Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 28 added, 0 removed)
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="848" width="848"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 ... ... @@ -8,994 +8,910 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 13 +**Table of Contents:** 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 40 40 25 +((( 26 + 41 41 28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 42 42 43 - ==1.2Features==30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 56 56 57 - ==1.3Specification==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 58 58 59 - MeasureVolume:Base onthe centrapinof theprobe,acylinderwith 7cm diameter and10cmheight.36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 83 ((( 84 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 85 85 ))) 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 - 91 - 92 - 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 - 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 - 97 - 98 -[[image:1654503992078-669.png]] 99 - 100 - 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 - 103 - 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 - 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:165450 4881641-514.png]]45 +[[image:1654503236291-817.png]] 165 165 166 166 48 +[[image:1657245163077-232.png]] 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 -|((( 173 -**Size** 52 +== 1.2 Features == 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 179 179 180 -(Reserve, Ignore now) 181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 -MOD & Digital Interrupt 183 183 184 -(Optional) 185 -))) 186 186 187 - [[image:1654504907647-967.png]]69 +== 1.3 Specification == 188 188 189 189 72 +(% style="color:#037691" %)**Common DC Characteristics:** 190 190 191 -=== 2.3.3 Battery Info === 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 192 192 193 - Checkthe batteryvoltageforLSE01.77 +(% style="color:#037691" %)**NB-IoT Spec:** 194 194 195 -Ex1: 0x0B45 = 2885mV 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 196 196 197 - Ex2:0x0B49= 2889mV86 +Probe(% style="color:#037691" %)** Specification:** 198 198 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 199 199 90 +[[image:image-20220708101224-1.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,if the data you get from the register is __0x05 0xDC__, the moisture content in thesoilis94 +== 1.4 Applications == 206 206 96 +* Smart Agriculture 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 209 209 101 +== 1.5 Pin Definitions == 210 210 211 211 212 - === 2.3.5 Soil Temperature===104 +[[image:1657246476176-652.png]] 213 213 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 -**Example**: 217 217 218 - Ifpayloadis 0105H:((0x0105& 0x8000)>>15 === 0),temp=0105(H)/100=2.61 °C108 += 2. Use NSE01 to communicate with IoT Server = 219 219 220 - If payload is FF7EH: ((FF7E & 0x8000)>>15===1),temp= (FF7E(H)-FFFF(H))/100=-1.29°C110 +== 2.1 How it works == 221 221 222 222 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 234 ((( 235 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.119 +The diagram below shows the working flow in default firmware of NSE01: 236 236 ))) 237 237 238 -((( 239 - 240 -))) 122 +[[image:image-20220708101605-2.png]] 241 241 242 242 ((( 243 243 244 244 ))) 245 245 246 -=== 2.3.7 MOD === 247 247 248 -Firmware version at least v2.1 supports changing mode. 249 249 250 - Forxample,bytes[10]=90130 +== 2.2 Configure the NSE01 == 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 133 +=== 2.2.1 Test Requirement === 254 254 255 -Downlink Command: 256 256 257 -If payload = 0x0A00, workmode=0 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 138 +))) 258 258 259 -If** **payload =** **0x0A01, workmode=1 140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 146 +))) 261 261 262 262 263 - ===2.3.8 Decodepayload inThe Things Network ===149 +[[image:1657249419225-449.png]] 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 - [[image:1654505570700-128.png]]153 +=== 2.2.2 Insert SIM card === 269 269 270 -The payload decoder function for TTN is here: 155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 273 273 274 274 275 - ==2.4Uplink Interval ==164 +[[image:1657249468462-536.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 281 281 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - By default, LSE50 prints the downlink payloadtoconsole port.177 +**Connection:** 286 286 287 - [[image:image-20220606165544-8.png]]179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 288 288 181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 289 289 290 - **Examples:**183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 291 291 292 292 293 - ***SetTDC**186 +In the PC, use below serial tool settings: 294 294 295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 296 296 297 -Payload: 01 00 00 1E TDC=30S 194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 298 298 299 - Payload:1000 3C TDC=60S198 +[[image:image-20220708110657-3.png]] 300 300 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 301 301 302 -* **Reset** 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 206 +=== 2.2.4 Use CoAP protocol to uplink data === 306 306 307 - ***CFM**208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 211 +**Use below commands:** 311 311 213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 312 312 313 - == 2.6 ShowData inDataCakeIoT Server==217 +For parameter description, please refer to AT command set 314 314 315 -[[ DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connect to TTN and see the data in DATACAKE. Below are the steps:219 +[[image:1657249793983-486.png]] 316 316 317 317 318 - **Step1**: Be sure thatyour deviceis programmed andproperlyconnectedtothenetworkat this time.222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 319 319 320 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:224 +[[image:1657249831934-534.png]] 321 321 322 322 323 -[[image:1654505857935-743.png]] 324 324 228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 325 325 326 - [[image:1654505874829-548.png]]230 +This feature is supported since firmware version v1.0.1 327 327 328 -Step 3: Create an account or log in Datacake. 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 331 331 237 +[[image:1657249864775-321.png]] 332 332 333 -[[image:1654505905236-553.png]] 334 334 240 +[[image:1657249930215-289.png]] 335 335 336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 337 337 338 -[[image:1654505925508-181.png]] 339 339 244 +=== 2.2.6 Use MQTT protocol to uplink data === 340 340 246 +This feature is supported since firmware version v110 341 341 342 -1. 343 -11. Frequency Plans 344 344 345 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 346 346 347 -1. 348 -11. 349 -111. EU863-870 (EU868) 257 +[[image:1657249978444-674.png]] 350 350 351 -Uplink: 352 352 353 -868. 1 - SF7BW125 to SF12BW125260 +[[image:1657249990869-686.png]] 354 354 355 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 356 356 357 -868.5 - SF7BW125 to SF12BW125 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 358 358 359 -867.1 - SF7BW125 to SF12BW125 360 360 361 -867.3 - SF7BW125 to SF12BW125 362 362 363 - 867.5-SF7BW125toSF12BW125269 +=== 2.2.7 Use TCP protocol to uplink data === 364 364 365 - 867.7-SF7BW125toSF12BW125271 +This feature is supported since firmware version v110 366 366 367 -867.9 - SF7BW125 to SF12BW125 368 368 369 -868.8 - FSK 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 370 370 277 +[[image:1657250217799-140.png]] 371 371 372 -Downlink: 373 373 374 - Uplink channels1-9(RX1)280 +[[image:1657250255956-604.png]] 375 375 376 -869.525 - SF9BW125 (RX2 downlink only) 377 377 378 378 379 -1. 380 -11. 381 -111. US902-928(US915) 284 +=== 2.2.8 Change Update Interval === 382 382 383 -Use dinUSA,CanadaandSouthAmerica. DefaultuseCHE=2286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 384 384 385 -Up link:288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 386 386 387 -903.9 - SF7BW125 to SF10BW125 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 388 388 389 -904.1 - SF7BW125 to SF10BW125 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 390 390 391 -904.3 - SF7BW125 to SF10BW125 392 392 393 -904.5 - SF7BW125 to SF10BW125 394 394 395 - 904.7- SF7BW125toSF10BW125300 +== 2.3 Uplink Payload == 396 396 397 - 904.9-SF7BW125toSF10BW125302 +In this mode, uplink payload includes in total 18 bytes 398 398 399 -905.1 - SF7BW125 to SF10BW125 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 400 400 401 -905.3 - SF7BW125 to SF10BW125 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 402 402 403 403 404 - Downlink:315 +[[image:image-20220708111918-4.png]] 405 405 406 -923.3 - SF7BW500 to SF12BW500 407 407 408 - 923.9-SF7BW500toSF12BW500318 +The payload is ASCII string, representative same HEX: 409 409 410 - 924.5- SF7BW500to SF12BW500320 +0x72403155615900640c7817075e0a8c02f900 where: 411 411 412 -925.1 - SF7BW500 to SF12BW500 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 413 413 414 -925.7 - SF7BW500 to SF12BW500 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 415 415 416 -926.3 - SF7BW500 to SF12BW500 417 417 418 -926.9 - SF7BW500 to SF12BW500 419 419 420 - 927.5-SF7BW500to SF12BW500334 +== 2.4 Payload Explanation and Sensor Interface == 421 421 422 -923.3 - SF12BW500(RX2 downlink only) 423 423 337 +=== 2.4.1 Device ID === 424 424 425 - 1.426 - 11.427 - 111. CN470-510 (CN470)339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 428 428 429 -Used in China, Default use CHE=1 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 430 430 431 -Uplink: 347 +((( 348 +**Example:** 349 +))) 432 432 433 -486.3 - SF7BW125 to SF12BW125 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 434 434 435 -486.5 - SF7BW125 to SF12BW125 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 436 436 437 -486.7 - SF7BW125 to SF12BW125 438 438 439 -486.9 - SF7BW125 to SF12BW125 440 440 441 -4 87.1 - SF7BW125toSF12BW125361 +=== 2.4.2 Version Info === 442 442 443 -487.3 - SF7BW125 to SF12BW125 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 444 444 445 -487.5 - SF7BW125 to SF12BW125 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 446 446 447 -487.7 - SF7BW125 to SF12BW125 448 448 449 449 450 - Downlink:373 +=== 2.4.3 Battery Info === 451 451 452 -506.7 - SF7BW125 to SF12BW125 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 453 453 454 -506.9 - SF7BW125 to SF12BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 455 455 456 -507.1 - SF7BW125 to SF12BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 457 457 458 -507.3 - SF7BW125 to SF12BW125 459 459 460 -507.5 - SF7BW125 to SF12BW125 461 461 462 - 507.7-SF7BW125toSF12BW125389 +=== 2.4.4 Signal Strength === 463 463 464 -507.9 - SF7BW125 to SF12BW125 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 465 465 466 -508.1 - SF7BW125 to SF12BW125 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 467 467 468 -505.3 - SF12BW125 (RX2 downlink only) 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 469 469 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 470 470 471 - 1.472 -1 1.473 - 111. AU915-928(AU915)407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 474 474 475 -Default use CHE=2 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 476 476 477 -Uplink: 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 478 478 479 -916.8 - SF7BW125 to SF12BW125 480 480 481 -917.0 - SF7BW125 to SF12BW125 482 482 483 - 917.2- SF7BW125toSF12BW125421 +=== 2.4.5 Soil Moisture === 484 484 485 -917.4 - SF7BW125 to SF12BW125 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 486 486 487 -917.6 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 488 488 489 -917.8 - SF7BW125 to SF12BW125 435 +((( 436 + 437 +))) 490 490 491 -918.0 - SF7BW125 to SF12BW125 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 492 492 493 -918.2 - SF7BW125 to SF12BW125 494 494 495 495 496 - Downlink:445 +=== 2.4.6 Soil Temperature === 497 497 498 -923.3 - SF7BW500 to SF12BW500 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 499 499 500 -923.9 - SF7BW500 to SF12BW500 451 +((( 452 +**Example**: 453 +))) 501 501 502 -924.5 - SF7BW500 to SF12BW500 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 503 503 504 -925.1 - SF7BW500 to SF12BW500 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 505 505 506 -925.7 - SF7BW500 to SF12BW500 507 507 508 -926.3 - SF7BW500 to SF12BW500 509 509 510 - 926.9-SF7BW500toSF12BW500465 +=== 2.4.7 Soil Conductivity (EC) === 511 511 512 -927.5 - SF7BW500 to SF12BW500 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 513 513 514 -923.3 - SF12BW500(RX2 downlink only) 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 515 515 516 - 1.517 - 11.518 - 111. AS920-923 & AS923-925 (AS923)475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 519 519 520 -**Default Uplink channel:** 479 +((( 480 + 481 +))) 521 521 522 -923.2 - SF7BW125 to SF10BW125 483 +((( 484 + 485 +))) 523 523 524 - 923.4-SF7BW125toSF10BW125487 +=== 2.4.8 Digital Interrupt === 525 525 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 526 526 527 -**Additional Uplink Channel**: 493 +((( 494 +The command is: 495 +))) 528 528 529 -(OTAA mode, channel added by JoinAccept message) 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 530 530 531 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 532 532 533 -922.2 - SF7BW125 to SF10BW125 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 534 534 535 -922.4 - SF7BW125 to SF10BW125 536 536 537 -922.6 - SF7BW125 to SF10BW125 507 +((( 508 +Example: 509 +))) 538 538 539 -922.8 - SF7BW125 to SF10BW125 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 540 540 541 -923.0 - SF7BW125 to SF10BW125 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 542 542 543 -922.0 - SF7BW125 to SF10BW125 544 544 545 545 546 - **AS923~~ AS925for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:521 +=== 2.4.9 +5V Output === 547 547 548 -923.6 - SF7BW125 to SF10BW125 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 549 549 550 -923.8 - SF7BW125 to SF10BW125 551 551 552 -924.0 - SF7BW125 to SF10BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 553 553 554 -924.2 - SF7BW125 to SF10BW125 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 555 555 556 -924.4 - SF7BW125 to SF10BW125 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 557 557 558 -924.6 - SF7BW125 to SF10BW125 559 559 560 560 542 +== 2.5 Downlink Payload == 561 561 562 - **Downlink:**544 +By default, NSE01 prints the downlink payload to console port. 563 563 564 - Uplink channels 1-8(RX1)546 +[[image:image-20220708133731-5.png]] 565 565 566 -923.2 - SF10BW125 (RX2) 567 567 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 568 568 569 - 1.570 - 11.571 - 111. KR920-923 (KR920)553 +((( 554 + 555 +))) 572 572 573 -Default channel: 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 574 574 575 -922.1 - SF7BW125 to SF12BW125 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 576 576 577 -922.3 - SF7BW125 to SF12BW125 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 578 578 579 -922.5 - SF7BW125 to SF12BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 580 580 573 +((( 574 + 575 +))) 581 581 582 -Uplink: (OTAA mode, channel added by JoinAccept message) 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 583 583 584 -922.1 - SF7BW125 to SF12BW125 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 585 585 586 -922.3 - SF7BW125 to SF12BW125 587 587 588 - 922.5-SF7BW125toSF12BW125586 +* (% style="color:blue" %)**INTMOD** 589 589 590 -922.7 - SF7BW125 to SF12BW125 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 591 591 592 -922.9 - SF7BW125 to SF12BW125 593 593 594 -923.1 - SF7BW125 to SF12BW125 595 595 596 - 923.3-SF7BW125toSF12BW125594 +== 2.6 LED Indicator == 597 597 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 598 598 599 -Downlink: 600 600 601 -Uplink channels 1-7(RX1) 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 602 602 603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 604 604 605 605 606 -1. 607 -11. 608 -111. IN865-867 (IN865) 609 609 610 - Uplink:609 +== 2.7 Installation in Soil == 611 611 612 - 865.0625- SF7BW125toSF12BW125611 +__**Measurement the soil surface**__ 613 613 614 -865.4025 - SF7BW125 to SF12BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 615 615 616 - 865.9850 - SF7BW125to SF12BW125617 +[[image:1657259653666-883.png]] 617 617 618 618 619 -Downlink: 620 +((( 621 + 620 620 621 -Uplink channels 1-3 (RX1) 622 - 623 -866.550 - SF10BW125 (RX2) 624 - 625 - 626 -1. 627 -11. LED Indicator 628 - 629 -The LSE01 has an internal LED which is to show the status of different state. 630 - 631 - 632 -* Blink once when device power on. 633 -* Solid ON for 5 seconds once device successful Join the network. 634 -* Blink once when device transmit a packet. 635 - 636 -1. 637 -11. Installation in Soil 638 - 639 -**Measurement the soil surface** 640 - 641 - 642 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 643 - 644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 645 - 646 - 647 - 648 - 649 - 650 - 651 - 652 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 653 - 654 - 655 - 623 +((( 656 656 Dig a hole with diameter > 20CM. 625 +))) 657 657 627 +((( 658 658 Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 659 659 632 +[[image:1654506665940-119.png]] 660 660 634 +((( 635 + 636 +))) 661 661 662 662 663 -1. 664 -11. Firmware Change Log 639 +== 2.8 Firmware Change Log == 665 665 666 -**Firmware download link:** 667 667 668 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]642 +Download URL & Firmware Change log 669 669 644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 670 670 671 -**Firmware Upgrade Method:** 672 672 673 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 674 674 675 675 676 -**V1.0.** 677 677 678 - Release651 +== 2.9 Battery Analysis == 679 679 653 +=== 2.9.1 Battery Type === 680 680 681 681 682 - 1.683 -1 1.Battery Analysis684 - 111. Battery Type656 +((( 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 658 +))) 685 685 686 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 687 687 661 +((( 662 +The battery is designed to last for several years depends on the actually use environment and update interval. 663 +))) 688 688 689 -The battery is designed to last for more than 5 years for the LSN50. 690 690 691 - 666 +((( 692 692 The battery related documents as below: 668 +))) 693 693 694 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],695 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]696 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 697 697 698 - |(((699 - JST-XH-2P connector674 +((( 675 +[[image:image-20220708140453-6.png]] 700 700 ))) 701 701 702 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 703 703 704 704 680 +=== 2.9.2 Power consumption Analyze === 705 705 706 - 1.707 - 11.708 - 111. Battery Note682 +((( 683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 +))) 709 709 710 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 711 711 687 +((( 688 +Instruction to use as below: 689 +))) 712 712 713 - 1.714 -1 1.715 - 111. Replace the battery691 +((( 692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 693 +))) 716 716 717 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 718 718 696 +((( 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 698 +))) 719 719 720 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 700 +* ((( 701 +Product Model 702 +))) 703 +* ((( 704 +Uplink Interval 705 +))) 706 +* ((( 707 +Working Mode 708 +))) 721 721 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 722 722 723 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)714 +[[image:image-20220708141352-7.jpeg]] 724 724 725 725 726 726 718 +=== 2.9.3 Battery Note === 727 727 720 +((( 721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 +))) 728 728 729 729 730 -= 3. Using the AT Commands = 731 731 732 -== 3.1AccessATCommands==726 +=== 2.9.4 Replace the battery === 733 733 728 +((( 729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 730 +))) 734 734 735 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 736 736 737 -[[image:1654501986557-872.png]] 738 738 734 += 3. Access NB-IoT Module = 739 739 740 -Or if you have below board, use below connection: 736 +((( 737 +Users can directly access the AT command set of the NB-IoT module. 738 +))) 741 741 740 +((( 741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 742 +))) 742 742 743 -[[image:165 4502005655-729.png]]744 +[[image:1657261278785-153.png]] 744 744 745 745 746 746 747 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:748 += 4. Using the AT Commands = 748 748 750 +== 4.1 Access AT Commands == 749 749 750 - [[ima ge:1654502050864-459.png]]752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 751 751 752 752 753 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]755 +AT+<CMD>? : Help on <CMD> 754 754 757 +AT+<CMD> : Run <CMD> 755 755 756 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>759 +AT+<CMD>=<value> : Set the value 757 757 758 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>761 +AT+<CMD>=? : Get the value 759 759 760 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 761 761 762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 763 - 764 - 765 765 (% style="color:#037691" %)**General Commands**(%%) 766 766 767 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 768 768 769 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 770 770 771 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 772 772 773 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 774 774 774 +AT+CFG : Print all configurations 775 775 776 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 777 777 778 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 779 779 780 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 781 781 782 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 793 793 794 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 795 795 796 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 799 799 800 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 801 801 802 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 805 805 806 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 807 807 808 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 809 809 807 +AT+CLIENT : Get or Set MQTT client 810 810 811 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 812 812 813 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 818 818 819 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 820 820 821 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 826 826 827 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 828 828 829 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 830 830 831 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 832 832 833 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 835 +((( 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 837 +))) 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 839 +((( 840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 841 +))) 842 842 843 843 844 -(% style="color:#037691" %)**Information** 845 845 846 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket845 +== 5.2 Can I calibrate NSE01 to different soil types? == 847 847 848 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 849 849 850 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 851 851 852 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset852 += 6. Trouble Shooting = 853 853 854 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort854 +== 6.1 Connection problem when uploading firmware == 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 859 - 860 - 861 -= 4. FAQ = 862 - 863 -== 4.1 How to change the LoRa Frequency Bands/Region? == 864 - 865 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 866 -When downloading the images, choose the required image file for download. 867 - 868 - 869 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 870 - 871 - 872 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 873 - 874 - 875 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 876 - 877 -[[image:image-20220606154726-3.png]] 878 - 879 -When you use the TTN network, the US915 frequency bands use are: 880 - 881 -* 903.9 - SF7BW125 to SF10BW125 882 -* 904.1 - SF7BW125 to SF10BW125 883 -* 904.3 - SF7BW125 to SF10BW125 884 -* 904.5 - SF7BW125 to SF10BW125 885 -* 904.7 - SF7BW125 to SF10BW125 886 -* 904.9 - SF7BW125 to SF10BW125 887 -* 905.1 - SF7BW125 to SF10BW125 888 -* 905.3 - SF7BW125 to SF10BW125 889 -* 904.6 - SF8BW500 890 - 891 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 892 - 893 -(% class="box infomessage" %) 894 894 ((( 895 -** AT+CHE=2**858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 896 896 ))) 897 897 898 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 899 899 ((( 900 - **ATZ**863 + 901 901 ))) 902 902 903 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 904 904 867 +== 6.2 AT Command input doesn't work == 905 905 906 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 907 907 908 -[[image:image-20220606154825-4.png]] 872 + 873 +))) 909 909 910 910 876 += 7. Order Info = 911 911 912 -= 5. Trouble Shooting = 913 913 914 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 915 915 916 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 917 917 882 +(% class="wikigeneratedid" %) 883 +((( 884 + 885 +))) 918 918 919 -= =5.2AT Commandinputdoesn’t work==887 += 8. Packing Info = 920 920 921 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 +((( 890 + 922 922 892 +(% style="color:#037691" %)**Package Includes**: 923 923 924 -== 5.3 Device rejoin in at the second uplink packet == 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 896 +))) 925 925 926 -(% style="color:#4f81bd" %)**Issue describe as below:** 898 +((( 899 + 927 927 928 - [[image:1654500909990-784.png]]901 +(% style="color:#037691" %)**Dimension and weight**: 929 929 930 - 931 -(% style="color:#4f81bd" %)**Cause for this issue:** 932 - 933 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 934 - 935 - 936 -(% style="color:#4f81bd" %)**Solution: ** 937 - 938 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 939 - 940 -[[image:1654500929571-736.png]] 941 - 942 - 943 -= 6. Order Info = 944 - 945 - 946 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 947 - 948 - 949 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 950 - 951 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 952 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 953 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 954 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 955 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 956 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 957 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 958 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 959 - 960 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 961 - 962 -* (% style="color:red" %)**4**(%%): 4000mAh battery 963 -* (% style="color:red" %)**8**(%%): 8500mAh battery 964 - 965 -= 7. Packing Info = 966 - 967 -((( 968 -**Package Includes**: 903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 969 969 ))) 970 970 971 -* ((( 972 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 973 -))) 974 - 975 975 ((( 976 976 977 -))) 978 978 979 -((( 980 -**Dimension and weight**: 981 -))) 982 982 983 -* ((( 984 -Device Size: cm 911 + 985 985 ))) 986 -* ((( 987 -Device Weight: g 988 -))) 989 -* ((( 990 -Package Size / pcs : cm 991 -))) 992 -* ((( 993 -Weight / pcs : g 994 -))) 995 995 996 -= 8. Support =914 += 9. Support = 997 997 998 998 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 999 999 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1000 - 1001 -
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content