Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 27 added, 0 removed)
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,994 +8,830 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 13 + 14 +**Table of Contents:** 15 + 16 +{{toc/}} 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 += 1. Introduction = 25 + 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 15 15 ((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 29 + 18 18 19 19 ((( 20 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 21 21 ))) 22 22 23 23 ((( 24 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 25 25 ))) 26 26 27 27 ((( 28 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 29 29 ))) 30 30 31 31 ((( 32 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 33 33 ))) 34 34 47 + 48 +))) 35 35 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 -== 1.2 Features == 57 +== 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.73 +== 1.3 Specification == 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 76 +(% style="color:#037691" %)**Common DC Characteristics:** 63 63 78 +* Supply Voltage: 2.1v ~~ 3.6v 79 +* Operating Temperature: -40 ~~ 85°C 64 64 65 - ==1.4 Applications==81 +(% style="color:#037691" %)**NB-IoT Spec:** 66 66 67 -* Smart Agriculture 83 +* - B1 @H-FDD: 2100MHz 84 +* - B3 @H-FDD: 1800MHz 85 +* - B8 @H-FDD: 900MHz 86 +* - B5 @H-FDD: 850MHz 87 +* - B20 @H-FDD: 800MHz 88 +* - B28 @H-FDD: 700MHz 68 68 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 90 +Probe(% style="color:#037691" %)** Specification:** 71 71 72 - == 1.5 FirmwareChangelog==92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 73 94 +[[image:image-20220708101224-1.png]] 74 74 75 -**LSE01 v1.0 :** Release 76 76 77 77 98 +== 1.4 Applications == 78 78 79 - =2. Configure LSE01toconnectto LoRaWAN network =100 +* Smart Agriculture 80 80 81 -== 2.1 How it works == 102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 + 82 82 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 105 +== 1.5 Pin Definitions == 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 90 108 +[[image:1657246476176-652.png]] 91 91 92 92 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 94 95 - Followingisanexamplefor how to join the [[TTNv3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWANgateway in thisexample.112 += 2. Use NSE01 to communicate with IoT Server = 96 96 114 +== 2.1 How it works == 97 97 98 -[[image:1654503992078-669.png]] 99 99 117 +((( 118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 119 +))) 100 100 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 102 122 +((( 123 +The diagram below shows the working flow in default firmware of NSE01: 124 +))) 103 103 104 - **Step 1**: Createa device in TTN with the OTAA keys fromLSE01.126 +[[image:image-20220708101605-2.png]] 105 105 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 128 +((( 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 166 166 134 +== 2.2 Configure the NSE01 == 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).137 +=== 2.2.1 Test Requirement === 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 140 +To use NSE01 in your city, make sure meet below requirements: 179 179 180 - (Reserve,Ignorenow)181 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((182 - MOD&DigitalInterrupt142 +* Your local operator has already distributed a NB-IoT Network there. 143 +* The local NB-IoT network used the band that NSE01 supports. 144 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 183 183 184 -(Optional) 146 +((( 147 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 188 151 +[[image:1657249419225-449.png]] 189 189 190 190 191 -=== 2.3.3 Battery Info === 192 192 193 - Checkthebattery voltageforLSE01.155 +=== 2.2.2 Insert SIM card === 194 194 195 - Ex1:0x0B45=2885mV157 +Insert the NB-IoT Card get from your provider. 196 196 197 - Ex2:0x0B49=2889mV159 +User need to take out the NB-IoT module and insert the SIM card like below: 198 198 199 199 162 +[[image:1657249468462-536.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is166 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 206 206 207 - 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 - 210 - 211 - 212 -=== 2.3.5 Soil Temperature === 213 - 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 - 216 -**Example**: 217 - 218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 219 - 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 - 222 - 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 228 -))) 229 - 230 230 ((( 231 - For example,ifthedatayougetfromtheregister is 0x000xC8,the soilconductivityis00C8(H)=200(D)=200uS/cm.170 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 232 232 ))) 233 - 234 -((( 235 -Generally, the EC value of irrigation water is less than 800uS / cm. 236 236 ))) 237 237 238 -((( 239 - 240 -))) 241 241 242 -((( 243 - 244 -))) 175 +**Connection:** 245 245 246 -= ==2.3.7MOD===177 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 247 247 248 - Firmwareversionatst v2.1 supportschanging mode.179 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 249 249 250 - Forexample,bytes[10]=90181 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 184 +In the PC, use below serial tool settings: 254 254 255 -Downlink Command: 186 +* Baud: (% style="color:green" %)**9600** 187 +* Data bits:** (% style="color:green" %)8(%%)** 188 +* Stop bits: (% style="color:green" %)**1** 189 +* Parity: (% style="color:green" %)**None** 190 +* Flow Control: (% style="color:green" %)**None** 256 256 257 -If payload = 0x0A00, workmode=0 192 +((( 193 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 194 +))) 258 258 259 - If** **payload =** **0x0A01, workmode=1196 +[[image:image-20220708110657-3.png]] 260 260 198 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 261 261 262 262 263 -=== 2.3.8 Decode payload in The Things Network === 264 264 265 - WhileusingTTNnetwork,youcan add thepayload formattodecodethepayload.202 +=== 2.2.4 Use CoAP protocol to uplink data === 266 266 204 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 267 267 268 -[[image:1654505570700-128.png]] 269 269 270 - Thepayloaddecoder function for TTN ishere:207 +**Use below commands:** 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 209 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 210 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 211 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 273 273 213 +For parameter description, please refer to AT command set 274 274 275 - ==2.4Uplink Interval ==215 +[[image:1657249793983-486.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]218 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 280 280 220 +[[image:1657249831934-534.png]] 281 281 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - Bydefault,LSE50printsthe downlinkpayloadtonsoleport.224 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 286 286 287 - [[image:image-20220606165544-8.png]]226 +This feature is supported since firmware version v1.0.1 288 288 289 289 290 -**Examples:** 229 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 230 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 231 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 291 291 233 +[[image:1657249864775-321.png]] 292 292 293 -* **Set TDC** 294 294 295 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.236 +[[image:1657249930215-289.png]] 296 296 297 -Payload: 01 00 00 1E TDC=30S 298 298 299 -Payload: 01 00 00 3C TDC=60S 300 300 240 +=== 2.2.6 Use MQTT protocol to uplink data === 301 301 302 - ***Reset**242 +This feature is supported since firmware version v110 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 245 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 247 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 248 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 249 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 250 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 251 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 306 307 - * **CFM**253 +[[image:1657249978444-674.png]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 256 +[[image:1657249990869-686.png]] 311 311 312 312 313 -== 2.6 Show Data in DataCake IoT Server == 259 +((( 260 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 261 +))) 314 314 315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 316 316 317 317 318 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.265 +=== 2.2.7 Use TCP protocol to uplink data === 319 319 320 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:267 +This feature is supported since firmware version v110 321 321 322 322 323 -[[image:1654505857935-743.png]] 270 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 271 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 324 324 273 +[[image:1657250217799-140.png]] 325 325 326 -[[image:1654505874829-548.png]] 327 327 328 - Step 3: Create an account or login Datacake.276 +[[image:1657250255956-604.png]] 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 331 331 332 332 333 - [[image:1654505905236-553.png]]280 +=== 2.2.8 Change Update Interval === 334 334 282 +User can use below command to change the (% style="color:green" %)**uplink interval**. 335 335 336 - Afteradded,thesensordata arrive TTN,itwillalsoarriveandshow inMydevices.284 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 337 337 338 -[[image:1654505925508-181.png]] 286 +((( 287 +(% style="color:red" %)**NOTE:** 288 +))) 339 339 290 +((( 291 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 292 +))) 340 340 341 341 342 -1. 343 -11. Frequency Plans 344 344 345 - TheLSE01uses OTAA mode and below frequencyplans by default. If user want to useit with differentfrequencyplan, please refer the AT commandsets.296 +== 2.3 Uplink Payload == 346 346 347 -1. 348 -11. 349 -111. EU863-870 (EU868) 298 +In this mode, uplink payload includes in total 18 bytes 350 350 351 -Uplink: 300 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 301 +|=(% style="width: 50px;" %)((( 302 +**Size(bytes)** 303 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 304 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 352 352 353 - 868.1-SF7BW125to SF12BW125306 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 354 354 355 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 356 356 357 - 868.5-SF7BW125 to SF12BW125309 +[[image:image-20220708111918-4.png]] 358 358 359 -867.1 - SF7BW125 to SF12BW125 360 360 361 - 867.3-SF7BW125toSF12BW125312 +The payload is ASCII string, representative same HEX: 362 362 363 - 867.5- SF7BW125to SF12BW125314 +0x72403155615900640c7817075e0a8c02f900 where: 364 364 365 -867.7 - SF7BW125 to SF12BW125 316 +* Device ID: 0x 724031556159 = 724031556159 317 +* Version: 0x0064=100=1.0.0 366 366 367 -867.9 - SF7BW125 to SF12BW125 319 +* BAT: 0x0c78 = 3192 mV = 3.192V 320 +* Singal: 0x17 = 23 321 +* Soil Moisture: 0x075e= 1886 = 18.86 % 322 +* Soil Temperature:0x0a8c =2700=27 °C 323 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 324 +* Interrupt: 0x00 = 0 368 368 369 -868.8 - FSK 370 370 327 +== 2.4 Payload Explanation and Sensor Interface == 371 371 372 -Downlink: 373 373 374 - Uplinkchannels1-9(RX1)330 +=== 2.4.1 Device ID === 375 375 376 - 869.525 - SF9BW125(RX2downlinkonly)332 +By default, the Device ID equal to the last 6 bytes of IMEI. 377 377 334 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 378 378 379 -1. 380 -11. 381 -111. US902-928(US915) 336 +**Example:** 382 382 383 - Used in USA, Canada and South America.Default use CHE=2338 +AT+DEUI=A84041F15612 384 384 385 -Up link:340 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 386 386 387 -903.9 - SF7BW125 to SF10BW125 388 388 389 -904.1 - SF7BW125 to SF10BW125 390 390 391 - 904.3 - SF7BW125toSF10BW125344 +=== 2.4.2 Version Info === 392 392 393 - 904.5-SF7BW125toSF10BW125346 +Specify the software version: 0x64=100, means firmware version 1.00. 394 394 395 - 904.7-SF7BW125toSF10BW125348 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 396 396 397 -904.9 - SF7BW125 to SF10BW125 398 398 399 -905.1 - SF7BW125 to SF10BW125 400 400 401 - 905.3- SF7BW125toSF10BW125352 +=== 2.4.3 Battery Info === 402 402 354 +((( 355 +Check the battery voltage for LSE01. 356 +))) 403 403 404 -Downlink: 358 +((( 359 +Ex1: 0x0B45 = 2885mV 360 +))) 405 405 406 -923.3 - SF7BW500 to SF12BW500 362 +((( 363 +Ex2: 0x0B49 = 2889mV 364 +))) 407 407 408 -923.9 - SF7BW500 to SF12BW500 409 409 410 -924.5 - SF7BW500 to SF12BW500 411 411 412 - 925.1-SF7BW500toSF12BW500368 +=== 2.4.4 Signal Strength === 413 413 414 - 925.7-SF7BW500to SF12BW500370 +NB-IoT Network signal Strength. 415 415 416 - 926.3- SF7BW500toSF12BW500372 +**Ex1: 0x1d = 29** 417 417 418 - 926.9-SF7BW500toSF12BW500374 +(% style="color:blue" %)**0**(%%) -113dBm or less 419 419 420 - 927.5- SF7BW500toSF12BW500376 +(% style="color:blue" %)**1**(%%) -111dBm 421 421 422 - 923.3 -SF12BW500(RX2downlinkonly)378 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 423 423 380 +(% style="color:blue" %)**31** (%%) -51dBm or greater 424 424 425 -1. 426 -11. 427 -111. CN470-510 (CN470) 382 +(% style="color:blue" %)**99** (%%) Not known or not detectable 428 428 429 -Used in China, Default use CHE=1 430 430 431 -Uplink: 432 432 433 -4 86.3-SF7BW125toSF12BW125386 +=== 2.4.5 Soil Moisture === 434 434 435 -486.5 - SF7BW125 to SF12BW125 388 +((( 389 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 390 +))) 436 436 437 -486.7 - SF7BW125 to SF12BW125 392 +((( 393 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 394 +))) 438 438 439 -486.9 - SF7BW125 to SF12BW125 396 +((( 397 + 398 +))) 440 440 441 -487.1 - SF7BW125 to SF12BW125 400 +((( 401 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 402 +))) 442 442 443 -487.3 - SF7BW125 to SF12BW125 444 444 445 -487.5 - SF7BW125 to SF12BW125 446 446 447 -4 87.7-SF7BW125toSF12BW125406 +=== 2.4.6 Soil Temperature === 448 448 408 +((( 409 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 410 +))) 449 449 450 -Downlink: 412 +((( 413 +**Example**: 414 +))) 451 451 452 -506.7 - SF7BW125 to SF12BW125 416 +((( 417 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 418 +))) 453 453 454 -506.9 - SF7BW125 to SF12BW125 420 +((( 421 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 422 +))) 455 455 456 -507.1 - SF7BW125 to SF12BW125 457 457 458 -507.3 - SF7BW125 to SF12BW125 459 459 460 - 507.5-SF7BW125toSF12BW125426 +=== 2.4.7 Soil Conductivity (EC) === 461 461 462 -507.7 - SF7BW125 to SF12BW125 428 +((( 429 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 430 +))) 463 463 464 -507.9 - SF7BW125 to SF12BW125 432 +((( 433 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 434 +))) 465 465 466 -508.1 - SF7BW125 to SF12BW125 436 +((( 437 +Generally, the EC value of irrigation water is less than 800uS / cm. 438 +))) 467 467 468 -505.3 - SF12BW125 (RX2 downlink only) 440 +((( 441 + 442 +))) 469 469 444 +((( 445 + 446 +))) 470 470 471 -1. 472 -11. 473 -111. AU915-928(AU915) 448 +=== 2.4.8 Digital Interrupt === 474 474 475 -D efault useCHE=2450 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 476 476 477 - Uplink:452 +The command is: 478 478 479 - 916.8-SF7BW125to SF12BW125454 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 480 480 481 -917.0 - SF7BW125 to SF12BW125 482 482 483 - 917.2-SF7BW125toSF12BW125457 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 484 484 485 -917.4 - SF7BW125 to SF12BW125 486 486 487 - 917.6 - SF7BW125 to SF12BW125460 +Example: 488 488 489 - 917.8-SF7BW125to SF12BW125462 +0x(00): Normal uplink packet. 490 490 491 - 918.0- SF7BW125toSF12BW125464 +0x(01): Interrupt Uplink Packet. 492 492 493 -918.2 - SF7BW125 to SF12BW125 494 494 495 495 496 - Downlink:468 +=== 2.4.9 +5V Output === 497 497 498 - 923.3-SF7BW500toSF12BW500470 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 499 499 500 -923.9 - SF7BW500 to SF12BW500 501 501 502 - 924.5-SF7BW500toSF12BW500473 +The 5V output time can be controlled by AT Command. 503 503 504 - 925.1- SF7BW500toSF12BW500475 +(% style="color:blue" %)**AT+5VT=1000** 505 505 506 - 925.7-SF7BW500 toSF12BW500477 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 507 507 508 -926.3 - SF7BW500 to SF12BW500 509 509 510 -926.9 - SF7BW500 to SF12BW500 511 511 512 - 927.5-SF7BW500 toSF12BW500481 +== 2.5 Downlink Payload == 513 513 514 - 923.3-SF12BW500(RX2downlink only)483 +By default, NSE01 prints the downlink payload to console port. 515 515 516 -1. 517 -11. 518 -111. AS920-923 & AS923-925 (AS923) 485 +[[image:image-20220708133731-5.png]] 519 519 520 -**Default Uplink channel:** 521 521 522 -923.2 - SF7BW125 to SF10BW125 488 +((( 489 +(% style="color:blue" %)**Examples:** 490 +))) 523 523 524 -923.4 - SF7BW125 to SF10BW125 492 +((( 493 + 494 +))) 525 525 496 +* ((( 497 +(% style="color:blue" %)**Set TDC** 498 +))) 526 526 527 -**Additional Uplink Channel**: 500 +((( 501 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 502 +))) 528 528 529 -(OTAA mode, channel added by JoinAccept message) 504 +((( 505 +Payload: 01 00 00 1E TDC=30S 506 +))) 530 530 531 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 508 +((( 509 +Payload: 01 00 00 3C TDC=60S 510 +))) 532 532 533 -922.2 - SF7BW125 to SF10BW125 512 +((( 513 + 514 +))) 534 534 535 -922.4 - SF7BW125 to SF10BW125 516 +* ((( 517 +(% style="color:blue" %)**Reset** 518 +))) 536 536 537 -922.6 - SF7BW125 to SF10BW125 520 +((( 521 +If payload = 0x04FF, it will reset the NSE01 522 +))) 538 538 539 -922.8 - SF7BW125 to SF10BW125 540 540 541 - 923.0-SF7BW125toSF10BW125525 +* (% style="color:blue" %)**INTMOD** 542 542 543 - 922.0-SF7BW125toSF10BW125527 +Downlink Payload: 06000003, Set AT+INTMOD=3 544 544 545 545 546 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 547 547 548 - 923.6-SF7BW125toSF10BW125531 +== 2.6 LED Indicator == 549 549 550 -923.8 - SF7BW125 to SF10BW125 533 +((( 534 +The NSE01 has an internal LED which is to show the status of different state. 551 551 552 -924.0 - SF7BW125 to SF10BW125 553 553 554 -924.2 - SF7BW125 to SF10BW125 537 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 538 +* Then the LED will be on for 1 second means device is boot normally. 539 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 540 +* For each uplink probe, LED will be on for 500ms. 541 +))) 555 555 556 -924.4 - SF7BW125 to SF10BW125 557 557 558 -924.6 - SF7BW125 to SF10BW125 559 559 560 560 546 +== 2.7 Installation in Soil == 561 561 562 -** Downlink:**548 +__**Measurement the soil surface**__ 563 563 564 - Uplink channels1-8(RX1)550 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 565 565 566 - 923.2- SF10BW125 (RX2)552 +[[image:1657259653666-883.png]] 567 567 568 568 569 -1. 570 -11. 571 -111. KR920-923 (KR920) 555 +((( 556 + 572 572 573 -Default channel: 574 - 575 -922.1 - SF7BW125 to SF12BW125 576 - 577 -922.3 - SF7BW125 to SF12BW125 578 - 579 -922.5 - SF7BW125 to SF12BW125 580 - 581 - 582 -Uplink: (OTAA mode, channel added by JoinAccept message) 583 - 584 -922.1 - SF7BW125 to SF12BW125 585 - 586 -922.3 - SF7BW125 to SF12BW125 587 - 588 -922.5 - SF7BW125 to SF12BW125 589 - 590 -922.7 - SF7BW125 to SF12BW125 591 - 592 -922.9 - SF7BW125 to SF12BW125 593 - 594 -923.1 - SF7BW125 to SF12BW125 595 - 596 -923.3 - SF7BW125 to SF12BW125 597 - 598 - 599 -Downlink: 600 - 601 -Uplink channels 1-7(RX1) 602 - 603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 604 - 605 - 606 -1. 607 -11. 608 -111. IN865-867 (IN865) 609 - 610 -Uplink: 611 - 612 -865.0625 - SF7BW125 to SF12BW125 613 - 614 -865.4025 - SF7BW125 to SF12BW125 615 - 616 -865.9850 - SF7BW125 to SF12BW125 617 - 618 - 619 -Downlink: 620 - 621 -Uplink channels 1-3 (RX1) 622 - 623 -866.550 - SF10BW125 (RX2) 624 - 625 - 626 -1. 627 -11. LED Indicator 628 - 629 -The LSE01 has an internal LED which is to show the status of different state. 630 - 631 - 632 -* Blink once when device power on. 633 -* Solid ON for 5 seconds once device successful Join the network. 634 -* Blink once when device transmit a packet. 635 - 636 -1. 637 -11. Installation in Soil 638 - 639 -**Measurement the soil surface** 640 - 641 - 642 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 643 - 644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 645 - 646 - 647 - 648 - 649 - 650 - 651 - 652 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 653 - 654 - 655 - 558 +((( 656 656 Dig a hole with diameter > 20CM. 560 +))) 657 657 562 +((( 658 658 Horizontal insert the probe to the soil and fill the hole for long term measurement. 564 +))) 565 +))) 659 659 567 +[[image:1654506665940-119.png]] 660 660 569 +((( 570 + 571 +))) 661 661 662 662 663 -1. 664 -11. Firmware Change Log 574 +== 2.8 Firmware Change Log == 665 665 666 -**Firmware download link:** 667 667 668 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]577 +Download URL & Firmware Change log 669 669 579 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 670 670 671 -**Firmware Upgrade Method:** 672 672 673 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]582 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 674 674 675 675 676 -**V1.0.** 677 677 678 - Release586 +== 2.9 Battery Analysis == 679 679 588 +=== 2.9.1 Battery Type === 680 680 681 681 682 -1. 683 -11. Battery Analysis 684 -111. Battery Type 591 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 685 685 686 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 687 687 594 +The battery is designed to last for several years depends on the actually use environment and update interval. 688 688 689 -The battery is designed to last for more than 5 years for the LSN50. 690 690 691 - 692 692 The battery related documents as below: 693 693 694 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],695 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]696 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]599 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 601 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 697 697 698 - |(((699 - JST-XH-2P connector603 +((( 604 +[[image:image-20220708140453-6.png]] 700 700 ))) 701 701 702 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 703 703 704 704 609 +=== 2.9.2 Power consumption Analyze === 705 705 706 - 1.707 - 11.708 - 111. Battery Note611 +((( 612 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 613 +))) 709 709 710 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 711 711 616 +((( 617 +Instruction to use as below: 618 +))) 712 712 713 - 1.714 -1 1.715 - 111. Replace the battery620 +((( 621 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 622 +))) 716 716 717 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 718 718 625 +((( 626 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 627 +))) 719 719 720 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 629 +* ((( 630 +Product Model 631 +))) 632 +* ((( 633 +Uplink Interval 634 +))) 635 +* ((( 636 +Working Mode 637 +))) 721 721 639 +((( 640 +And the Life expectation in difference case will be shown on the right. 641 +))) 722 722 723 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)643 +[[image:image-20220708141352-7.jpeg]] 724 724 725 725 726 726 647 +=== 2.9.3 Battery Note === 727 727 649 +((( 650 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 651 +))) 728 728 729 729 730 -= 3. Using the AT Commands = 731 731 732 -== 3.1AccessATCommands==655 +=== 2.9.4 Replace the battery === 733 733 657 +((( 658 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 659 +))) 734 734 735 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 736 736 737 -[[image:1654501986557-872.png]] 738 738 663 += 3. Access NB-IoT Module = 739 739 740 -Or if you have below board, use below connection: 665 +((( 666 +Users can directly access the AT command set of the NB-IoT module. 667 +))) 741 741 669 +((( 670 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 671 +))) 742 742 743 -[[image:165 4502005655-729.png]]673 +[[image:1657261278785-153.png]] 744 744 745 745 746 746 747 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:677 += 4. Using the AT Commands = 748 748 679 +== 4.1 Access AT Commands == 749 749 750 - [[ima ge:1654502050864-459.png]]681 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 751 751 752 752 753 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]684 +AT+<CMD>? : Help on <CMD> 754 754 686 +AT+<CMD> : Run <CMD> 755 755 756 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>688 +AT+<CMD>=<value> : Set the value 757 757 758 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>690 +AT+<CMD>=? : Get the value 759 759 760 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 761 761 762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 763 - 764 - 765 765 (% style="color:#037691" %)**General Commands**(%%) 766 766 767 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention695 +AT : Attention 768 768 769 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help697 +AT? : Short Help 770 770 771 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset699 +ATZ : MCU Reset 772 772 773 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval701 +AT+TDC : Application Data Transmission Interval 774 774 703 +AT+CFG : Print all configurations 775 775 776 - (%style="color:#037691"%)**Keys,IDsand EUIs management**705 +AT+CFGMOD : Working mode selection 777 777 778 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI707 +AT+INTMOD : Set the trigger interrupt mode 779 779 780 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey709 +AT+5VT : Set extend the time of 5V power 781 781 782 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key711 +AT+PRO : Choose agreement 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress713 +AT+WEIGRE : Get weight or set weight to 0 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI715 +AT+WEIGAP : Get or Set the GapValue of weight 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)717 +AT+RXDL : Extend the sending and receiving time 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network719 +AT+CNTFAC : Get or set counting parameters 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode721 +AT+SERVADDR : Server Address 793 793 794 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 795 795 796 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network724 +(% style="color:#037691" %)**COAP Management** 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode726 +AT+URI : Resource parameters 799 799 800 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 801 801 802 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format729 +(% style="color:#037691" %)**UDP Management** 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat731 +AT+CFM : Upload confirmation mode (only valid for UDP) 805 805 806 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 807 807 808 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data734 +(% style="color:#037691" %)**MQTT Management** 809 809 736 +AT+CLIENT : Get or Set MQTT client 810 810 811 - (%style="color:#037691"%)**LoRaNetworkManagement**738 +AT+UNAME : Get or Set MQTT Username 812 812 813 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate740 +AT+PWD : Get or Set MQTT password 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA742 +AT+PUBTOPIC : Get or Set MQTT publish topic 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting744 +AT+SUBTOPIC : Get or Set MQTT subscription topic 818 818 819 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 820 820 821 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink747 +(% style="color:#037691" %)**Information** 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink749 +AT+FDR : Factory Data Reset 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1751 +AT+PWORD : Serial Access Password 826 826 827 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 828 828 829 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 830 830 831 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1755 += 5. FAQ = 832 832 833 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2757 +== 5.1 How to Upgrade Firmware == 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 760 +((( 761 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 762 +))) 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 842 - 843 - 844 -(% style="color:#037691" %)**Information** 845 - 846 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 847 - 848 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 849 - 850 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 851 - 852 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 853 - 854 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 855 - 856 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 857 - 858 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 859 - 860 - 861 -= 4. FAQ = 862 - 863 -== 4.1 How to change the LoRa Frequency Bands/Region? == 864 - 865 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 866 -When downloading the images, choose the required image file for download. 867 - 868 - 869 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 870 - 871 - 872 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 873 - 874 - 875 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 876 - 877 -[[image:image-20220606154726-3.png]] 878 - 879 -When you use the TTN network, the US915 frequency bands use are: 880 - 881 -* 903.9 - SF7BW125 to SF10BW125 882 -* 904.1 - SF7BW125 to SF10BW125 883 -* 904.3 - SF7BW125 to SF10BW125 884 -* 904.5 - SF7BW125 to SF10BW125 885 -* 904.7 - SF7BW125 to SF10BW125 886 -* 904.9 - SF7BW125 to SF10BW125 887 -* 905.1 - SF7BW125 to SF10BW125 888 -* 905.3 - SF7BW125 to SF10BW125 889 -* 904.6 - SF8BW500 890 - 891 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 892 - 893 -(% class="box infomessage" %) 894 894 ((( 895 - **AT+CHE=2**765 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 896 896 ))) 897 897 898 -(% class="box infomessage" %) 899 899 ((( 900 - **ATZ**769 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 901 901 ))) 902 902 903 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 904 904 905 905 906 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.774 += 6. Trouble Shooting = 907 907 908 - [[image:image-20220606154825-4.png]]776 +== 6.1 Connection problem when uploading firmware == 909 909 910 910 779 +(% class="wikigeneratedid" %) 780 +((( 781 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 782 +))) 911 911 912 -= 5. Trouble Shooting = 913 913 914 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 915 915 916 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.786 +== 6.2 AT Command input doesn't work == 917 917 788 +((( 789 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 790 +))) 918 918 919 -== 5.2 AT Command input doesn’t work == 920 920 921 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 922 922 794 += 7. Order Info = 923 923 924 -== 5.3 Device rejoin in at the second uplink packet == 925 925 926 -(% style="color:#4f81bd" %)** Issue describe as below:**797 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 927 927 928 -[[image:1654500909990-784.png]] 929 929 800 +(% class="wikigeneratedid" %) 801 +((( 802 + 803 +))) 930 930 931 - (% style="color:#4f81bd"%)**Causeforthis issue:**805 += 8. Packing Info = 932 932 933 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 807 +((( 808 + 934 934 810 +(% style="color:#037691" %)**Package Includes**: 935 935 936 -(% style="color:#4f81bd" %)**Solution: ** 937 937 938 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 813 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 814 +* External antenna x 1 815 +))) 939 939 940 -[[image:1654500929571-736.png]] 817 +((( 818 + 941 941 820 +(% style="color:#037691" %)**Dimension and weight**: 942 942 943 -= 6. Order Info = 944 944 945 - 946 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 947 - 948 - 949 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 950 - 951 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 952 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 953 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 954 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 955 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 956 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 957 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 958 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 959 - 960 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 961 - 962 -* (% style="color:red" %)**4**(%%): 4000mAh battery 963 -* (% style="color:red" %)**8**(%%): 8500mAh battery 964 - 965 -= 7. Packing Info = 966 - 967 -((( 968 -**Package Includes**: 823 +* Size: 195 x 125 x 55 mm 824 +* Weight: 420g 969 969 ))) 970 970 971 -* ((( 972 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 973 -))) 974 - 975 975 ((( 976 976 977 -))) 978 978 979 -((( 980 -**Dimension and weight**: 981 -))) 982 982 983 -* ((( 984 -Device Size: cm 831 + 985 985 ))) 986 -* ((( 987 -Device Weight: g 988 -))) 989 -* ((( 990 -Package Size / pcs : cm 991 -))) 992 -* ((( 993 -Weight / pcs : g 994 -))) 995 995 996 -= 8. Support =834 += 9. Support = 997 997 998 998 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 999 999 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1000 - 1001 -
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content