Last modified by Mengting Qiu on 2024/04/02 16:44

From version 27.2
edited by Xiaoling
on 2022/06/06 16:58
Change comment: There is no comment for this version
To version 65.12
edited by Xiaoling
on 2022/07/08 15:49
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,996 +8,838 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
13 +
14 +**Table of Contents:**
15 +
16 +{{toc/}}
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 += 1.  Introduction =
25 +
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
15 15  (((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
29 +
18 18  
19 19  (((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
21 21  )))
22 22  
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
25 25  )))
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
29 29  )))
30 30  
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
33 33  )))
34 34  
47 +
48 +)))
35 35  
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +== 1.3  Specification ==
60 60  
61 -[[image:image-20220606162220-5.png]]
62 62  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
64 64  
65 -== ​1.4 Applications ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
66 66  
67 -* Smart Agriculture
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
68 68  
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
90 +Probe(% style="color:#037691" %)** Specification:**
71 71  
72 -== 1.5 Firmware Change log ==
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 73  
94 +[[image:image-20220708101224-1.png]]
74 74  
75 -**LSE01 v1.0 :**  Release
76 76  
77 77  
98 +== ​1.4  Applications ==
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
100 +* Smart Agriculture
80 80  
81 -== 2.1 How it works ==
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
82 82  
83 -(((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
85 -)))
105 +== 1.5  Pin Definitions ==
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
90 90  
108 +[[image:1657246476176-652.png]]
91 91  
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 += 2.  Use NSE01 to communicate with IoT Server =
96 96  
114 +== 2.1  How it works ==
97 97  
98 -[[image:1654503992078-669.png]]
99 99  
117 +(((
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
119 +)))
100 100  
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 102  
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
124 +)))
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
126 +[[image:image-20220708101605-2.png]]
105 105  
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
107 -
108 -[[image:image-20220606163732-6.jpeg]]
109 -
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 -
112 -**Add APP EUI in the application**
113 -
114 -
115 -[[image:1654504596150-405.png]]
116 -
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -[[image:1654504683289-357.png]]
122 -
123 -
124 -
125 -**Step 2**: Power on LSE01
126 -
127 -
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 -
130 -[[image:image-20220606163915-7.png]]
131 -
132 -
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 -
135 -[[image:1654504778294-788.png]]
136 -
137 -
138 -
139 -== 2.3 Uplink Payload ==
140 -
141 -=== 2.3.1 MOD~=0(Default Mode) ===
142 -
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
128 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
134 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
137 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
140 +(((
141 +To use NSE01 in your city, make sure meet below requirements:
142 +)))
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
153 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
157 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
159 +(((
160 +Insert the NB-IoT Card get from your provider.
161 +)))
196 196  
197 -Ex2: 0x0B49 = 2889mV
163 +(((
164 +User need to take out the NB-IoT module and insert the SIM card like below:
165 +)))
198 198  
199 199  
168 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
172 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
174 +(((
175 +(((
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
177 +)))
178 +)))
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
181 +**Connection:**
210 210  
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
211 211  
212 -=== 2.3.5 Soil Temperature ===
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
215 215  
216 -**Example**:
217 217  
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
190 +In the PC, use below serial tool settings:
219 219  
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
221 221  
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
228 228  )))
229 229  
230 -(((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 -)))
202 +[[image:image-20220708110657-3.png]]
233 233  
234 234  (((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
236 236  )))
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 -
244 -)))
245 245  
246 -=== 2.3.7 MOD ===
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
247 247  
248 -Firmware version at least v2.1 supports changing mode.
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
249 249  
250 -For example, bytes[10]=90
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
215 +**Use below commands:**
253 253  
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
254 254  
255 -Downlink Command:
221 +For parameter description, please refer to AT command set
256 256  
257 -If payload = 0x0A00, workmode=0
223 +[[image:1657249793983-486.png]]
258 258  
259 -If** **payload =** **0x0A01, workmode=1
260 260  
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
261 261  
228 +[[image:1657249831934-534.png]]
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
266 266  
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
267 267  
268 -[[image:1654505570700-128.png]]
234 +This feature is supported since firmware version v1.0.1
269 269  
270 -The payload decoder function for TTN is here:
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
237 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
273 273  
241 +[[image:1657249864775-321.png]]
274 274  
275 -== 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
244 +[[image:1657249930215-289.png]]
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
281 281  
248 +=== 2.2.6 Use MQTT protocol to uplink data ===
282 282  
283 -== 2.5 Downlink Payload ==
250 +This feature is supported since firmware version v110
284 284  
285 -By default, LSE50 prints the downlink payload to console port.
286 286  
287 -[[image:image-20220606165544-8.png]]
253 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
288 288  
261 +[[image:1657249978444-674.png]]
289 289  
290 -**Examples:**
291 291  
264 +[[image:1657249990869-686.png]]
292 292  
293 -* **Set TDC**
294 294  
295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
267 +(((
268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
269 +)))
296 296  
297 -Payload:    01 00 00 1E    TDC=30S
298 298  
299 -Payload:    01 00 00 3C    TDC=60S
300 300  
273 +=== 2.2.7 Use TCP protocol to uplink data ===
301 301  
302 -* **Reset**
275 +This feature is supported since firmware version v110
303 303  
304 -If payload = 0x04FF, it will reset the LSE01
305 305  
278 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
306 306  
307 -* **CFM**
281 +[[image:1657250217799-140.png]]
308 308  
309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
310 310  
284 +[[image:1657250255956-604.png]]
311 311  
312 312  
313 -== 2.6 ​Show Data in DataCake IoT Server ==
314 314  
315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
288 +=== 2.2.8 Change Update Interval ===
316 316  
290 +User can use below command to change the (% style="color:green" %)**uplink interval**.
317 317  
318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
292 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
319 319  
320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
294 +(((
295 +(% style="color:red" %)**NOTE:**
296 +)))
321 321  
298 +(((
299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
300 +)))
322 322  
323 -[[image:1654505857935-743.png]]
324 324  
325 325  
326 -[[image:1654505874829-548.png]]
304 +== 2.3  Uplink Payload ==
327 327  
328 -Step 3: Create an account or log in Datacake.
306 +In this mode, uplink payload includes in total 18 bytes
329 329  
330 -Step 4: Search the LSE01 and add DevEUI.
308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
309 +|=(% style="width: 60px;" %)(((
310 +**Size(bytes)**
311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
331 331  
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
332 332  
333 -[[image:1654505905236-553.png]]
334 334  
317 +[[image:image-20220708111918-4.png]]
335 335  
336 336  
337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
320 +The payload is ASCII string, representative same HEX:
338 338  
322 +0x72403155615900640c7817075e0a8c02f900 where:
339 339  
340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
324 +* Device ID: 0x 724031556159 = 724031556159
325 +* Version: 0x0064=100=1.0.0
341 341  
327 +* BAT: 0x0c78 = 3192 mV = 3.192V
328 +* Singal: 0x17 = 23
329 +* Soil Moisture: 0x075e= 1886 = 18.86  %
330 +* Soil Temperature:0x0a8c =2700=27 °C
331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
332 +* Interrupt: 0x00 = 0
342 342  
343 343  
344 -1.
345 -11. Frequency Plans
335 +== 2.4  Payload Explanation and Sensor Interface ==
346 346  
347 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
348 348  
349 -1.
350 -11.
351 -111. EU863-870 (EU868)
338 +=== 2.4.1  Device ID ===
352 352  
353 -Uplink:
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 354  
355 -868.1 - SF7BW125 to SF12BW125
342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
356 356  
357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
344 +**Example:**
358 358  
359 -868.5 - SF7BW125 to SF12BW125
346 +AT+DEUI=A84041F15612
360 360  
361 -867.1 - SF7BW125 to SF12BW125
348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
362 362  
363 -867.3 - SF7BW125 to SF12BW125
364 364  
365 -867.5 - SF7BW125 to SF12BW125
366 366  
367 -867.7 - SF7BW125 to SF12BW125
352 +=== 2.4.2  Version Info ===
368 368  
369 -867.9 - SF7BW125 to SF12BW125
354 +Specify the software version: 0x64=100, means firmware version 1.00.
370 370  
371 -868.8 - FSK
356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
372 372  
373 373  
374 -Downlink:
375 375  
376 -Uplink channels 1-9 (RX1)
360 +=== 2.4.3  Battery Info ===
377 377  
378 -869.525 - SF9BW125 (RX2 downlink only)
362 +(((
363 +Check the battery voltage for LSE01.
364 +)))
379 379  
366 +(((
367 +Ex1: 0x0B45 = 2885mV
368 +)))
380 380  
381 -1.
382 -11.
383 -111. US902-928(US915)
370 +(((
371 +Ex2: 0x0B49 = 2889mV
372 +)))
384 384  
385 -Used in USA, Canada and South America. Default use CHE=2
386 386  
387 -Uplink:
388 388  
389 -903.9 - SF7BW125 to SF10BW125
376 +=== 2.4.4  Signal Strength ===
390 390  
391 -904.1 - SF7BW125 to SF10BW125
378 +NB-IoT Network signal Strength.
392 392  
393 -904.3 - SF7BW125 to SF10BW125
380 +**Ex1: 0x1d = 29**
394 394  
395 -904.5 - SF7BW125 to SF10BW125
382 +(% style="color:blue" %)**0**(%%)  -113dBm or less
396 396  
397 -904.7 - SF7BW125 to SF10BW125
384 +(% style="color:blue" %)**1**(%%)  -111dBm
398 398  
399 -904.9 - SF7BW125 to SF10BW125
386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
400 400  
401 -905.1 - SF7BW125 to SF10BW125
388 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
402 402  
403 -905.3 - SF7BW125 to SF10BW125
390 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
404 404  
405 405  
406 -Downlink:
407 407  
408 -923.3 - SF7BW500 to SF12BW500
394 +=== 2.4.5  Soil Moisture ===
409 409  
410 -923.9 - SF7BW500 to SF12BW500
396 +(((
397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
398 +)))
411 411  
412 -924.5 - SF7BW500 to SF12BW500
400 +(((
401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
402 +)))
413 413  
414 -925.1 - SF7BW500 to SF12BW500
404 +(((
405 +
406 +)))
415 415  
416 -925.7 - SF7BW500 to SF12BW500
408 +(((
409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
410 +)))
417 417  
418 -926.3 - SF7BW500 to SF12BW500
419 419  
420 -926.9 - SF7BW500 to SF12BW500
421 421  
422 -927.5 - SF7BW500 to SF12BW500
414 +=== 2.4.6  Soil Temperature ===
423 423  
424 -923.3 - SF12BW500(RX2 downlink only)
416 +(((
417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
418 +)))
425 425  
420 +(((
421 +**Example**:
422 +)))
426 426  
427 -1.
428 -11.
429 -111. CN470-510 (CN470)
424 +(((
425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
426 +)))
430 430  
431 -Used in China, Default use CHE=1
428 +(((
429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
430 +)))
432 432  
433 -Uplink:
434 434  
435 -486.3 - SF7BW125 to SF12BW125
436 436  
437 -486.5 - SF7BW125 to SF12BW125
434 +=== 2.4. Soil Conductivity (EC) ===
438 438  
439 -486.7 - SF7BW125 to SF12BW125
436 +(((
437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
438 +)))
440 440  
441 -486.9 - SF7BW125 to SF12BW125
440 +(((
441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
442 +)))
442 442  
443 -487.1 - SF7BW125 to SF12BW125
444 +(((
445 +Generally, the EC value of irrigation water is less than 800uS / cm.
446 +)))
444 444  
445 -487.3 - SF7BW125 to SF12BW125
448 +(((
449 +
450 +)))
446 446  
447 -487.5 - SF7BW125 to SF12BW125
452 +(((
453 +
454 +)))
448 448  
449 -487.7 - SF7BW125 to SF12BW125
456 +=== 2.4. Digital Interrupt ===
450 450  
458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
451 451  
452 -Downlink:
460 +The command is:
453 453  
454 -506.7 - SF7BW125 to SF12BW125
462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
455 455  
456 -506.9 - SF7BW125 to SF12BW125
457 457  
458 -507.1 - SF7BW125 to SF12BW125
465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
459 459  
460 -507.3 - SF7BW125 to SF12BW125
461 461  
462 -507.5 - SF7BW125 to SF12BW125
468 +Example:
463 463  
464 -507.7 - SF7BW125 to SF12BW125
470 +0x(00): Normal uplink packet.
465 465  
466 -507.9 - SF7BW125 to SF12BW125
472 +0x(01): Interrupt Uplink Packet.
467 467  
468 -508.1 - SF7BW125 to SF12BW125
469 469  
470 -505.3 - SF12BW125 (RX2 downlink only)
471 471  
476 +=== 2.4.9  ​+5V Output ===
472 472  
473 -1.
474 -11.
475 -111. AU915-928(AU915)
478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
476 476  
477 -Default use CHE=2
478 478  
479 -Uplink:
481 +The 5V output time can be controlled by AT Command.
480 480  
481 -916.8 - SF7BW125 to SF12BW125
483 +(% style="color:blue" %)**AT+5VT=1000**
482 482  
483 -917.0 - SF7BW125 to SF12BW125
485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
484 484  
485 -917.2 - SF7BW125 to SF12BW125
486 486  
487 -917.4 - SF7BW125 to SF12BW125
488 488  
489 -917.6 - SF7BW125 to SF12BW125
489 +== 2.5  Downlink Payload ==
490 490  
491 -917.8 - SF7BW125 to SF12BW125
491 +By default, NSE01 prints the downlink payload to console port.
492 492  
493 -918.0 - SF7BW125 to SF12BW125
493 +[[image:image-20220708133731-5.png]]
494 494  
495 -918.2 - SF7BW125 to SF12BW125
496 496  
496 +(((
497 +(% style="color:blue" %)**Examples:**
498 +)))
497 497  
498 -Downlink:
500 +(((
501 +
502 +)))
499 499  
500 -923.3 - SF7BW500 to SF12BW500
504 +* (((
505 +(% style="color:blue" %)**Set TDC**
506 +)))
501 501  
502 -923.9 - SF7BW500 to SF12BW500
508 +(((
509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
510 +)))
503 503  
504 -924.5 - SF7BW500 to SF12BW500
512 +(((
513 +Payload:    01 00 00 1E    TDC=30S
514 +)))
505 505  
506 -925.1 - SF7BW500 to SF12BW500
516 +(((
517 +Payload:    01 00 00 3C    TDC=60S
518 +)))
507 507  
508 -925.7 - SF7BW500 to SF12BW500
520 +(((
521 +
522 +)))
509 509  
510 -926.3 - SF7BW500 to SF12BW500
524 +* (((
525 +(% style="color:blue" %)**Reset**
526 +)))
511 511  
512 -926.9 - SF7BW500 to SF12BW500
528 +(((
529 +If payload = 0x04FF, it will reset the NSE01
530 +)))
513 513  
514 -927.5 - SF7BW500 to SF12BW500
515 515  
516 -923.3 - SF12BW500(RX2 downlink only)
533 +* (% style="color:blue" %)**INTMOD**
517 517  
518 -1.
519 -11.
520 -111. AS920-923 & AS923-925 (AS923)
535 +Downlink Payload: 06000003, Set AT+INTMOD=3
521 521  
522 -**Default Uplink channel:**
523 523  
524 -923.2 - SF7BW125 to SF10BW125
525 525  
526 -923.4 - SF7BW125 to SF10BW125
539 +== 2. ​LED Indicator ==
527 527  
541 +(((
542 +The NSE01 has an internal LED which is to show the status of different state.
528 528  
529 -**Additional Uplink Channel**:
530 530  
531 -(OTAA mode, channel added by JoinAccept message)
545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
546 +* Then the LED will be on for 1 second means device is boot normally.
547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
548 +* For each uplink probe, LED will be on for 500ms.
549 +)))
532 532  
533 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
534 534  
535 -922.2 - SF7BW125 to SF10BW125
536 536  
537 -922.4 - SF7BW125 to SF10BW125
538 538  
539 -922.6 - SF7BW125 to SF10BW125
554 +== 2.7  Installation in Soil ==
540 540  
541 -922.8 - SF7BW125 to SF10BW125
556 +__**Measurement the soil surface**__
542 542  
543 -923.0 - SF7BW125 to SF10BW125
558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
544 544  
545 -922.0 - SF7BW125 to SF10BW125
560 +[[image:1657259653666-883.png]] ​
546 546  
547 547  
548 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
563 +(((
564 +
549 549  
550 -923.6 - SF7BW125 to SF10BW125
551 -
552 -923.8 - SF7BW125 to SF10BW125
553 -
554 -924.0 - SF7BW125 to SF10BW125
555 -
556 -924.2 - SF7BW125 to SF10BW125
557 -
558 -924.4 - SF7BW125 to SF10BW125
559 -
560 -924.6 - SF7BW125 to SF10BW125
561 -
562 -
563 -
564 -**Downlink:**
565 -
566 -Uplink channels 1-8 (RX1)
567 -
568 -923.2 - SF10BW125 (RX2)
569 -
570 -
571 -1.
572 -11.
573 -111. KR920-923 (KR920)
574 -
575 -Default channel:
576 -
577 -922.1 - SF7BW125 to SF12BW125
578 -
579 -922.3 - SF7BW125 to SF12BW125
580 -
581 -922.5 - SF7BW125 to SF12BW125
582 -
583 -
584 -Uplink: (OTAA mode, channel added by JoinAccept message)
585 -
586 -922.1 - SF7BW125 to SF12BW125
587 -
588 -922.3 - SF7BW125 to SF12BW125
589 -
590 -922.5 - SF7BW125 to SF12BW125
591 -
592 -922.7 - SF7BW125 to SF12BW125
593 -
594 -922.9 - SF7BW125 to SF12BW125
595 -
596 -923.1 - SF7BW125 to SF12BW125
597 -
598 -923.3 - SF7BW125 to SF12BW125
599 -
600 -
601 -Downlink:
602 -
603 -Uplink channels 1-7(RX1)
604 -
605 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
606 -
607 -
608 -1.
609 -11.
610 -111. IN865-867 (IN865)
611 -
612 -Uplink:
613 -
614 -865.0625 - SF7BW125 to SF12BW125
615 -
616 -865.4025 - SF7BW125 to SF12BW125
617 -
618 -865.9850 - SF7BW125 to SF12BW125
619 -
620 -
621 -Downlink:
622 -
623 -Uplink channels 1-3 (RX1)
624 -
625 -866.550 - SF10BW125 (RX2)
626 -
627 -
628 -1.
629 -11. LED Indicator
630 -
631 -The LSE01 has an internal LED which is to show the status of different state.
632 -
633 -
634 -* Blink once when device power on.
635 -* Solid ON for 5 seconds once device successful Join the network.
636 -* Blink once when device transmit a packet.
637 -
638 -1.
639 -11. Installation in Soil
640 -
641 -**Measurement the soil surface**
642 -
643 -
644 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
645 -
646 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
647 -
648 -
649 -
650 -
651 -
652 -
653 -
654 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
655 -
656 -
657 -
566 +(((
658 658  Dig a hole with diameter > 20CM.
568 +)))
659 659  
570 +(((
660 660  Horizontal insert the probe to the soil and fill the hole for long term measurement.
572 +)))
573 +)))
661 661  
575 +[[image:1654506665940-119.png]]
662 662  
577 +(((
578 +
579 +)))
663 663  
664 664  
665 -1.
666 -11. ​Firmware Change Log
582 +== 2.8  ​Firmware Change Log ==
667 667  
668 -**Firmware download link:**
669 669  
670 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
585 +Download URL & Firmware Change log
671 671  
587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
672 672  
673 -**Firmware Upgrade Method:**
674 674  
675 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
676 676  
677 677  
678 -**V1.0.**
679 679  
680 -Release
594 +== 2.9  ​Battery Analysis ==
681 681  
596 +=== 2.9.1  ​Battery Type ===
682 682  
683 683  
684 -1.
685 -11. ​Battery Analysis
686 -111. ​Battery Type
599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
687 687  
688 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 689  
602 +The battery is designed to last for several years depends on the actually use environment and update interval. 
690 690  
691 -The battery is designed to last for more than 5 years for the LSN50.
692 692  
693 -
694 694  The battery related documents as below:
695 695  
696 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
697 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
698 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
699 699  
700 -|(((
701 -JST-XH-2P connector
611 +(((
612 +[[image:image-20220708140453-6.png]]
702 702  )))
703 703  
704 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
705 705  
706 706  
617 +=== 2.9.2  Power consumption Analyze ===
707 707  
708 -1.
709 -11.
710 -111. ​Battery Note
619 +(((
620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
621 +)))
711 711  
712 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
713 713  
624 +(((
625 +Instruction to use as below:
626 +)))
714 714  
715 -1.
716 -11.
717 -111. ​Replace the battery
628 +(((
629 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
630 +)))
718 718  
719 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
720 720  
633 +(((
634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
635 +)))
721 721  
722 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
637 +* (((
638 +Product Model
639 +)))
640 +* (((
641 +Uplink Interval
642 +)))
643 +* (((
644 +Working Mode
645 +)))
723 723  
647 +(((
648 +And the Life expectation in difference case will be shown on the right.
649 +)))
724 724  
725 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
651 +[[image:image-20220708141352-7.jpeg]]
726 726  
727 727  
728 728  
655 +=== 2.9.3  ​Battery Note ===
729 729  
657 +(((
658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
659 +)))
730 730  
731 731  
732 -= 3. ​Using the AT Commands =
733 733  
734 -== 3.1 Access AT Commands ==
663 +=== 2.9.4  Replace the battery ===
735 735  
665 +(((
666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
667 +)))
736 736  
737 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
738 738  
739 -[[image:1654501986557-872.png]]
740 740  
671 += 3. ​ Access NB-IoT Module =
741 741  
742 -Or if you have below board, use below connection:
673 +(((
674 +Users can directly access the AT command set of the NB-IoT module.
675 +)))
743 743  
677 +(((
678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
679 +)))
744 744  
745 -[[image:1654502005655-729.png]]
681 +[[image:1657261278785-153.png]]
746 746  
747 747  
748 748  
749 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
685 += 4.  Using the AT Commands =
750 750  
687 +== 4.1  Access AT Commands ==
751 751  
752 - [[image:1654502050864-459.png]]
689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
753 753  
754 754  
755 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
692 +AT+<CMD>?  : Help on <CMD>
756 756  
694 +AT+<CMD>         : Run <CMD>
757 757  
758 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
696 +AT+<CMD>=<value> : Set the value
759 759  
760 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
698 +AT+<CMD>=?  : Get the value
761 761  
762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
763 763  
764 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
765 -
766 -
767 767  (% style="color:#037691" %)**General Commands**(%%)      
768 768  
769 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
703 +AT  : Attention       
770 770  
771 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
705 +AT?  : Short Help     
772 772  
773 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
707 +ATZ  : MCU Reset    
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
709 +AT+TDC  : Application Data Transmission Interval
776 776  
711 +AT+CFG  : Print all configurations
777 777  
778 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
713 +AT+CFGMOD           : Working mode selection
779 779  
780 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
715 +AT+INTMOD            : Set the trigger interrupt mode
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
717 +AT+5VT  : Set extend the time of 5V power  
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
719 +AT+PRO  : Choose agreement
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
721 +AT+WEIGRE  : Get weight or set weight to 0
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
723 +AT+WEIGAP  : Get or Set the GapValue of weight
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
725 +AT+RXDL  : Extend the sending and receiving time
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
727 +AT+CNTFAC  : Get or set counting parameters
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
729 +AT+SERVADDR  : Server Address
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
732 +(% style="color:#037691" %)**COAP Management**      
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
734 +AT+URI            : Resource parameters
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
737 +(% style="color:#037691" %)**UDP Management**
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
739 +AT+CFM          : Upload confirmation mode (only valid for UDP)
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
742 +(% style="color:#037691" %)**MQTT Management**
811 811  
744 +AT+CLIENT               : Get or Set MQTT client
812 812  
813 -(% style="color:#037691" %)**LoRa Network Management**
746 +AT+UNAME  : Get or Set MQTT Username
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
748 +AT+PWD                  : Get or Set MQTT password
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
750 +AT+PUBTOPI : Get or Set MQTT publish topic
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
752 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
755 +(% style="color:#037691" %)**Information**          
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
757 +AT+FDR  : Factory Data Reset
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
759 +AT+PWOR : Serial Access Password
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
763 += ​5.  FAQ =
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
765 +== 5.1 How to Upgrade Firmware ==
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
768 +(((
769 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
770 +)))
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
844 -
845 -
846 -(% style="color:#037691" %)**Information** 
847 -
848 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
849 -
850 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
851 -
852 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
853 -
854 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
855 -
856 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
857 -
858 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
859 -
860 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
861 -
862 -
863 -= ​4. FAQ =
864 -
865 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
866 -
867 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
868 -When downloading the images, choose the required image file for download. ​
869 -
870 -
871 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
872 -
873 -
874 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
875 -
876 -
877 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
878 -
879 -[[image:image-20220606154726-3.png]]
880 -
881 -When you use the TTN network, the US915 frequency bands use are:
882 -
883 -* 903.9 - SF7BW125 to SF10BW125
884 -* 904.1 - SF7BW125 to SF10BW125
885 -* 904.3 - SF7BW125 to SF10BW125
886 -* 904.5 - SF7BW125 to SF10BW125
887 -* 904.7 - SF7BW125 to SF10BW125
888 -* 904.9 - SF7BW125 to SF10BW125
889 -* 905.1 - SF7BW125 to SF10BW125
890 -* 905.3 - SF7BW125 to SF10BW125
891 -* 904.6 - SF8BW500
892 -
893 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
894 -
895 -(% class="box infomessage" %)
896 896  (((
897 -**AT+CHE=2**
773 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
898 898  )))
899 899  
900 -(% class="box infomessage" %)
901 901  (((
902 -**ATZ**
777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
903 903  )))
904 904  
905 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
906 906  
907 907  
908 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
782 += 6.  Trouble Shooting =
909 909  
910 -[[image:image-20220606154825-4.png]]
784 +== 6.1  ​Connection problem when uploading firmware ==
911 911  
912 912  
787 +(% class="wikigeneratedid" %)
788 +(((
789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
790 +)))
913 913  
914 -= 5. Trouble Shooting =
915 915  
916 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
917 917  
918 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
794 +== 6. AT Command input doesn't work ==
919 919  
796 +(((
797 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
798 +)))
920 920  
921 -== 5.2 AT Command input doesn’t work ==
922 922  
923 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
924 924  
802 += 7. ​ Order Info =
925 925  
926 -== 5.3 Device rejoin in at the second uplink packet ==
927 927  
928 -(% style="color:#4f81bd" %)**Issue describe as below:**
805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
929 929  
930 -[[image:1654500909990-784.png]]
931 931  
808 +(% class="wikigeneratedid" %)
809 +(((
810 +
811 +)))
932 932  
933 -(% style="color:#4f81bd" %)**Cause for this issue:**
813 += 8 Packing Info =
934 934  
935 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
815 +(((
816 +
936 936  
818 +(% style="color:#037691" %)**Package Includes**:
937 937  
938 -(% style="color:#4f81bd" %)**Solution: **
939 939  
940 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
822 +* External antenna x 1
823 +)))
941 941  
942 -[[image:1654500929571-736.png]]
825 +(((
826 +
943 943  
828 +(% style="color:#037691" %)**Dimension and weight**:
944 944  
945 -= 6. ​Order Info =
946 946  
947 -
948 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
949 -
950 -
951 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
952 -
953 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
954 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
955 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
956 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
957 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
958 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
959 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
960 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
961 -
962 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
963 -
964 -* (% style="color:red" %)**4**(%%): 4000mAh battery
965 -* (% style="color:red" %)**8**(%%): 8500mAh battery
966 -
967 -= 7. Packing Info =
968 -
969 -(((
970 -**Package Includes**:
831 +* Size: 195 x 125 x 55 mm
832 +* Weight:   420g
971 971  )))
972 972  
973 -* (((
974 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
975 -)))
976 -
977 977  (((
978 978  
979 -)))
980 980  
981 -(((
982 -**Dimension and weight**:
983 -)))
984 984  
985 -* (((
986 -Device Size: cm
839 +
987 987  )))
988 -* (((
989 -Device Weight: g
990 -)))
991 -* (((
992 -Package Size / pcs : cm
993 -)))
994 -* (((
995 -Weight / pcs : g
996 -)))
997 997  
998 -= 8. Support =
842 += 9.  Support =
999 999  
1000 1000  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1001 1001  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1002 -
1003 -
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content