Last modified by Mengting Qiu on 2024/04/02 16:44

From version 27.1
edited by Xiaoling
on 2022/06/06 16:58
Change comment: Uploaded new attachment "1654505905236-553.png", version {1}
To version 62.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "image-20220708141352-7.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,731 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
41 -
42 -
43 -== 1.2 ​Features ==
44 -
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
56 -
57 -== 1.3 Specification ==
58 -
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 -
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
71 -
72 -== 1.5 Firmware Change log ==
73 -
74 -
75 -**LSE01 v1.0 :**  Release
76 -
77 -
78 -
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
80 -
81 -== 2.1 How it works ==
82 -
83 83  (((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
85 -)))
26 +
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
90 90  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
91 91  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 -
97 -
98 -[[image:1654503992078-669.png]]
99 -
100 -
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 -
103 -
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
105 -
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
107 -
108 -[[image:image-20220606163732-6.jpeg]]
109 -
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 -
112 -**Add APP EUI in the application**
113 -
114 -
115 -[[image:1654504596150-405.png]]
116 -
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -[[image:1654504683289-357.png]]
122 -
123 -
124 -
125 -**Step 2**: Power on LSE01
126 -
127 -
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 -
130 -[[image:image-20220606163915-7.png]]
131 -
132 -
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 -
135 -[[image:1654504778294-788.png]]
136 -
137 -
138 -
139 -== 2.3 Uplink Payload ==
140 -
141 -=== 2.3.1 MOD~=0(Default Mode) ===
142 -
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
39 +[[image:1654503236291-817.png]]
165 165  
166 166  
42 +[[image:1657245163077-232.png]]
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171 171  
172 -|(((
173 -**Size**
46 +== 1.2 ​Features ==
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
183 183  
184 -(Optional)
185 -)))
62 +== 1.3  Specification ==
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
189 189  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
190 190  
191 -=== 2.3.3 Battery Info ===
70 +(% style="color:#037691" %)**NB-IoT Spec:**
192 192  
193 -Check the battery voltage for LSE01.
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
194 194  
195 -Ex1: 0x0B45 = 2885mV
79 +(% style="color:#037691" %)**Probe Specification:**
196 196  
197 -Ex2: 0x0B49 = 2889mV
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
198 198  
83 +[[image:image-20220708101224-1.png]]
199 199  
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
87 +== ​1. Applications ==
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
89 +* Smart Agriculture
206 206  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
94 +== 1.5  Pin Definitions ==
209 209  
210 210  
97 +[[image:1657246476176-652.png]]
211 211  
212 -=== 2.3.5 Soil Temperature ===
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215 215  
216 -**Example**:
101 += 2.  Use NSE01 to communicate with IoT Server =
217 217  
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
103 +== 2.1  How it works ==
219 219  
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221 221  
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
228 228  )))
229 229  
230 -(((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 -)))
233 233  
234 234  (((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
112 +The diagram below shows the working flow in default firmware of NSE01:
236 236  )))
237 237  
238 -(((
239 -
240 -)))
115 +[[image:image-20220708101605-2.png]]
241 241  
242 242  (((
243 243  
244 244  )))
245 245  
246 -=== 2.3.7 MOD ===
247 247  
248 -Firmware version at least v2.1 supports changing mode.
249 249  
250 -For example, bytes[10]=90
123 +== 2.2 ​ Configure the NSE01 ==
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
253 253  
126 +=== 2.2.1 Test Requirement ===
254 254  
255 -Downlink Command:
256 256  
257 -If payload = 0x0A00, workmode=0
129 +To use NSE01 in your city, make sure meet below requirements:
258 258  
259 -If** **payload =** **0x0A01, workmode=1
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
260 260  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
261 261  
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
140 +[[image:1657249419225-449.png]]
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
266 266  
267 267  
268 -[[image:1654505570700-128.png]]
144 +=== 2.2.2 Insert SIM card ===
269 269  
270 -The payload decoder function for TTN is here:
146 +Insert the NB-IoT Card get from your provider.
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
273 273  
274 274  
275 -== 2.4 Uplink Interval ==
151 +[[image:1657249468462-536.png]]
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
281 281  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
282 282  
283 -== 2.5 Downlink Payload ==
284 284  
285 -By default, LSE50 prints the downlink payload to console port.
164 +**Connection:**
286 286  
287 -[[image:image-20220606165544-8.png]]
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
288 288  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
289 289  
290 -**Examples:**
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
291 291  
292 292  
293 -* **Set TDC**
173 +In the PC, use below serial tool settings:
294 294  
295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
296 296  
297 -Payload:    01 00 00 1E    TDC=30S
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
298 298  
299 -Payload:    01 00 00 3C    TDC=60S
185 +[[image:image-20220708110657-3.png]]
300 300  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
301 301  
302 -* **Reset**
303 303  
304 -If payload = 0x04FF, it will reset the LSE01
305 305  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
306 306  
307 -* **CFM**
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
308 308  
309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
310 310  
196 +**Use below commands:**
311 311  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
312 312  
313 -== 2.6 ​Show Data in DataCake IoT Server ==
202 +For parameter description, please refer to AT command set
314 314  
315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
204 +[[image:1657249793983-486.png]]
316 316  
317 317  
318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
319 319  
320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
209 +[[image:1657249831934-534.png]]
321 321  
322 322  
323 -[[image:1654505857935-743.png]]
324 324  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
325 325  
326 -[[image:1654505874829-548.png]]
215 +This feature is supported since firmware version v1.0.1
327 327  
328 328  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
329 329  
222 +[[image:1657249864775-321.png]]
330 330  
331 331  
332 -Step 3: Create an account or log in Datacake.
225 +[[image:1657249930215-289.png]]
333 333  
334 -Step 4: Search the LSE01 and add DevEUI.
335 335  
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
338 338  
231 +This feature is supported since firmware version v110
339 339  
340 340  
341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
342 342  
242 +[[image:1657249978444-674.png]]
343 343  
344 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
345 345  
245 +[[image:1657249990869-686.png]]
346 346  
347 347  
348 -1.
349 -11. Frequency Plans
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
350 350  
351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
352 352  
353 -1.
354 -11.
355 -111. EU863-870 (EU868)
356 356  
357 -Uplink:
254 +=== 2.2.7 Use TCP protocol to uplink data ===
358 358  
359 -868.1 - SF7BW125 to SF12BW125
256 +This feature is supported since firmware version v110
360 360  
361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
362 362  
363 -868.5 - SF7BW125 to SF12BW125
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
364 364  
365 -867.1 - SF7BW125 to SF12BW125
262 +[[image:1657250217799-140.png]]
366 366  
367 -867.3 - SF7BW125 to SF12BW125
368 368  
369 -867.5 - SF7BW125 to SF12BW125
265 +[[image:1657250255956-604.png]]
370 370  
371 -867.7 - SF7BW125 to SF12BW125
372 372  
373 -867.9 - SF7BW125 to SF12BW125
374 374  
375 -868.8 - FSK
269 +=== 2.2.8 Change Update Interval ===
376 376  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
377 377  
378 -Downlink:
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
379 379  
380 -Uplink channels 1-9 (RX1)
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
381 381  
382 -869.525 - SF9BW125 (RX2 downlink only)
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
383 383  
384 384  
385 -1.
386 -11.
387 -111. US902-928(US915)
388 388  
389 -Used in USA, Canada and South America. Default use CHE=2
285 +== 2.3  Uplink Payload ==
390 390  
391 -Uplink:
287 +In this mode, uplink payload includes in total 18 bytes
392 392  
393 -903.9 - SF7BW125 to SF10BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
394 394  
395 -904.1 - SF7BW125 to SF10BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
396 396  
397 -904.3 - SF7BW125 to SF10BW125
398 398  
399 -904.5 - SF7BW125 to SF10BW125
298 +[[image:image-20220708111918-4.png]]
400 400  
401 -904.7 - SF7BW125 to SF10BW125
402 402  
403 -904.9 - SF7BW125 to SF10BW125
301 +The payload is ASCII string, representative same HEX:
404 404  
405 -905.1 - SF7BW125 to SF10BW125
303 +0x72403155615900640c7817075e0a8c02f900 where:
406 406  
407 -905.3 - SF7BW125 to SF10BW125
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
408 408  
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
409 409  
410 -Downlink:
315 +== 2.4  Payload Explanation and Sensor Interface ==
411 411  
412 -923.3 - SF7BW500 to SF12BW500
413 413  
414 -923.9 - SF7BW500 to SF12BW500
318 +=== 2.4.1  Device ID ===
415 415  
416 -924.5 - SF7BW500 to SF12BW500
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
417 417  
418 -925.1 - SF7BW500 to SF12BW500
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
419 419  
420 -925.7 - SF7BW500 to SF12BW500
324 +**Example:**
421 421  
422 -926.3 - SF7BW500 to SF12BW500
326 +AT+DEUI=A84041F15612
423 423  
424 -926.9 - SF7BW500 to SF12BW500
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
425 425  
426 -927.5 - SF7BW500 to SF12BW500
427 427  
428 -923.3 - SF12BW500(RX2 downlink only)
429 429  
332 +=== 2.4.2  Version Info ===
430 430  
431 -1.
432 -11.
433 -111. CN470-510 (CN470)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
434 434  
435 -Used in China, Default use CHE=1
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
436 436  
437 -Uplink:
438 438  
439 -486.3 - SF7BW125 to SF12BW125
440 440  
441 -486.5 - SF7BW125 to SF12BW125
340 +=== 2.4. Battery Info ===
442 442  
443 -486.7 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
444 444  
445 -486.9 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
446 446  
447 -487.1 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
448 448  
449 -487.3 - SF7BW125 to SF12BW125
450 450  
451 -487.5 - SF7BW125 to SF12BW125
452 452  
453 -487.7 - SF7BW125 to SF12BW125
356 +=== 2.4. Signal Strength ===
454 454  
358 +NB-IoT Network signal Strength.
455 455  
456 -Downlink:
360 +**Ex1: 0x1d = 29**
457 457  
458 -506.7 - SF7BW125 to SF12BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
459 459  
460 -506.9 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
461 461  
462 -507.1 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
463 463  
464 -507.3 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
465 465  
466 -507.5 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
467 467  
468 -507.7 - SF7BW125 to SF12BW125
469 469  
470 -507.9 - SF7BW125 to SF12BW125
471 471  
472 -508.1 - SF7BW125 to SF12BW125
374 +=== 2.4.5  Soil Moisture ===
473 473  
474 -505.3 - SF12BW125 (RX2 downlink only)
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
475 475  
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
476 476  
477 -1.
478 -11.
479 -111. AU915-928(AU915)
384 +(((
385 +
386 +)))
480 480  
481 -Default use CHE=2
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
482 482  
483 -Uplink:
484 484  
485 -916.8 - SF7BW125 to SF12BW125
486 486  
487 -917.0 - SF7BW125 to SF12BW125
394 +=== 2.4.6  Soil Temperature ===
488 488  
489 -917.2 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
490 490  
491 -917.4 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
492 492  
493 -917.6 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
494 494  
495 -917.8 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
496 496  
497 -918.0 - SF7BW125 to SF12BW125
498 498  
499 -918.2 - SF7BW125 to SF12BW125
500 500  
414 +=== 2.4.7  Soil Conductivity (EC) ===
501 501  
502 -Downlink:
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
503 503  
504 -923.3 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
505 505  
506 -923.9 - SF7BW500 to SF12BW500
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
507 507  
508 -924.5 - SF7BW500 to SF12BW500
428 +(((
429 +
430 +)))
509 509  
510 -925.1 - SF7BW500 to SF12BW500
432 +(((
433 +
434 +)))
511 511  
512 -925.7 - SF7BW500 to SF12BW500
436 +=== 2.4.8  Digital Interrupt ===
513 513  
514 -926.3 - SF7BW500 to SF12BW500
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
515 515  
516 -926.9 - SF7BW500 to SF12BW500
440 +The command is:
517 517  
518 -927.5 - SF7BW500 to SF12BW500
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
519 519  
520 -923.3 - SF12BW500(RX2 downlink only)
521 521  
522 -1.
523 -11.
524 -111. AS920-923 & AS923-925 (AS923)
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
525 525  
526 -**Default Uplink channel:**
527 527  
528 -923.2 - SF7BW125 to SF10BW125
448 +Example:
529 529  
530 -923.4 - SF7BW125 to SF10BW125
450 +0x(00): Normal uplink packet.
531 531  
452 +0x(01): Interrupt Uplink Packet.
532 532  
533 -**Additional Uplink Channel**:
534 534  
535 -(OTAA mode, channel added by JoinAccept message)
536 536  
537 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
456 +=== 2.4.9  ​+5V Output ===
538 538  
539 -922.2 - SF7BW125 to SF10BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
540 540  
541 -922.4 - SF7BW125 to SF10BW125
542 542  
543 -922.6 - SF7BW125 to SF10BW125
461 +The 5V output time can be controlled by AT Command.
544 544  
545 -922.8 - SF7BW125 to SF10BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
546 546  
547 -923.0 - SF7BW125 to SF10BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
548 548  
549 -922.0 - SF7BW125 to SF10BW125
550 550  
551 551  
552 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
469 +== 2.5  Downlink Payload ==
553 553  
554 -923.6 - SF7BW125 to SF10BW125
471 +By default, NSE01 prints the downlink payload to console port.
555 555  
556 -923.8 - SF7BW125 to SF10BW125
473 +[[image:image-20220708133731-5.png]]
557 557  
558 -924.0 - SF7BW125 to SF10BW125
559 559  
560 -924.2 - SF7BW125 to SF10BW125
561 561  
562 -924.4 - SF7BW125 to SF10BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
563 563  
564 -924.6 - SF7BW125 to SF10BW125
481 +(((
482 +
483 +)))
565 565  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
566 566  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
567 567  
568 -**Downlink:**
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
569 569  
570 -Uplink channels 1-8 (RX1)
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
571 571  
572 -923.2 - SF10BW125 (RX2)
501 +(((
502 +
503 +)))
573 573  
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
574 574  
575 -1.
576 -11.
577 -111. KR920-923 (KR920)
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
578 578  
579 -Default channel:
580 580  
581 -922.1 - SF7BW125 to SF12BW125
514 +* (% style="color:blue" %)**INTMOD**
582 582  
583 -922.3 - SF7BW125 to SF12BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
584 584  
585 -922.5 - SF7BW125 to SF12BW125
586 586  
587 587  
588 -Uplink: (OTAA mode, channel added by JoinAccept message)
520 +== 2.6  ​LED Indicator ==
589 589  
590 -922.1 - SF7BW125 to SF12BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
591 591  
592 -922.3 - SF7BW125 to SF12BW125
593 593  
594 -922.5 - SF7BW125 to SF12BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
595 595  
596 -922.7 - SF7BW125 to SF12BW125
597 597  
598 -922.9 - SF7BW125 to SF12BW125
599 599  
600 -923.1 - SF7BW125 to SF12BW125
601 601  
602 -923.3 - SF7BW125 to SF12BW125
535 +== 2.7  Installation in Soil ==
603 603  
537 +__**Measurement the soil surface**__
604 604  
605 -Downlink:
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
606 606  
607 -Uplink channels 1-7(RX1)
541 +[[image:1657259653666-883.png]] ​
608 608  
609 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
610 610  
544 +(((
545 +
611 611  
612 -1.
613 -11.
614 -111. IN865-867 (IN865)
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
615 615  
616 -Uplink:
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
617 617  
618 -865.0625 - SF7BW125 to SF12BW125
556 +[[image:1654506665940-119.png]]
619 619  
620 -865.4025 - SF7BW125 to SF12BW125
558 +(((
559 +
560 +)))
621 621  
622 -865.9850 - SF7BW125 to SF12BW125
623 623  
563 +== 2.8  ​Firmware Change Log ==
624 624  
625 -Downlink:
626 626  
627 -Uplink channels 1-3 (RX1)
566 +Download URL & Firmware Change log
628 628  
629 -866.550 - SF10BW125 (RX2)
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
630 630  
631 631  
632 -1.
633 -11. LED Indicator
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
634 634  
635 -The LSE01 has an internal LED which is to show the status of different state.
636 636  
637 637  
638 -* Blink once when device power on.
639 -* Solid ON for 5 seconds once device successful Join the network.
640 -* Blink once when device transmit a packet.
575 +== 2.9  ​Battery Analysis ==
641 641  
642 -1.
643 -11. Installation in Soil
577 +=== 2.9.1  ​Battery Type ===
644 644  
645 -**Measurement the soil surface**
646 646  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
647 647  
648 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
649 649  
650 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
651 651  
652 652  
586 +The battery related documents as below:
653 653  
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
654 654  
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
655 655  
656 656  
657 657  
658 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
598 +2.9.
659 659  
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
660 660  
661 661  
662 -Dig a hole with diameter > 20CM.
603 +Instruction to use as below:
663 663  
664 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
665 665  
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
666 666  
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
667 667  
668 668  
669 -1.
670 -11. ​Firmware Change Log
611 +Step 2: Open it and choose
671 671  
672 -**Firmware download link:**
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
673 673  
674 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
617 +And the Life expectation in difference case will be shown on the right.
675 675  
676 676  
677 -**Firmware Upgrade Method:**
678 678  
679 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
621 +=== 2.9.3  ​Battery Note ===
680 680  
681 -
682 -**V1.0.**
683 -
684 -Release
685 -
686 -
687 -
688 -1.
689 -11. ​Battery Analysis
690 -111. ​Battery Type
691 -
692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
693 -
694 -
695 -The battery is designed to last for more than 5 years for the LSN50.
696 -
697 -
698 -The battery related documents as below:
699 -
700 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
701 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
702 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
703 -
704 -|(((
705 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
706 706  )))
707 707  
708 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
709 709  
710 710  
629 +=== 2.9.4  Replace the battery ===
711 711  
712 -1.
713 -11.
714 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
715 715  
716 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
717 717  
718 718  
719 -1.
720 -11.
721 -111. ​Replace the battery
722 -
723 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
724 -
725 -
726 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
727 -
728 -
729 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 -
731 -
732 -
733 -
734 -
735 -
736 736  = 3. ​Using the AT Commands =
737 737  
738 738  == 3.1 Access AT Commands ==
... ... @@ -740,13 +740,13 @@
740 740  
741 741  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
742 742  
743 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
744 744  
745 745  
746 746  Or if you have below board, use below connection:
747 747  
748 748  
749 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
750 750  
751 751  
752 752  
... ... @@ -753,10 +753,10 @@
753 753  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
754 754  
755 755  
756 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
757 757  
758 758  
759 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
760 760  
761 761  
762 762  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -868,20 +868,38 @@
868 868  
869 869  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
870 870  
871 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
872 872  When downloading the images, choose the required image file for download. ​
773 +)))
873 873  
775 +(((
776 +
777 +)))
874 874  
779 +(((
875 875  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
876 876  
783 +(((
784 +
785 +)))
877 877  
787 +(((
878 878  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
879 879  
791 +(((
792 +
793 +)))
880 880  
795 +(((
881 881  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
882 882  
883 883  [[image:image-20220606154726-3.png]]
884 884  
801 +
885 885  When you use the TTN network, the US915 frequency bands use are:
886 886  
887 887  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -894,37 +894,47 @@
894 894  * 905.3 - SF7BW125 to SF10BW125
895 895  * 904.6 - SF8BW500
896 896  
814 +(((
897 897  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
898 898  
899 -(% class="box infomessage" %)
900 -(((
901 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
902 902  )))
903 903  
904 -(% class="box infomessage" %)
905 905  (((
906 -**ATZ**
907 -)))
822 +
908 908  
909 909  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
910 910  
827 +(((
828 +
829 +)))
911 911  
831 +(((
912 912  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
913 913  
914 914  [[image:image-20220606154825-4.png]]
915 915  
916 916  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
917 917  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
918 918  = 5. Trouble Shooting =
919 919  
920 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
921 921  
922 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
923 923  
924 924  
925 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
926 926  
927 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
928 928  
929 929  
930 930  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -936,7 +936,9 @@
936 936  
937 937  (% style="color:#4f81bd" %)**Cause for this issue:**
938 938  
866 +(((
939 939  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
940 940  
941 941  
942 942  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -943,7 +943,7 @@
943 943  
944 944  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
945 945  
946 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
947 947  
948 948  
949 949  = 6. ​Order Info =
... ... @@ -968,10 +968,17 @@
968 968  * (% style="color:red" %)**4**(%%): 4000mAh battery
969 969  * (% style="color:red" %)**8**(%%): 8500mAh battery
970 970  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
971 971  = 7. Packing Info =
972 972  
973 973  (((
974 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
975 975  )))
976 976  
977 977  * (((
... ... @@ -980,10 +980,8 @@
980 980  
981 981  (((
982 982  
983 -)))
984 984  
985 -(((
986 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
987 987  )))
988 988  
989 989  * (((
... ... @@ -997,6 +997,8 @@
997 997  )))
998 998  * (((
999 999  Weight / pcs : g
934 +
935 +
1000 1000  )))
1001 1001  
1002 1002  = 8. Support =
... ... @@ -1003,4 +1003,3 @@
1003 1003  
1004 1004  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1005 1005  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1006 -
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content