Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 29 added, 0 removed)
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,999 +8,917 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 13 + 14 +**Table of Contents:** 15 + 16 +{{toc/}} 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 += 1. Introduction = 25 + 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 15 15 ((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 29 + 18 18 19 19 ((( 20 - Itdetects (% style="color:#4f81bd" %)**SoilMoisture**(%%),(%style="color:#4f81bd"%)**Soil Temperature**(%%)and(%style="color:#4f81bd"%)**SoilConductivity**(%%),anduploadsthevalueviawirelesstoLoRaWANIoT Server.32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 21 21 ))) 22 22 23 23 ((( 24 - TheLoRawirelesstechnologyusedin LES01 allows devicetoend data andreachextremely longrangesatlowdata-rates. It provides ultra-longrangespreadspectrumcommunicationandhighinterferenceimmunitywhilst minimizing current consumption.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 25 25 ))) 26 26 27 27 ((( 28 - LES01is powered by (%style="color:#4f81bd"%)**4000mAor8500mAhLi-SOCI2battery**(%%),Itisdesignedfor long termuseup to10 years.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 29 29 ))) 30 30 31 31 ((( 32 - Each LES01ispre-loadwithasetfuniquekeys for LoRaWANregistrations,register thesekeys to localLoRaWANserver anditwill autoconnectafterpower on.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 33 33 ))) 34 34 47 + 48 +))) 35 35 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 -== 1.2 Features == 57 +== 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 75 +== 1.3 Specification == 63 63 64 64 65 - ==1.4 Applications==78 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 -* Smart Agriculture 80 +* Supply Voltage: 2.1v ~~ 3.6v 81 +* Operating Temperature: -40 ~~ 85°C 68 68 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 83 +(% style="color:#037691" %)**NB-IoT Spec:** 71 71 72 -== 1.5 Firmware Change log == 85 +* - B1 @H-FDD: 2100MHz 86 +* - B3 @H-FDD: 1800MHz 87 +* - B8 @H-FDD: 900MHz 88 +* - B5 @H-FDD: 850MHz 89 +* - B20 @H-FDD: 800MHz 90 +* - B28 @H-FDD: 700MHz 73 73 92 +Probe(% style="color:#037691" %)** Specification:** 74 74 75 - **LSE01v1.0:**Release94 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 76 76 96 +[[image:image-20220708101224-1.png]] 77 77 78 78 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 80 81 -== 2.1Howitworks ==100 +== 1.4 Applications == 82 82 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 102 +* Smart Agriculture 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 90 90 107 +== 1.5 Pin Definitions == 91 91 92 92 93 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==110 +[[image:1657246476176-652.png]] 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 96 97 97 98 - [[image:1654503992078-669.png]]114 += 2. Use NSE01 to communicate with IoT Server = 99 99 116 +== 2.1 How it works == 100 100 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 102 119 +((( 120 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 121 +))) 103 103 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 105 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 124 +((( 125 +The diagram below shows the working flow in default firmware of NSE01: 126 +))) 107 107 108 -[[image:image-20220 606163732-6.jpeg]]128 +[[image:image-20220708101605-2.png]] 109 109 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 130 +((( 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 166 166 136 +== 2.2 Configure the NSE01 == 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).139 +=== 2.2.1 Test Requirement === 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 142 +((( 143 +To use NSE01 in your city, make sure meet below requirements: 144 +))) 179 179 180 - (Reserve,Ignorenow)181 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((182 - MOD&DigitalInterrupt146 +* Your local operator has already distributed a NB-IoT Network there. 147 +* The local NB-IoT network used the band that NSE01 supports. 148 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 183 183 184 -(Optional) 150 +((( 151 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 188 155 +[[image:1657249419225-449.png]] 189 189 190 190 191 -=== 2.3.3 Battery Info === 192 192 193 - Checkthebattery voltageforLSE01.159 +=== 2.2.2 Insert SIM card === 194 194 195 -Ex1: 0x0B45 = 2885mV 161 +((( 162 +Insert the NB-IoT Card get from your provider. 163 +))) 196 196 197 -Ex2: 0x0B49 = 2889mV 165 +((( 166 +User need to take out the NB-IoT module and insert the SIM card like below: 167 +))) 198 198 199 199 170 +[[image:1657249468462-536.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is174 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 206 206 176 +((( 177 +((( 178 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 179 +))) 180 +))) 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 209 183 +**Connection:** 210 210 185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 211 211 212 - ===2.3.5SoilTemperature===187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 213 213 214 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 215 215 216 -**Example**: 217 217 218 -I fpayload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100=2.61°C192 +In the PC, use below serial tool settings: 219 219 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 194 +* Baud: (% style="color:green" %)**9600** 195 +* Data bits:** (% style="color:green" %)8(%%)** 196 +* Stop bits: (% style="color:green" %)**1** 197 +* Parity: (% style="color:green" %)**None** 198 +* Flow Control: (% style="color:green" %)**None** 221 221 222 - 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or(%style="color:#4f81bd" %)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerange of the register is0- 20000(Decimal)( Canbe greater than20000).201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 204 +[[image:image-20220708110657-3.png]] 233 233 234 234 ((( 235 - Generally,theECvalueofirrigationwaterisless than800uS/207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 236 236 ))) 237 237 238 -((( 239 - 240 -))) 241 241 242 -((( 243 - 244 -))) 245 245 246 -=== 2. 3.7MOD===212 +=== 2.2.4 Use CoAP protocol to uplink data === 247 247 248 - Firmwareversion atleastv2.1supportschangingmode.214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 249 249 250 -For example, bytes[10]=90 251 251 252 - mod=(bytes[10]>>7)&0x01=1.217 +**Use below commands:** 253 253 219 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 254 254 255 - DownlinkCommand:223 +For parameter description, please refer to AT command set 256 256 257 - If payload = 0x0A00, workmode=0225 +[[image:1657249793983-486.png]] 258 258 259 -If** **payload =** **0x0A01, workmode=1 260 260 228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 261 261 230 +[[image:1657249831934-534.png]] 262 262 263 -=== 2.3.8 Decode payload in The Things Network === 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 267 267 268 - [[image:1654505570700-128.png]]236 +This feature is supported since firmware version v1.0.1 269 269 270 -The payload decoder function for TTN is here: 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 239 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 273 273 243 +[[image:1657249864775-321.png]] 274 274 275 -== 2.4 Uplink Interval == 276 276 277 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:246 +[[image:1657249930215-289.png]] 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 281 281 250 +=== 2.2.6 Use MQTT protocol to uplink data === 282 282 283 - ==2.5DownlinkPayload==252 +This feature is supported since firmware version v110 284 284 285 -By default, LSE50 prints the downlink payload to console port. 286 286 287 -[[image:image-20220606165544-8.png]] 255 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 256 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 257 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 258 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 259 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 260 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 261 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 288 288 263 +[[image:1657249978444-674.png]] 289 289 290 -**Examples:** 291 291 266 +[[image:1657249990869-686.png]] 292 292 293 -* **Set TDC** 294 294 295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 269 +((( 270 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 271 +))) 296 296 297 -Payload: 01 00 00 1E TDC=30S 298 298 299 -Payload: 01 00 00 3C TDC=60S 300 300 275 +=== 2.2.7 Use TCP protocol to uplink data === 301 301 302 - ***Reset**277 +This feature is supported since firmware version v110 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 280 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 281 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 306 306 307 - * **CFM**283 +[[image:1657250217799-140.png]] 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 286 +[[image:1657250255956-604.png]] 311 311 312 312 313 -== 2.6 Show Data in DataCake IoT Server == 314 314 315 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendlyinterface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]]to connectto TTN and see the data in DATACAKE. Beloware the steps:290 +=== 2.2.8 Change Update Interval === 316 316 292 +User can use below command to change the (% style="color:green" %)**uplink interval**. 317 317 318 -* *Step1**:Besurethatyour device is programmedandproperlyconnectedto the networkatthistime.294 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 319 319 320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 296 +((( 297 +(% style="color:red" %)**NOTE:** 298 +))) 321 321 300 +((( 301 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 302 +))) 322 322 323 -[[image:1654505857935-743.png]] 324 324 325 325 326 - [[image:1654505874829-548.png]]306 +== 2.3 Uplink Payload == 327 327 308 +In this mode, uplink payload includes in total 18 bytes 328 328 310 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 311 +|=(% style="width: 60px;" %)((( 312 +**Size(bytes)** 313 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 314 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 329 329 316 +((( 317 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 318 +))) 330 330 331 331 332 - Step 3: Create an account or logn Datacake.321 +[[image:image-20220708111918-4.png]] 333 333 334 -Step 4: Search the LSE01 and add DevEUI. 335 335 324 +The payload is ASCII string, representative same HEX: 336 336 337 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]326 +0x72403155615900640c7817075e0a8c02f900 where: 338 338 328 +* Device ID: 0x 724031556159 = 724031556159 329 +* Version: 0x0064=100=1.0.0 339 339 331 +* BAT: 0x0c78 = 3192 mV = 3.192V 332 +* Singal: 0x17 = 23 333 +* Soil Moisture: 0x075e= 1886 = 18.86 % 334 +* Soil Temperature:0x0a8c =2700=27 °C 335 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 336 +* Interrupt: 0x00 = 0 340 340 341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 342 342 343 343 344 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 345 345 341 +== 2.4 Payload Explanation and Sensor Interface == 346 346 347 347 348 -1. 349 -11. Frequency Plans 344 +=== 2.4.1 Device ID === 350 350 351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 346 +((( 347 +By default, the Device ID equal to the last 6 bytes of IMEI. 348 +))) 352 352 353 - 1.354 - 11.355 - 111. EU863-870 (EU868)350 +((( 351 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 +))) 356 356 357 -Uplink: 354 +((( 355 +**Example:** 356 +))) 358 358 359 -868.1 - SF7BW125 to SF12BW125 358 +((( 359 +AT+DEUI=A84041F15612 360 +))) 360 360 361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 362 +((( 363 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 364 +))) 362 362 363 -868.5 - SF7BW125 to SF12BW125 364 364 365 -867.1 - SF7BW125 to SF12BW125 366 366 367 - 867.3- SF7BW125toSF12BW125368 +=== 2.4.2 Version Info === 368 368 369 -867.5 - SF7BW125 to SF12BW125 370 +((( 371 +Specify the software version: 0x64=100, means firmware version 1.00. 372 +))) 370 370 371 -867.7 - SF7BW125 to SF12BW125 374 +((( 375 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 +))) 372 372 373 -867.9 - SF7BW125 to SF12BW125 374 374 375 -868.8 - FSK 376 376 380 +=== 2.4.3 Battery Info === 377 377 378 -Downlink: 382 +((( 383 +Check the battery voltage for LSE01. 384 +))) 379 379 380 -Uplink channels 1-9 (RX1) 386 +((( 387 +Ex1: 0x0B45 = 2885mV 388 +))) 381 381 382 -869.525 - SF9BW125 (RX2 downlink only) 390 +((( 391 +Ex2: 0x0B49 = 2889mV 392 +))) 383 383 384 384 385 -1. 386 -11. 387 -111. US902-928(US915) 388 388 389 - UsedinUSA, CanadaandSouth America. Defaultuse CHE=2396 +=== 2.4.4 Signal Strength === 390 390 391 -Uplink: 398 +((( 399 +NB-IoT Network signal Strength. 400 +))) 392 392 393 -903.9 - SF7BW125 to SF10BW125 402 +((( 403 +**Ex1: 0x1d = 29** 404 +))) 394 394 395 -904.1 - SF7BW125 to SF10BW125 406 +((( 407 +(% style="color:blue" %)**0**(%%) -113dBm or less 408 +))) 396 396 397 -904.3 - SF7BW125 to SF10BW125 410 +((( 411 +(% style="color:blue" %)**1**(%%) -111dBm 412 +))) 398 398 399 -904.5 - SF7BW125 to SF10BW125 414 +((( 415 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 +))) 400 400 401 -904.7 - SF7BW125 to SF10BW125 418 +((( 419 +(% style="color:blue" %)**31** (%%) -51dBm or greater 420 +))) 402 402 403 -904.9 - SF7BW125 to SF10BW125 422 +((( 423 +(% style="color:blue" %)**99** (%%) Not known or not detectable 424 +))) 404 404 405 -905.1 - SF7BW125 to SF10BW125 406 406 407 -905.3 - SF7BW125 to SF10BW125 408 408 428 +=== 2.4.5 Soil Moisture === 409 409 410 -Downlink: 430 +((( 431 +((( 432 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 433 +))) 434 +))) 411 411 412 -923.3 - SF7BW500 to SF12BW500 436 +((( 437 +((( 438 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 439 +))) 440 +))) 413 413 414 -923.9 - SF7BW500 to SF12BW500 442 +((( 443 + 444 +))) 415 415 416 -924.5 - SF7BW500 to SF12BW500 446 +((( 447 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 448 +))) 417 417 418 -925.1 - SF7BW500 to SF12BW500 419 419 420 -925.7 - SF7BW500 to SF12BW500 421 421 422 - 926.3-SF7BW500toSF12BW500452 +=== 2.4.6 Soil Temperature === 423 423 424 -926.9 - SF7BW500 to SF12BW500 454 +((( 455 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 +))) 425 425 426 -927.5 - SF7BW500 to SF12BW500 458 +((( 459 +**Example**: 460 +))) 427 427 428 -923.3 - SF12BW500(RX2 downlink only) 462 +((( 463 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 +))) 429 429 466 +((( 467 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 +))) 430 430 431 -1. 432 -11. 433 -111. CN470-510 (CN470) 434 434 435 -Used in China, Default use CHE=1 436 436 437 - Uplink:472 +=== 2.4.7 Soil Conductivity (EC) === 438 438 439 -486.3 - SF7BW125 to SF12BW125 474 +((( 475 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 +))) 440 440 441 -486.5 - SF7BW125 to SF12BW125 478 +((( 479 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 +))) 442 442 443 -486.7 - SF7BW125 to SF12BW125 482 +((( 483 +Generally, the EC value of irrigation water is less than 800uS / cm. 484 +))) 444 444 445 -486.9 - SF7BW125 to SF12BW125 486 +((( 487 + 488 +))) 446 446 447 -487.1 - SF7BW125 to SF12BW125 490 +((( 491 + 492 +))) 448 448 449 -4 87.3-SF7BW125toSF12BW125494 +=== 2.4.8 Digital Interrupt === 450 450 451 -487.5 - SF7BW125 to SF12BW125 496 +((( 497 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 +))) 452 452 453 -487.7 - SF7BW125 to SF12BW125 500 +((( 501 +The command is: 502 +))) 454 454 504 +((( 505 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 +))) 455 455 456 -Downlink: 457 457 458 -506.7 - SF7BW125 to SF12BW125 509 +((( 510 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 +))) 459 459 460 -506.9 - SF7BW125 to SF12BW125 461 461 462 -507.1 - SF7BW125 to SF12BW125 514 +((( 515 +Example: 516 +))) 463 463 464 -507.3 - SF7BW125 to SF12BW125 518 +((( 519 +0x(00): Normal uplink packet. 520 +))) 465 465 466 -507.5 - SF7BW125 to SF12BW125 522 +((( 523 +0x(01): Interrupt Uplink Packet. 524 +))) 467 467 468 -507.7 - SF7BW125 to SF12BW125 469 469 470 -507.9 - SF7BW125 to SF12BW125 471 471 472 - 508.1- SF7BW125 toSF12BW125528 +=== 2.4.9 +5V Output === 473 473 474 -505.3 - SF12BW125 (RX2 downlink only) 530 +((( 531 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 +))) 475 475 476 476 477 - 1.478 - 11.479 - 111. AU915-928(AU915)535 +((( 536 +The 5V output time can be controlled by AT Command. 537 +))) 480 480 481 -Default use CHE=2 539 +((( 540 +(% style="color:blue" %)**AT+5VT=1000** 541 +))) 482 482 483 -Uplink: 543 +((( 544 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 +))) 484 484 485 -916.8 - SF7BW125 to SF12BW125 486 486 487 -917.0 - SF7BW125 to SF12BW125 488 488 489 - 917.2- SF7BW125toSF12BW125549 +== 2.5 Downlink Payload == 490 490 491 - 917.4-SF7BW125toSF12BW125551 +By default, NSE01 prints the downlink payload to console port. 492 492 493 - 917.6-SF7BW125 to SF12BW125553 +[[image:image-20220708133731-5.png]] 494 494 495 -917.8 - SF7BW125 to SF12BW125 496 496 497 -918.0 - SF7BW125 to SF12BW125 556 +((( 557 +(% style="color:blue" %)**Examples:** 558 +))) 498 498 499 -918.2 - SF7BW125 to SF12BW125 560 +((( 561 + 562 +))) 500 500 564 +* ((( 565 +(% style="color:blue" %)**Set TDC** 566 +))) 501 501 502 -Downlink: 568 +((( 569 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 +))) 503 503 504 -923.3 - SF7BW500 to SF12BW500 572 +((( 573 +Payload: 01 00 00 1E TDC=30S 574 +))) 505 505 506 -923.9 - SF7BW500 to SF12BW500 576 +((( 577 +Payload: 01 00 00 3C TDC=60S 578 +))) 507 507 508 -924.5 - SF7BW500 to SF12BW500 580 +((( 581 + 582 +))) 509 509 510 -925.1 - SF7BW500 to SF12BW500 584 +* ((( 585 +(% style="color:blue" %)**Reset** 586 +))) 511 511 512 -925.7 - SF7BW500 to SF12BW500 588 +((( 589 +If payload = 0x04FF, it will reset the NSE01 590 +))) 513 513 514 -926.3 - SF7BW500 to SF12BW500 515 515 516 - 926.9-SF7BW500toSF12BW500593 +* (% style="color:blue" %)**INTMOD** 517 517 518 -927.5 - SF7BW500 to SF12BW500 595 +((( 596 +Downlink Payload: 06000003, Set AT+INTMOD=3 597 +))) 519 519 520 -923.3 - SF12BW500(RX2 downlink only) 521 521 522 -1. 523 -11. 524 -111. AS920-923 & AS923-925 (AS923) 525 525 526 - **DefaultUplinkchannel:**601 +== 2.6 LED Indicator == 527 527 528 -923.2 - SF7BW125 to SF10BW125 603 +((( 604 +The NSE01 has an internal LED which is to show the status of different state. 529 529 530 -923.4 - SF7BW125 to SF10BW125 531 531 607 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 +* Then the LED will be on for 1 second means device is boot normally. 609 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 +* For each uplink probe, LED will be on for 500ms. 611 +))) 532 532 533 -**Additional Uplink Channel**: 534 534 535 -(OTAA mode, channel added by JoinAccept message) 536 536 537 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 538 538 539 - 922.2 - SF7BW125to SF10BW125616 +== 2.7 Installation in Soil == 540 540 541 - 922.4- SF7BW125toSF10BW125618 +__**Measurement the soil surface**__ 542 542 543 -922.6 - SF7BW125 to SF10BW125 620 +((( 621 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 +))) 544 544 545 - 922.8 - SF7BW125to SF10BW125624 +[[image:1657259653666-883.png]] 546 546 547 -923.0 - SF7BW125 to SF10BW125 548 548 549 -922.0 - SF7BW125 to SF10BW125 627 +((( 628 + 550 550 551 - 552 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 553 - 554 -923.6 - SF7BW125 to SF10BW125 555 - 556 -923.8 - SF7BW125 to SF10BW125 557 - 558 -924.0 - SF7BW125 to SF10BW125 559 - 560 -924.2 - SF7BW125 to SF10BW125 561 - 562 -924.4 - SF7BW125 to SF10BW125 563 - 564 -924.6 - SF7BW125 to SF10BW125 565 - 566 - 567 - 568 -**Downlink:** 569 - 570 -Uplink channels 1-8 (RX1) 571 - 572 -923.2 - SF10BW125 (RX2) 573 - 574 - 575 -1. 576 -11. 577 -111. KR920-923 (KR920) 578 - 579 -Default channel: 580 - 581 -922.1 - SF7BW125 to SF12BW125 582 - 583 -922.3 - SF7BW125 to SF12BW125 584 - 585 -922.5 - SF7BW125 to SF12BW125 586 - 587 - 588 -Uplink: (OTAA mode, channel added by JoinAccept message) 589 - 590 -922.1 - SF7BW125 to SF12BW125 591 - 592 -922.3 - SF7BW125 to SF12BW125 593 - 594 -922.5 - SF7BW125 to SF12BW125 595 - 596 -922.7 - SF7BW125 to SF12BW125 597 - 598 -922.9 - SF7BW125 to SF12BW125 599 - 600 -923.1 - SF7BW125 to SF12BW125 601 - 602 -923.3 - SF7BW125 to SF12BW125 603 - 604 - 605 -Downlink: 606 - 607 -Uplink channels 1-7(RX1) 608 - 609 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 610 - 611 - 612 -1. 613 -11. 614 -111. IN865-867 (IN865) 615 - 616 -Uplink: 617 - 618 -865.0625 - SF7BW125 to SF12BW125 619 - 620 -865.4025 - SF7BW125 to SF12BW125 621 - 622 -865.9850 - SF7BW125 to SF12BW125 623 - 624 - 625 -Downlink: 626 - 627 -Uplink channels 1-3 (RX1) 628 - 629 -866.550 - SF10BW125 (RX2) 630 - 631 - 632 -1. 633 -11. LED Indicator 634 - 635 -The LSE01 has an internal LED which is to show the status of different state. 636 - 637 - 638 -* Blink once when device power on. 639 -* Solid ON for 5 seconds once device successful Join the network. 640 -* Blink once when device transmit a packet. 641 - 642 -1. 643 -11. Installation in Soil 644 - 645 -**Measurement the soil surface** 646 - 647 - 648 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 649 - 650 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 651 - 652 - 653 - 654 - 655 - 656 - 657 - 658 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 659 - 660 - 661 - 630 +((( 662 662 Dig a hole with diameter > 20CM. 632 +))) 663 663 634 +((( 664 664 Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 +))) 637 +))) 665 665 639 +[[image:1654506665940-119.png]] 666 666 641 +((( 642 + 643 +))) 667 667 668 668 669 -1. 670 -11. Firmware Change Log 646 +== 2.8 Firmware Change Log == 671 671 672 -**Firmware download link:** 673 673 674 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]649 +Download URL & Firmware Change log 675 675 651 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 676 676 677 -**Firmware Upgrade Method:** 678 678 679 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]654 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 680 680 681 681 682 -**V1.0.** 683 683 684 - Release658 +== 2.9 Battery Analysis == 685 685 660 +=== 2.9.1 Battery Type === 686 686 687 687 688 - 1.689 -1 1.Battery Analysis690 - 111. Battery Type663 +((( 664 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 665 +))) 691 691 692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 693 693 668 +((( 669 +The battery is designed to last for several years depends on the actually use environment and update interval. 670 +))) 694 694 695 -The battery is designed to last for more than 5 years for the LSN50. 696 696 697 - 673 +((( 698 698 The battery related documents as below: 675 +))) 699 699 700 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],701 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]702 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]677 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 679 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 703 703 704 - |(((705 - JST-XH-2P connector681 +((( 682 +[[image:image-20220708140453-6.png]] 706 706 ))) 707 707 708 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 709 709 710 710 687 +=== 2.9.2 Power consumption Analyze === 711 711 712 - 1.713 - 11.714 - 111. Battery Note689 +((( 690 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 691 +))) 715 715 716 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 717 717 694 +((( 695 +Instruction to use as below: 696 +))) 718 718 719 - 1.720 -1 1.721 - 111. Replace the battery698 +((( 699 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 700 +))) 722 722 723 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 724 724 703 +((( 704 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 705 +))) 725 725 726 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 707 +* ((( 708 +Product Model 709 +))) 710 +* ((( 711 +Uplink Interval 712 +))) 713 +* ((( 714 +Working Mode 715 +))) 727 727 717 +((( 718 +And the Life expectation in difference case will be shown on the right. 719 +))) 728 728 729 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)721 +[[image:image-20220708141352-7.jpeg]] 730 730 731 731 732 732 725 +=== 2.9.3 Battery Note === 733 733 727 +((( 728 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 729 +))) 734 734 735 735 736 -= 3. Using the AT Commands = 737 737 738 -== 3.1AccessATCommands==733 +=== 2.9.4 Replace the battery === 739 739 735 +((( 736 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 737 +))) 740 740 741 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 742 742 743 -[[image:1654501986557-872.png]] 744 744 741 += 3. Access NB-IoT Module = 745 745 746 -Or if you have below board, use below connection: 743 +((( 744 +Users can directly access the AT command set of the NB-IoT module. 745 +))) 747 747 747 +((( 748 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 749 +))) 748 748 749 -[[image:165 4502005655-729.png]]751 +[[image:1657261278785-153.png]] 750 750 751 751 752 752 753 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:755 += 4. Using the AT Commands = 754 754 757 +== 4.1 Access AT Commands == 755 755 756 - [[ima ge:1654502050864-459.png]]759 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 757 757 758 758 759 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]762 +AT+<CMD>? : Help on <CMD> 760 760 764 +AT+<CMD> : Run <CMD> 761 761 762 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>766 +AT+<CMD>=<value> : Set the value 763 763 764 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>768 +AT+<CMD>=? : Get the value 765 765 766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 767 767 768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 769 - 770 - 771 771 (% style="color:#037691" %)**General Commands**(%%) 772 772 773 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention773 +AT : Attention 774 774 775 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help775 +AT? : Short Help 776 776 777 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset777 +ATZ : MCU Reset 778 778 779 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval779 +AT+TDC : Application Data Transmission Interval 780 780 781 +AT+CFG : Print all configurations 781 781 782 - (%style="color:#037691"%)**Keys,IDsand EUIs management**783 +AT+CFGMOD : Working mode selection 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI785 +AT+INTMOD : Set the trigger interrupt mode 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey787 +AT+5VT : Set extend the time of 5V power 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key789 +AT+PRO : Choose agreement 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress791 +AT+WEIGRE : Get weight or set weight to 0 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI793 +AT+WEIGAP : Get or Set the GapValue of weight 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)795 +AT+RXDL : Extend the sending and receiving time 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network797 +AT+CNTFAC : Get or set counting parameters 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode799 +AT+SERVADDR : Server Address 799 799 800 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 801 801 802 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network802 +(% style="color:#037691" %)**COAP Management** 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode804 +AT+URI : Resource parameters 805 805 806 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 807 807 808 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format807 +(% style="color:#037691" %)**UDP Management** 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat809 +AT+CFM : Upload confirmation mode (only valid for UDP) 811 811 812 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 813 813 814 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data812 +(% style="color:#037691" %)**MQTT Management** 815 815 814 +AT+CLIENT : Get or Set MQTT client 816 816 817 - (%style="color:#037691"%)**LoRaNetworkManagement**816 +AT+UNAME : Get or Set MQTT Username 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate818 +AT+PWD : Get or Set MQTT password 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA820 +AT+PUBTOPIC : Get or Set MQTT publish topic 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting822 +AT+SUBTOPIC : Get or Set MQTT subscription topic 824 824 825 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 826 826 827 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink825 +(% style="color:#037691" %)**Information** 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink827 +AT+FDR : Factory Data Reset 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1829 +AT+PWORD : Serial Access Password 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 836 836 837 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1833 += 5. FAQ = 838 838 839 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2835 +== 5.1 How to Upgrade Firmware == 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 838 +((( 839 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 840 +))) 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 842 +((( 843 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 844 +))) 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 846 +((( 847 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 848 +))) 848 848 849 849 850 -(% style="color:#037691" %)**Information** 851 851 852 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket852 +== 5.2 Can I calibrate NSE01 to different soil types? == 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 854 +((( 855 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 856 +))) 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 857 857 858 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset859 += 6. Trouble Shooting = 859 859 860 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort861 +== 6.1 Connection problem when uploading firmware == 861 861 862 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 865 - 866 - 867 -= 4. FAQ = 868 - 869 -== 4.1 How to change the LoRa Frequency Bands/Region? == 870 - 871 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 872 -When downloading the images, choose the required image file for download. 873 - 874 - 875 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 876 - 877 - 878 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 879 - 880 - 881 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 882 - 883 -[[image:image-20220606154726-3.png]] 884 - 885 -When you use the TTN network, the US915 frequency bands use are: 886 - 887 -* 903.9 - SF7BW125 to SF10BW125 888 -* 904.1 - SF7BW125 to SF10BW125 889 -* 904.3 - SF7BW125 to SF10BW125 890 -* 904.5 - SF7BW125 to SF10BW125 891 -* 904.7 - SF7BW125 to SF10BW125 892 -* 904.9 - SF7BW125 to SF10BW125 893 -* 905.1 - SF7BW125 to SF10BW125 894 -* 905.3 - SF7BW125 to SF10BW125 895 -* 904.6 - SF8BW500 896 - 897 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 898 - 899 -(% class="box infomessage" %) 900 900 ((( 901 -** AT+CHE=2**865 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 902 902 ))) 903 903 904 -(% class=" boxinfomessage" %)868 +(% class="wikigeneratedid" %) 905 905 ((( 906 - **ATZ**870 + 907 907 ))) 908 908 909 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 910 910 874 +== 6.2 AT Command input doesn't work == 911 911 912 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 876 +((( 877 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 913 913 914 -[[image:image-20220606154825-4.png]] 879 + 880 +))) 915 915 916 916 883 += 7. Order Info = 917 917 918 -= 5. Trouble Shooting = 919 919 920 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==886 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 921 921 922 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 923 923 889 +(% class="wikigeneratedid" %) 890 +((( 891 + 892 +))) 924 924 925 -= =5.2AT Commandinputdoesn’t work==894 += 8. Packing Info = 926 926 927 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 896 +((( 897 + 928 928 899 +(% style="color:#037691" %)**Package Includes**: 929 929 930 -== 5.3 Device rejoin in at the second uplink packet == 901 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 902 +* External antenna x 1 903 +))) 931 931 932 -(% style="color:#4f81bd" %)**Issue describe as below:** 905 +((( 906 + 933 933 934 - [[image:1654500909990-784.png]]908 +(% style="color:#037691" %)**Dimension and weight**: 935 935 936 - 937 -(% style="color:#4f81bd" %)**Cause for this issue:** 938 - 939 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 940 - 941 - 942 -(% style="color:#4f81bd" %)**Solution: ** 943 - 944 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 945 - 946 -[[image:1654500929571-736.png]] 947 - 948 - 949 -= 6. Order Info = 950 - 951 - 952 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 953 - 954 - 955 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 956 - 957 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 958 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 959 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 960 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 961 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 962 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 963 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 964 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 965 - 966 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 967 - 968 -* (% style="color:red" %)**4**(%%): 4000mAh battery 969 -* (% style="color:red" %)**8**(%%): 8500mAh battery 970 - 971 -= 7. Packing Info = 972 - 973 -((( 974 -**Package Includes**: 910 +* Size: 195 x 125 x 55 mm 911 +* Weight: 420g 975 975 ))) 976 976 977 -* ((( 978 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 979 -))) 980 - 981 981 ((( 982 982 983 -))) 984 984 985 -((( 986 -**Dimension and weight**: 987 -))) 988 988 989 -* ((( 990 -Device Size: cm 918 + 991 991 ))) 992 -* ((( 993 -Device Weight: g 994 -))) 995 -* ((( 996 -Package Size / pcs : cm 997 -))) 998 -* ((( 999 -Weight / pcs : g 1000 -))) 1001 1001 1002 -= 8. Support =921 += 9. Support = 1003 1003 1004 1004 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1005 1005 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1006 -
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content