW125
595 -
596 -923.3 - SF7BW125 to SF12BW125
597 -
598 -
599 -Downlink:
600 -
601 -Uplink channels 1-7(RX1)
602 -
603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
604 -
605 -
606 -1.
607 -11.
608 -111. IN865-867 (IN865)
609 -
610 -Uplink:
611 -
612 -865.0625 - SF7BW125 to SF12BW125
613 -
614 -865.4025 - SF7BW125 to SF12BW125
615 -
616 -865.9850 - SF7BW125 to SF12BW125
617 -
618 -
619 -Downlink:
620 -
621 -Uplink channels 1-3 (RX1)
622 -
623 -866.550 - SF10BW125 (RX2)
624 -
625 -
626 -1.
627 -11. LED Indicator
628 -
629 -The LSE01 has an internal LED which is to show the status of different state.
630 -
631 -
632 -* Blink once when device power on.
633 -* Solid ON for 5 seconds once device successful Join the network.
634 -* Blink once when device transmit a packet.
635 -
636 -1.
637 -11. Installation in Soil
638 -
639 -**Measurement the soil surface**
640 -
641 -
642 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
643 -
644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
645 -
646 -
647 -
648 -
649 -
650 -
651 -
652 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
653 -
654 -
655 -
610 +(((
656 656  Dig a hole with diameter > 20CM.
612 +)))
657 657  
614 +(((
658 658  Horizontal insert the probe to the soil and fill the hole for long term measurement.
616 +)))
617 +)))
659 659  
619 +[[image:1654506665940-119.png]]
660 660  
621 +(((
622 +
623 +)))
661 661  
662 662  
663 -1.
664 -11. ​Firmware Change Log
626 +== 2.8  ​Firmware Change Log ==
665 665  
666 -**Firmware download link:**
667 667  
668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
629 +Download URL & Firmware Change log
669 669  
631 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
670 670  
671 -**Firmware Upgrade Method:**
672 672  
673 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
634 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
674 674  
675 675  
676 -**V1.0.**
677 677  
678 -Release
638 +== 2.9  ​Battery Analysis ==
679 679  
640 +=== 2.9.1  ​Battery Type ===
680 680  
681 681  
682 -1.
683 -11. ​Battery Analysis
684 -111. ​Battery Type
643 +(((
644 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
645 +)))
685 685  
686 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
687 687  
648 +(((
649 +The battery is designed to last for several years depends on the actually use environment and update interval. 
650 +)))
688 688  
689 -The battery is designed to last for more than 5 years for the LSN50.
690 690  
691 -
653 +(((
692 692  The battery related documents as below:
655 +)))
693 693  
694 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
695 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
696 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
657 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
659 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
697 697  
698 -|(((
699 -JST-XH-2P connector
661 +(((
662 +[[image:image-20220708140453-6.png]]
700 700  )))
701 701  
702 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
703 703  
704 704  
667 +=== 2.9.2  Power consumption Analyze ===
705 705  
706 -1.
707 -11.
708 -111. ​Battery Note
669 +(((
670 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
671 +)))
709 709  
710 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
711 711  
674 +(((
675 +Instruction to use as below:
676 +)))
712 712  
713 -1.
714 -11.
715 -111. ​Replace the battery
678 +(((
679 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
680 +)))
716 716  
717 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 718  
683 +(((
684 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
685 +)))
719 719  
720 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
687 +* (((
688 +Product Model
689 +)))
690 +* (((
691 +Uplink Interval
692 +)))
693 +* (((
694 +Working Mode
695 +)))
721 721  
697 +(((
698 +And the Life expectation in difference case will be shown on the right.
699 +)))
722 722  
723 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
701 +[[image:image-20220708141352-7.jpeg]]
724 724  
725 725  
726 726  
705 +=== 2.9.3  ​Battery Note ===
727 727  
707 +(((
708 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
709 +)))
728 728  
729 729  
730 -= 3. ​Using the AT Commands =
731 731  
732 -== 3.1 Access AT Commands ==
713 +=== 2.9.4  Replace the battery ===
733 733  
715 +(((
716 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
717 +)))
734 734  
735 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
736 736  
737 -[[image:1654501986557-872.png]]
738 738  
721 += 3. ​ Access NB-IoT Module =
739 739  
740 -Or if you have below board, use below connection:
723 +(((
724 +Users can directly access the AT command set of the NB-IoT module.
725 +)))
741 741  
727 +(((
728 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
729 +)))
742 742  
743 -[[image:1654502005655-729.png]]
731 +[[image:1657261278785-153.png]]
744 744  
745 745  
746 746  
747 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
735 += 4.  Using the AT Commands =
748 748  
737 +== 4.1  Access AT Commands ==
749 749  
750 - [[image:1654502050864-459.png]]
739 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
751 751  
752 752  
753 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
742 +AT+<CMD>?  : Help on <CMD>
754 754  
744 +AT+<CMD>         : Run <CMD>
755 755  
756 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
746 +AT+<CMD>=<value> : Set the value
757 757  
758 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
748 +AT+<CMD>=?  : Get the value
759 759  
760 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
761 761  
762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
763 -
764 -
765 765  (% style="color:#037691" %)**General Commands**(%%)      
766 766  
767 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
753 +AT  : Attention       
768 768  
769 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
755 +AT?  : Short Help     
770 770  
771 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
757 +ATZ  : MCU Reset    
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
759 +AT+TDC  : Application Data Transmission Interval
774 774  
761 +AT+CFG  : Print all configurations
775 775  
776 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
763 +AT+CFGMOD           : Working mode selection
777 777  
778 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
765 +AT+INTMOD            : Set the trigger interrupt mode
779 779  
780 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
767 +AT+5VT  : Set extend the time of 5V power  
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
769 +AT+PRO  : Choose agreement
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
771 +AT+WEIGRE  : Get weight or set weight to 0
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
773 +AT+WEIGAP  : Get or Set the GapValue of weight
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
775 +AT+RXDL  : Extend the sending and receiving time
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
777 +AT+CNTFAC  : Get or set counting parameters
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
779 +AT+SERVADDR  : Server Address
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
782 +(% style="color:#037691" %)**COAP Management**      
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
784 +AT+URI            : Resource parameters
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
787 +(% style="color:#037691" %)**UDP Management**
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
789 +AT+CFM          : Upload confirmation mode (only valid for UDP)
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
792 +(% style="color:#037691" %)**MQTT Management**
809 809  
794 +AT+CLIENT               : Get or Set MQTT client
810 810  
811 -(% style="color:#037691" %)**LoRa Network Management**
796 +AT+UNAME  : Get or Set MQTT Username
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
798 +AT+PWD                  : Get or Set MQTT password
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
800 +AT+PUBTOPI : Get or Set MQTT publish topic
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
802 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
805 +(% style="color:#037691" %)**Information**          
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
807 +AT+FDR  : Factory Data Reset
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
809 +AT+PWOR : Serial Access Password
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
813 += ​5.  FAQ =
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
815 +== 5.1 How to Upgrade Firmware ==
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
818 +(((
819 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
820 +)))
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
822 +(((
823 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
824 +)))
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
826 +(((
827 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
828 +)))
842 842  
843 843  
844 -(% style="color:#037691" %)**Information** 
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
832 +== 5.2  Can I calibrate NSE01 to different soil types? ==
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
834 +(((
835 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
836 +)))
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
839 += 6.  Trouble Shooting =
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
841 +== 6.1  ​Connection problem when uploading firmware ==
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
857 857  
858 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
859 -
860 -
861 -= ​4. FAQ =
862 -
863 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
864 -
865 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
866 -When downloading the images, choose the required image file for download. ​
867 -
868 -
869 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
870 -
871 -
872 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
873 -
874 -
875 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
876 -
877 -[[image:image-20220606154726-3.png]]
878 -
879 -When you use the TTN network, the US915 frequency bands use are:
880 -
881 -* 903.9 - SF7BW125 to SF10BW125
882 -* 904.1 - SF7BW125 to SF10BW125
883 -* 904.3 - SF7BW125 to SF10BW125
884 -* 904.5 - SF7BW125 to SF10BW125
885 -* 904.7 - SF7BW125 to SF10BW125
886 -* 904.9 - SF7BW125 to SF10BW125
887 -* 905.1 - SF7BW125 to SF10BW125
888 -* 905.3 - SF7BW125 to SF10BW125
889 -* 904.6 - SF8BW500
890 -
891 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
892 -
893 -(% class="box infomessage" %)
894 894  (((
895 -**AT+CHE=2**
845 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
896 896  )))
897 897  
898 -(% class="box infomessage" %)
848 +(% class="wikigeneratedid" %)
899 899  (((
900 -**ATZ**
850 +
901 901  )))
902 902  
903 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
904 904  
854 +== 6.2  AT Command input doesn't work ==
905 905  
906 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
856 +(((
857 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
907 907  
908 -[[image:image-20220606154825-4.png]]
859 +
860 +)))
909 909  
910 910  
863 += 7. ​ Order Info =
911 911  
912 -= 5. Trouble Shooting =
913 913  
914 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
866 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
915 915  
916 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
917 917  
869 +(% class="wikigeneratedid" %)
870 +(((
871 +
872 +)))
918 918  
919 -== 5.2 AT Command input doesn’t work ==
874 += 8.  Packing Info =
920 920  
921 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
876 +(((
877 +
922 922  
879 +(% style="color:#037691" %)**Package Includes**:
923 923  
924 -== 5.3 Device rejoin in at the second uplink packet ==
881 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
882 +* External antenna x 1
883 +)))
925 925  
926 -(% style="color:#4f81bd" %)**Issue describe as below:**
885 +(((
886 +
927 927  
928 -[[image:1654500909990-784.png]]
888 +(% style="color:#037691" %)**Dimension and weight**:
929 929  
930 -
931 -(% style="color:#4f81bd" %)**Cause for this issue:**
932 -
933 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
934 -
935 -
936 -(% style="color:#4f81bd" %)**Solution: **
937 -
938 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
939 -
940 -[[image:1654500929571-736.png]]
941 -
942 -
943 -= 6. ​Order Info =
944 -
945 -
946 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
947 -
948 -
949 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
950 -
951 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
952 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
953 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
954 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
955 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
956 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
957 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
958 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
959 -
960 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
961 -
962 -* (% style="color:red" %)**4**(%%): 4000mAh battery
963 -* (% style="color:red" %)**8**(%%): 8500mAh battery
964 -
965 -= 7. Packing Info =
966 -
967 -(((
968 -**Package Includes**:
890 +* Size: 195 x 125 x 55 mm
891 +* Weight:   420g
969 969  )))
970 970  
971 -* (((
972 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
973 -)))
974 -
975 975  (((
976 976  
977 -)))
978 978  
979 -(((
980 -**Dimension and weight**:
981 -)))
982 982  
983 -* (((
984 -Device Size: cm
898 +
985 985  )))
986 -* (((
987 -Device Weight: g
988 -)))
989 -* (((
990 -Package Size / pcs : cm
991 -)))
992 -* (((
993 -Weight / pcs : g
994 -)))
995 995  
996 -= 8. Support =
901 += 9.  Support =
997 997  
998 998  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
999 999  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1000 -
1001 -
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content