Last modified by Mengting Qiu on 2024/04/02 16:44

From version 26.1
edited by Xiaoling
on 2022/06/06 16:57
Change comment: Uploaded new attachment "1654505874829-548.png", version {1}
To version 65.13
edited by Xiaoling
on 2022/07/08 15:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,61 +8,93 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
13 +
14 +**Table of Contents:**
15 +
16 +{{toc/}}
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 += 1.  Introduction =
25 +
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
15 15  (((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
29 +
18 18  
19 19  (((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
21 21  )))
22 22  
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
25 25  )))
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
29 29  )))
30 30  
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
33 33  )))
34 34  
47 +
48 +)))
35 35  
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
72 +== 1.3  Specification ==
58 58  
74 +
75 +(% style="color:#037691" %)**Common DC Characteristics:**
76 +
77 +* Supply Voltage: 2.1v ~~ 3.6v
78 +* Operating Temperature: -40 ~~ 85°C
79 +
80 +(% style="color:#037691" %)**NB-IoT Spec:**
81 +
82 +* - B1 @H-FDD: 2100MHz
83 +* - B3 @H-FDD: 1800MHz
84 +* - B8 @H-FDD: 900MHz
85 +* - B5 @H-FDD: 850MHz
86 +* - B20 @H-FDD: 800MHz
87 +* - B28 @H-FDD: 700MHz
88 +
89 +Probe(% style="color:#037691" %)** Specification:**
90 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
93 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
97 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
... ... @@ -69,945 +69,780 @@
69 69  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 70  ​
71 71  
72 -== 1.5 Firmware Change log ==
104 +== 1.5  Pin Definitions ==
73 73  
74 74  
75 -**LSE01 v1.0 :**  Release
107 +[[image:1657246476176-652.png]]
76 76  
77 77  
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
111 += 2.  Use NSE01 to communicate with IoT Server =
80 80  
81 -== 2.1 How it works ==
113 +== 2.1  How it works ==
82 82  
115 +
83 83  (((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
117 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
85 85  )))
86 86  
120 +
87 87  (((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
122 +The diagram below shows the working flow in default firmware of NSE01:
89 89  )))
90 90  
125 +[[image:image-20220708101605-2.png]]
91 91  
92 -
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 -
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 -
97 -
98 -[[image:1654503992078-669.png]]
99 -
100 -
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 -
103 -
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
105 -
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
107 -
108 -[[image:image-20220606163732-6.jpeg]]
109 -
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 -
112 -**Add APP EUI in the application**
113 -
114 -
115 -[[image:1654504596150-405.png]]
116 -
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -[[image:1654504683289-357.png]]
122 -
123 -
124 -
125 -**Step 2**: Power on LSE01
126 -
127 -
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 -
130 -[[image:image-20220606163915-7.png]]
131 -
132 -
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 -
135 -[[image:1654504778294-788.png]]
136 -
137 -
138 -
139 -== 2.3 Uplink Payload ==
140 -
141 -=== 2.3.1 MOD~=0(Default Mode) ===
142 -
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
127 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
133 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
136 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
139 +(((
140 +To use NSE01 in your city, make sure meet below requirements:
141 +)))
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
147 +(((
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
152 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
156 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
158 +(((
159 +Insert the NB-IoT Card get from your provider.
160 +)))
196 196  
197 -Ex2: 0x0B49 = 2889mV
162 +(((
163 +User need to take out the NB-IoT module and insert the SIM card like below:
164 +)))
198 198  
199 199  
167 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
171 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
173 +(((
174 +(((
175 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
176 +)))
177 +)))
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
180 +**Connection:**
210 210  
182 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
211 211  
212 -=== 2.3.5 Soil Temperature ===
184 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
186 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
215 215  
216 -**Example**:
217 217  
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
189 +In the PC, use below serial tool settings:
219 219  
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
191 +* Baud:  (% style="color:green" %)**9600**
192 +* Data bits:** (% style="color:green" %)8(%%)**
193 +* Stop bits: (% style="color:green" %)**1**
194 +* Parity:  (% style="color:green" %)**None**
195 +* Flow Control: (% style="color:green" %)**None**
221 221  
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
198 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
228 228  )))
229 229  
230 -(((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 -)))
201 +[[image:image-20220708110657-3.png]]
233 233  
234 234  (((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
236 236  )))
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 -
244 -)))
245 245  
246 -=== 2.3.7 MOD ===
209 +=== 2.2.4 Use CoAP protocol to uplink data ===
247 247  
248 -Firmware version at least v2.1 supports changing mode.
211 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
249 249  
250 -For example, bytes[10]=90
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
214 +**Use below commands:**
253 253  
216 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
217 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
218 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
254 254  
255 -Downlink Command:
220 +For parameter description, please refer to AT command set
256 256  
257 -If payload = 0x0A00, workmode=0
222 +[[image:1657249793983-486.png]]
258 258  
259 -If** **payload =** **0x0A01, workmode=1
260 260  
225 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
261 261  
227 +[[image:1657249831934-534.png]]
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
266 266  
231 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
267 267  
268 -[[image:1654505570700-128.png]]
233 +This feature is supported since firmware version v1.0.1
269 269  
270 -The payload decoder function for TTN is here:
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
236 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
238 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
273 273  
240 +[[image:1657249864775-321.png]]
274 274  
275 -== 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
243 +[[image:1657249930215-289.png]]
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
281 281  
247 +=== 2.2.6 Use MQTT protocol to uplink data ===
282 282  
283 -== 2.5 Downlink Payload ==
249 +This feature is supported since firmware version v110
284 284  
285 -By default, LSE50 prints the downlink payload to console port.
286 286  
287 -[[image:image-20220606165544-8.png]]
252 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
253 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
254 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
255 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
258 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
288 288  
289 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:591px" %)
290 -|=(% style="width: 209px;" %)**Downlink Control Type**|=(% style="width: 63px;" %)**FPort**|=(% style="width: 92px;" %)**Type Code**|=(% style="width: 224px;" %)**Downlink payload size(bytes)**
291 -|(% style="width:209px" %)TDC (Transmit Time Interval)|(% style="width:63px" %)Any|(% style="width:92px" %)01|(% style="width:224px" %)4
292 -|(% style="width:209px" %)RESET|(% style="width:63px" %)Any|(% style="width:92px" %)04|(% style="width:224px" %)2
293 -|(% style="width:209px" %)AT+CFM|(% style="width:63px" %)Any|(% style="width:92px" %)05|(% style="width:224px" %)4
294 -|(% style="width:209px" %)INTMOD|(% style="width:63px" %)Any|(% style="width:92px" %)06|(% style="width:224px" %)4
295 -|(% style="width:209px" %)MOD|(% style="width:63px" %)Any|(% style="width:92px" %)0A|(% style="width:224px" %)2
260 +[[image:1657249978444-674.png]]
296 296  
297 -**Examples**
298 298  
263 +[[image:1657249990869-686.png]]
299 299  
300 -**Set TDC**
301 301  
302 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
266 +(((
267 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
268 +)))
303 303  
304 -Payload:    01 00 00 1E    TDC=30S
305 305  
306 -Payload:    01 00 00 3C    TDC=60S
307 307  
272 +=== 2.2.7 Use TCP protocol to uplink data ===
308 308  
309 -**Reset**
274 +This feature is supported since firmware version v110
310 310  
311 -If payload = 0x04FF, it will reset the LSE01
312 312  
277 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
278 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
313 313  
314 -**CFM**
280 +[[image:1657250217799-140.png]]
315 315  
316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
317 317  
318 -1.
319 -11. ​Show Data in DataCake IoT Server
283 +[[image:1657250255956-604.png]]
320 320  
321 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
322 322  
323 323  
324 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
287 +=== 2.2.8 Change Update Interval ===
325 325  
326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
289 +User can use below command to change the (% style="color:green" %)**uplink interval**.
327 327  
291 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
328 328  
329 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
293 +(((
294 +(% style="color:red" %)**NOTE:**
295 +)))
330 330  
297 +(((
298 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
299 +)))
331 331  
332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
333 333  
334 334  
303 +== 2.3  Uplink Payload ==
335 335  
305 +In this mode, uplink payload includes in total 18 bytes
336 336  
307 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 +|=(% style="width: 60px;" %)(((
309 +**Size(bytes)**
310 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
311 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
337 337  
338 -Step 3: Create an account or log in Datacake.
313 +(((
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
315 +)))
339 339  
340 -Step 4: Search the LSE01 and add DevEUI.
341 341  
318 +[[image:image-20220708111918-4.png]]
342 342  
343 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
344 344  
321 +The payload is ASCII string, representative same HEX:
345 345  
323 +0x72403155615900640c7817075e0a8c02f900 where:
346 346  
347 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
325 +* Device ID: 0x 724031556159 = 724031556159
326 +* Version: 0x0064=100=1.0.0
348 348  
328 +* BAT: 0x0c78 = 3192 mV = 3.192V
329 +* Singal: 0x17 = 23
330 +* Soil Moisture: 0x075e= 1886 = 18.86  %
331 +* Soil Temperature:0x0a8c =2700=27 °C
332 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
333 +* Interrupt: 0x00 = 0
349 349  
350 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
351 351  
352 352  
353 353  
354 -1.
355 -11. Frequency Plans
338 +== 2.4  Payload Explanation and Sensor Interface ==
356 356  
357 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
358 358  
359 -1.
360 -11.
361 -111. EU863-870 (EU868)
341 +=== 2.4.1  Device ID ===
362 362  
363 -Uplink:
343 +(((
344 +By default, the Device ID equal to the last 6 bytes of IMEI.
345 +)))
364 364  
365 -868.1 - SF7BW125 to SF12BW125
347 +(((
348 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
349 +)))
366 366  
367 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
351 +(((
352 +**Example:**
353 +)))
368 368  
369 -868.5 - SF7BW125 to SF12BW125
355 +(((
356 +AT+DEUI=A84041F15612
357 +)))
370 370  
371 -867.1 - SF7BW125 to SF12BW125
359 +(((
360 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
361 +)))
372 372  
373 -867.3 - SF7BW125 to SF12BW125
374 374  
375 -867.5 - SF7BW125 to SF12BW125
376 376  
377 -867.7 - SF7BW125 to SF12BW125
365 +=== 2.4.2  Version Info ===
378 378  
379 -867.9 - SF7BW125 to SF12BW125
367 +(((
368 +Specify the software version: 0x64=100, means firmware version 1.00.
369 +)))
380 380  
381 -868.8 - FSK
371 +(((
372 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
373 +)))
382 382  
383 383  
384 -Downlink:
385 385  
386 -Uplink channels 1-9 (RX1)
377 +=== 2.4.3  Battery Info ===
387 387  
388 -869.525 - SF9BW125 (RX2 downlink only)
379 +(((
380 +Check the battery voltage for LSE01.
381 +)))
389 389  
383 +(((
384 +Ex1: 0x0B45 = 2885mV
385 +)))
390 390  
391 -1.
392 -11.
393 -111. US902-928(US915)
387 +(((
388 +Ex2: 0x0B49 = 2889mV
389 +)))
394 394  
395 -Used in USA, Canada and South America. Default use CHE=2
396 396  
397 -Uplink:
398 398  
399 -903.9 - SF7BW125 to SF10BW125
393 +=== 2.4.4  Signal Strength ===
400 400  
401 -904.1 - SF7BW125 to SF10BW125
395 +(((
396 +NB-IoT Network signal Strength.
397 +)))
402 402  
403 -904.3 - SF7BW125 to SF10BW125
399 +(((
400 +**Ex1: 0x1d = 29**
401 +)))
404 404  
405 -904.5 - SF7BW125 to SF10BW125
403 +(((
404 +(% style="color:blue" %)**0**(%%)  -113dBm or less
405 +)))
406 406  
407 -904.7 - SF7BW125 to SF10BW125
407 +(((
408 +(% style="color:blue" %)**1**(%%)  -111dBm
409 +)))
408 408  
409 -904.9 - SF7BW125 to SF10BW125
411 +(((
412 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
413 +)))
410 410  
411 -905.1 - SF7BW125 to SF10BW125
415 +(((
416 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
417 +)))
412 412  
413 -905.3 - SF7BW125 to SF10BW125
419 +(((
420 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
421 +)))
414 414  
415 415  
416 -Downlink:
417 417  
418 -923.3 - SF7BW500 to SF12BW500
425 +=== 2.4.5  Soil Moisture ===
419 419  
420 -923.9 - SF7BW500 to SF12BW500
427 +(((
428 +(((
429 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
430 +)))
431 +)))
421 421  
422 -924.5 - SF7BW500 to SF12BW500
433 +(((
434 +(((
435 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
436 +)))
437 +)))
423 423  
424 -925.1 - SF7BW500 to SF12BW500
439 +(((
440 +
441 +)))
425 425  
426 -925.7 - SF7BW500 to SF12BW500
443 +(((
444 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
445 +)))
427 427  
428 -926.3 - SF7BW500 to SF12BW500
429 429  
430 -926.9 - SF7BW500 to SF12BW500
431 431  
432 -927.5 - SF7BW500 to SF12BW500
449 +=== 2.4.6  Soil Temperature ===
433 433  
434 -923.3 - SF12BW500(RX2 downlink only)
451 +(((
452 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
453 +)))
435 435  
455 +(((
456 +**Example**:
457 +)))
436 436  
437 -1.
438 -11.
439 -111. CN470-510 (CN470)
459 +(((
460 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
461 +)))
440 440  
441 -Used in China, Default use CHE=1
463 +(((
464 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
465 +)))
442 442  
443 -Uplink:
444 444  
445 -486.3 - SF7BW125 to SF12BW125
446 446  
447 -486.5 - SF7BW125 to SF12BW125
469 +=== 2.4. Soil Conductivity (EC) ===
448 448  
449 -486.7 - SF7BW125 to SF12BW125
471 +(((
472 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
473 +)))
450 450  
451 -486.9 - SF7BW125 to SF12BW125
475 +(((
476 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
477 +)))
452 452  
453 -487.1 - SF7BW125 to SF12BW125
479 +(((
480 +Generally, the EC value of irrigation water is less than 800uS / cm.
481 +)))
454 454  
455 -487.3 - SF7BW125 to SF12BW125
483 +(((
484 +
485 +)))
456 456  
457 -487.5 - SF7BW125 to SF12BW125
487 +(((
488 +
489 +)))
458 458  
459 -487.7 - SF7BW125 to SF12BW125
491 +=== 2.4. Digital Interrupt ===
460 460  
493 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
461 461  
462 -Downlink:
495 +The command is:
463 463  
464 -506.7 - SF7BW125 to SF12BW125
497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
465 465  
466 -506.9 - SF7BW125 to SF12BW125
467 467  
468 -507.1 - SF7BW125 to SF12BW125
500 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
469 469  
470 -507.3 - SF7BW125 to SF12BW125
471 471  
472 -507.5 - SF7BW125 to SF12BW125
503 +Example:
473 473  
474 -507.7 - SF7BW125 to SF12BW125
505 +0x(00): Normal uplink packet.
475 475  
476 -507.9 - SF7BW125 to SF12BW125
507 +0x(01): Interrupt Uplink Packet.
477 477  
478 -508.1 - SF7BW125 to SF12BW125
479 479  
480 -505.3 - SF12BW125 (RX2 downlink only)
481 481  
511 +=== 2.4.9  ​+5V Output ===
482 482  
483 -1.
484 -11.
485 -111. AU915-928(AU915)
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
486 486  
487 -Default use CHE=2
488 488  
489 -Uplink:
516 +The 5V output time can be controlled by AT Command.
490 490  
491 -916.8 - SF7BW125 to SF12BW125
518 +(% style="color:blue" %)**AT+5VT=1000**
492 492  
493 -917.0 - SF7BW125 to SF12BW125
520 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
494 494  
495 -917.2 - SF7BW125 to SF12BW125
496 496  
497 -917.4 - SF7BW125 to SF12BW125
498 498  
499 -917.6 - SF7BW125 to SF12BW125
524 +== 2.5  Downlink Payload ==
500 500  
501 -917.8 - SF7BW125 to SF12BW125
526 +By default, NSE01 prints the downlink payload to console port.
502 502  
503 -918.0 - SF7BW125 to SF12BW125
528 +[[image:image-20220708133731-5.png]]
504 504  
505 -918.2 - SF7BW125 to SF12BW125
506 506  
531 +(((
532 +(% style="color:blue" %)**Examples:**
533 +)))
507 507  
508 -Downlink:
535 +(((
536 +
537 +)))
509 509  
510 -923.3 - SF7BW500 to SF12BW500
539 +* (((
540 +(% style="color:blue" %)**Set TDC**
541 +)))
511 511  
512 -923.9 - SF7BW500 to SF12BW500
543 +(((
544 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
545 +)))
513 513  
514 -924.5 - SF7BW500 to SF12BW500
547 +(((
548 +Payload:    01 00 00 1E    TDC=30S
549 +)))
515 515  
516 -925.1 - SF7BW500 to SF12BW500
551 +(((
552 +Payload:    01 00 00 3C    TDC=60S
553 +)))
517 517  
518 -925.7 - SF7BW500 to SF12BW500
555 +(((
556 +
557 +)))
519 519  
520 -926.3 - SF7BW500 to SF12BW500
559 +* (((
560 +(% style="color:blue" %)**Reset**
561 +)))
521 521  
522 -926.9 - SF7BW500 to SF12BW500
563 +(((
564 +If payload = 0x04FF, it will reset the NSE01
565 +)))
523 523  
524 -927.5 - SF7BW500 to SF12BW500
525 525  
526 -923.3 - SF12BW500(RX2 downlink only)
568 +* (% style="color:blue" %)**INTMOD**
527 527  
528 -1.
529 -11.
530 -111. AS920-923 & AS923-925 (AS923)
570 +Downlink Payload: 06000003, Set AT+INTMOD=3
531 531  
532 -**Default Uplink channel:**
533 533  
534 -923.2 - SF7BW125 to SF10BW125
535 535  
536 -923.4 - SF7BW125 to SF10BW125
574 +== 2. ​LED Indicator ==
537 537  
576 +(((
577 +The NSE01 has an internal LED which is to show the status of different state.
538 538  
539 -**Additional Uplink Channel**:
540 540  
541 -(OTAA mode, channel added by JoinAccept message)
580 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
581 +* Then the LED will be on for 1 second means device is boot normally.
582 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
583 +* For each uplink probe, LED will be on for 500ms.
584 +)))
542 542  
543 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 544  
545 -922.2 - SF7BW125 to SF10BW125
546 546  
547 -922.4 - SF7BW125 to SF10BW125
548 548  
549 -922.6 - SF7BW125 to SF10BW125
589 +== 2.7  Installation in Soil ==
550 550  
551 -922.8 - SF7BW125 to SF10BW125
591 +__**Measurement the soil surface**__
552 552  
553 -923.0 - SF7BW125 to SF10BW125
593 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
554 554  
555 -922.0 - SF7BW125 to SF10BW125
595 +[[image:1657259653666-883.png]] ​
556 556  
557 557  
558 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
598 +(((
599 +
559 559  
560 -923.6 - SF7BW125 to SF10BW125
561 -
562 -923.8 - SF7BW125 to SF10BW125
563 -
564 -924.0 - SF7BW125 to SF10BW125
565 -
566 -924.2 - SF7BW125 to SF10BW125
567 -
568 -924.4 - SF7BW125 to SF10BW125
569 -
570 -924.6 - SF7BW125 to SF10BW125
571 -
572 -
573 -
574 -**Downlink:**
575 -
576 -Uplink channels 1-8 (RX1)
577 -
578 -923.2 - SF10BW125 (RX2)
579 -
580 -
581 -1.
582 -11.
583 -111. KR920-923 (KR920)
584 -
585 -Default channel:
586 -
587 -922.1 - SF7BW125 to SF12BW125
588 -
589 -922.3 - SF7BW125 to SF12BW125
590 -
591 -922.5 - SF7BW125 to SF12BW125
592 -
593 -
594 -Uplink: (OTAA mode, channel added by JoinAccept message)
595 -
596 -922.1 - SF7BW125 to SF12BW125
597 -
598 -922.3 - SF7BW125 to SF12BW125
599 -
600 -922.5 - SF7BW125 to SF12BW125
601 -
602 -922.7 - SF7BW125 to SF12BW125
603 -
604 -922.9 - SF7BW125 to SF12BW125
605 -
606 -923.1 - SF7BW125 to SF12BW125
607 -
608 -923.3 - SF7BW125 to SF12BW125
609 -
610 -
611 -Downlink:
612 -
613 -Uplink channels 1-7(RX1)
614 -
615 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
616 -
617 -
618 -1.
619 -11.
620 -111. IN865-867 (IN865)
621 -
622 -Uplink:
623 -
624 -865.0625 - SF7BW125 to SF12BW125
625 -
626 -865.4025 - SF7BW125 to SF12BW125
627 -
628 -865.9850 - SF7BW125 to SF12BW125
629 -
630 -
631 -Downlink:
632 -
633 -Uplink channels 1-3 (RX1)
634 -
635 -866.550 - SF10BW125 (RX2)
636 -
637 -
638 -1.
639 -11. LED Indicator
640 -
641 -The LSE01 has an internal LED which is to show the status of different state.
642 -
643 -
644 -* Blink once when device power on.
645 -* Solid ON for 5 seconds once device successful Join the network.
646 -* Blink once when device transmit a packet.
647 -
648 -1.
649 -11. Installation in Soil
650 -
651 -**Measurement the soil surface**
652 -
653 -
654 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
655 -
656 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
657 -
658 -
659 -
660 -
661 -
662 -
663 -
664 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
665 -
666 -
667 -
601 +(((
668 668  Dig a hole with diameter > 20CM.
603 +)))
669 669  
605 +(((
670 670  Horizontal insert the probe to the soil and fill the hole for long term measurement.
607 +)))
608 +)))
671 671  
610 +[[image:1654506665940-119.png]]
672 672  
612 +(((
613 +
614 +)))
673 673  
674 674  
675 -1.
676 -11. ​Firmware Change Log
617 +== 2.8  ​Firmware Change Log ==
677 677  
678 -**Firmware download link:**
679 679  
680 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
620 +Download URL & Firmware Change log
681 681  
622 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
682 682  
683 -**Firmware Upgrade Method:**
684 684  
685 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
625 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
686 686  
687 687  
688 -**V1.0.**
689 689  
690 -Release
629 +== 2.9  ​Battery Analysis ==
691 691  
631 +=== 2.9.1  ​Battery Type ===
692 692  
693 693  
694 -1.
695 -11. ​Battery Analysis
696 -111. ​Battery Type
634 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 697  
698 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
699 699  
637 +The battery is designed to last for several years depends on the actually use environment and update interval. 
700 700  
701 -The battery is designed to last for more than 5 years for the LSN50.
702 702  
703 -
704 704  The battery related documents as below:
705 705  
706 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
707 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
708 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
642 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
643 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
644 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
709 709  
710 -|(((
711 -JST-XH-2P connector
646 +(((
647 +[[image:image-20220708140453-6.png]]
712 712  )))
713 713  
714 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
715 715  
716 716  
652 +=== 2.9.2  Power consumption Analyze ===
717 717  
718 -1.
719 -11.
720 -111. ​Battery Note
654 +(((
655 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
656 +)))
721 721  
722 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
723 723  
659 +(((
660 +Instruction to use as below:
661 +)))
724 724  
725 -1.
726 -11.
727 -111. ​Replace the battery
663 +(((
664 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
665 +)))
728 728  
729 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
730 730  
668 +(((
669 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
670 +)))
731 731  
732 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
672 +* (((
673 +Product Model
674 +)))
675 +* (((
676 +Uplink Interval
677 +)))
678 +* (((
679 +Working Mode
680 +)))
733 733  
682 +(((
683 +And the Life expectation in difference case will be shown on the right.
684 +)))
734 734  
735 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
686 +[[image:image-20220708141352-7.jpeg]]
736 736  
737 737  
738 738  
690 +=== 2.9.3  ​Battery Note ===
739 739  
692 +(((
693 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
694 +)))
740 740  
741 741  
742 -= 3. ​Using the AT Commands =
743 743  
744 -== 3.1 Access AT Commands ==
698 +=== 2.9.4  Replace the battery ===
745 745  
700 +(((
701 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
702 +)))
746 746  
747 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
748 748  
749 -[[image:1654501986557-872.png]]
750 750  
706 += 3. ​ Access NB-IoT Module =
751 751  
752 -Or if you have below board, use below connection:
708 +(((
709 +Users can directly access the AT command set of the NB-IoT module.
710 +)))
753 753  
712 +(((
713 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
714 +)))
754 754  
755 -[[image:1654502005655-729.png]]
716 +[[image:1657261278785-153.png]]
756 756  
757 757  
758 758  
759 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
720 += 4.  Using the AT Commands =
760 760  
722 +== 4.1  Access AT Commands ==
761 761  
762 - [[image:1654502050864-459.png]]
724 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
763 763  
764 764  
765 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
727 +AT+<CMD>?  : Help on <CMD>
766 766  
729 +AT+<CMD>         : Run <CMD>
767 767  
768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
731 +AT+<CMD>=<value> : Set the value
769 769  
770 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
733 +AT+<CMD>=?  : Get the value
771 771  
772 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
773 773  
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
775 -
776 -
777 777  (% style="color:#037691" %)**General Commands**(%%)      
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
738 +AT  : Attention       
780 780  
781 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
740 +AT?  : Short Help     
782 782  
783 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
742 +ATZ  : MCU Reset    
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
744 +AT+TDC  : Application Data Transmission Interval
786 786  
746 +AT+CFG  : Print all configurations
787 787  
788 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
748 +AT+CFGMOD           : Working mode selection
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
750 +AT+INTMOD            : Set the trigger interrupt mode
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
752 +AT+5VT  : Set extend the time of 5V power  
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
754 +AT+PRO  : Choose agreement
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
756 +AT+WEIGRE  : Get weight or set weight to 0
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
758 +AT+WEIGAP  : Get or Set the GapValue of weight
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
760 +AT+RXDL  : Extend the sending and receiving time
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
762 +AT+CNTFAC  : Get or set counting parameters
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
764 +AT+SERVADDR  : Server Address
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
767 +(% style="color:#037691" %)**COAP Management**      
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
769 +AT+URI            : Resource parameters
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
772 +(% style="color:#037691" %)**UDP Management**
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
774 +AT+CFM          : Upload confirmation mode (only valid for UDP)
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
777 +(% style="color:#037691" %)**MQTT Management**
821 821  
779 +AT+CLIENT               : Get or Set MQTT client
822 822  
823 -(% style="color:#037691" %)**LoRa Network Management**
781 +AT+UNAME  : Get or Set MQTT Username
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
783 +AT+PWD                  : Get or Set MQTT password
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
785 +AT+PUBTOPI : Get or Set MQTT publish topic
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
787 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
790 +(% style="color:#037691" %)**Information**          
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
792 +AT+FDR  : Factory Data Reset
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
794 +AT+PWOR : Serial Access Password
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
798 += ​5.  FAQ =
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
800 +== 5.1 How to Upgrade Firmware ==
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
803 +(((
804 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
805 +)))
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
852 -
853 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
854 -
855 -
856 -(% style="color:#037691" %)**Information** 
857 -
858 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
859 -
860 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
861 -
862 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
869 -
870 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
871 -
872 -
873 -= ​4. FAQ =
874 -
875 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
876 -
877 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
878 -When downloading the images, choose the required image file for download. ​
879 -
880 -
881 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
882 -
883 -
884 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
885 -
886 -
887 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
888 -
889 -[[image:image-20220606154726-3.png]]
890 -
891 -When you use the TTN network, the US915 frequency bands use are:
892 -
893 -* 903.9 - SF7BW125 to SF10BW125
894 -* 904.1 - SF7BW125 to SF10BW125
895 -* 904.3 - SF7BW125 to SF10BW125
896 -* 904.5 - SF7BW125 to SF10BW125
897 -* 904.7 - SF7BW125 to SF10BW125
898 -* 904.9 - SF7BW125 to SF10BW125
899 -* 905.1 - SF7BW125 to SF10BW125
900 -* 905.3 - SF7BW125 to SF10BW125
901 -* 904.6 - SF8BW500
902 -
903 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
904 -
905 -(% class="box infomessage" %)
906 906  (((
907 -**AT+CHE=2**
808 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
908 908  )))
909 909  
910 -(% class="box infomessage" %)
911 911  (((
912 -**ATZ**
812 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
913 913  )))
914 914  
915 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
916 916  
917 917  
918 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
817 += 6.  Trouble Shooting =
919 919  
920 -[[image:image-20220606154825-4.png]]
819 +== 6.1  ​Connection problem when uploading firmware ==
921 921  
922 922  
822 +(% class="wikigeneratedid" %)
823 +(((
824 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
825 +)))
923 923  
924 -= 5. Trouble Shooting =
925 925  
926 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
927 927  
928 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
829 +== 6. AT Command input doesn't work ==
929 929  
831 +(((
832 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
833 +)))
930 930  
931 -== 5.2 AT Command input doesn’t work ==
932 932  
933 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
934 934  
837 += 7. ​ Order Info =
935 935  
936 -== 5.3 Device rejoin in at the second uplink packet ==
937 937  
938 -(% style="color:#4f81bd" %)**Issue describe as below:**
840 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
939 939  
940 -[[image:1654500909990-784.png]]
941 941  
843 +(% class="wikigeneratedid" %)
844 +(((
845 +
846 +)))
942 942  
943 -(% style="color:#4f81bd" %)**Cause for this issue:**
848 += 8 Packing Info =
944 944  
945 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
850 +(((
851 +
946 946  
853 +(% style="color:#037691" %)**Package Includes**:
947 947  
948 -(% style="color:#4f81bd" %)**Solution: **
949 949  
950 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
856 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
857 +* External antenna x 1
858 +)))
951 951  
952 -[[image:1654500929571-736.png]]
860 +(((
861 +
953 953  
863 +(% style="color:#037691" %)**Dimension and weight**:
954 954  
955 -= 6. ​Order Info =
956 956  
957 -
958 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
959 -
960 -
961 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
962 -
963 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
964 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
965 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
966 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
967 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
968 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
969 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
970 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
971 -
972 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
973 -
974 -* (% style="color:red" %)**4**(%%): 4000mAh battery
975 -* (% style="color:red" %)**8**(%%): 8500mAh battery
976 -
977 -= 7. Packing Info =
978 -
979 -(((
980 -**Package Includes**:
866 +* Size: 195 x 125 x 55 mm
867 +* Weight:   420g
981 981  )))
982 982  
983 -* (((
984 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
985 -)))
986 -
987 987  (((
988 988  
989 -)))
990 990  
991 -(((
992 -**Dimension and weight**:
993 -)))
994 994  
995 -* (((
996 -Device Size: cm
874 +
997 997  )))
998 -* (((
999 -Device Weight: g
1000 -)))
1001 -* (((
1002 -Package Size / pcs : cm
1003 -)))
1004 -* (((
1005 -Weight / pcs : g
1006 -)))
1007 1007  
1008 -= 8. Support =
877 += 9.  Support =
1009 1009  
1010 1010  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1011 1011  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1012 -
1013 -
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content