Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 26 added, 0 removed)
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,737 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 41 - 42 - 43 -== 1.2 Features == 44 - 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 - 57 -== 1.3 Specification == 58 - 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 83 ((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 26 + 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 90 90 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 91 91 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 92 92 93 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 - 97 - 98 -[[image:1654503992078-669.png]] 99 - 100 - 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 - 103 - 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 - 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:165450 4881641-514.png]]39 +[[image:1654503236291-817.png]] 165 165 166 166 42 +[[image:1657245163077-232.png]] 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 -|((( 173 -**Size** 46 +== 1.2 Features == 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 179 179 180 -(Reserve, Ignore now) 181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 -MOD & Digital Interrupt 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 183 183 184 -(Optional) 185 -))) 62 +== 1.3 Specification == 186 186 187 -[[image:1654504907647-967.png]] 188 188 65 +(% style="color:#037691" %)**Common DC Characteristics:** 189 189 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 190 190 191 - ===2.3.3 BatteryInfo===70 +(% style="color:#037691" %)**NB-IoT Spec:** 192 192 193 -Check the battery voltage for LSE01. 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 194 194 195 - Ex1:0x0B45=2885mV79 +(% style="color:#037691" %)**Probe Specification:** 196 196 197 - Ex2:0x0B49=2889mV81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 198 198 83 +[[image:image-20220708101224-1.png]] 199 199 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 - Getthe moisture content of the soil.The value range of the register is 0-10000(Decimal), dividethis value by 100 toget the percentage of moisturein the soil.87 +== 1.4 Applications == 204 204 205 - Forexample, if the data you get fromtheregisters __0x05 0xDC__,the moisturecontent in the soil is89 +* Smart Agriculture 206 206 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 207 207 208 - (% style="color:#4f81bd" %)**05DC(H)= 1500(D)/100=15%.**94 +== 1.5 Pin Definitions == 209 209 210 210 97 +[[image:1657246476176-652.png]] 211 211 212 -=== 2.3.5 Soil Temperature === 213 213 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 - **Example**:101 += 2. Use NSE01 to communicate with IoT Server = 217 217 218 - If payload is 0105H: ((0x0105 & 0x8000)>>15===0),temp = 0105(H)/100=2.61°C103 +== 2.1 How it works == 219 219 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 221 222 - 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 234 ((( 235 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.112 +The diagram below shows the working flow in default firmware of NSE01: 236 236 ))) 237 237 238 -((( 239 - 240 -))) 115 +[[image:image-20220708101605-2.png]] 241 241 242 242 ((( 243 243 244 244 ))) 245 245 246 -=== 2.3.7 MOD === 247 247 248 -Firmware version at least v2.1 supports changing mode. 249 249 250 - Forxample,bytes[10]=90123 +== 2.2 Configure the NSE01 == 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 126 +=== 2.2.1 Test Requirement === 254 254 255 -Downlink Command: 256 256 257 - If payload=0x0A00,workmode=0129 +To use NSE01 in your city, make sure meet below requirements: 258 258 259 -If** **payload =** **0x0A01, workmode=1 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 261 261 262 262 263 - ===2.3.8 Decodepayload inThe Things Network ===140 +[[image:1657249419225-449.png]] 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 - [[image:1654505570700-128.png]]144 +=== 2.2.2 Insert SIM card === 269 269 270 - ThepayloaddecoderfunctionforTTNis here:146 +Insert the NB-IoT Card get from your provider. 271 271 272 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 273 273 274 274 275 - ==2.4Uplink Interval ==151 +[[image:1657249468462-536.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 281 281 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 282 282 283 -== 2.5 Downlink Payload == 284 284 285 - By default, LSE50 prints the downlink payloadtoconsole port.164 +**Connection:** 286 286 287 - [[image:image-20220606165544-8.png]]166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 288 288 289 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:591px" %) 290 -|=(% style="width: 209px;" %)**Downlink Control Type**|=(% style="width: 63px;" %)**FPort**|=(% style="width: 92px;" %)**Type Code**|=(% style="width: 224px;" %)**Downlink payload size(bytes)** 291 -|(% style="width:209px" %)TDC (Transmit Time Interval)|(% style="width:63px" %)Any|(% style="width:92px" %)01|(% style="width:224px" %)4 292 -|(% style="width:209px" %)RESET|(% style="width:63px" %)Any|(% style="width:92px" %)04|(% style="width:224px" %)2 293 -|(% style="width:209px" %)AT+CFM|(% style="width:63px" %)Any|(% style="width:92px" %)05|(% style="width:224px" %)4 294 -|(% style="width:209px" %)INTMOD|(% style="width:63px" %)Any|(% style="width:92px" %)06|(% style="width:224px" %)4 295 -|(% style="width:209px" %)MOD|(% style="width:63px" %)Any|(% style="width:92px" %)0A|(% style="width:224px" %)2 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 296 296 297 - **Examples**170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 298 298 299 299 300 - **SetTDC**173 +In the PC, use below serial tool settings: 301 301 302 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 303 303 304 -Payload: 01 00 00 1E TDC=30S 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 305 305 306 - Payload:1000 3C TDC=60S185 +[[image:image-20220708110657-3.png]] 307 307 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 308 308 309 -**Reset** 310 310 311 -If payload = 0x04FF, it will reset the LSE01 312 312 191 +=== 2.2.4 Use CoAP protocol to uplink data === 313 313 314 - **CFM**193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 315 315 316 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 317 317 318 -1. 319 -11. Show Data in DataCake IoT Server 196 +**Use below commands:** 320 320 321 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 322 322 202 +For parameter description, please refer to AT command set 323 323 324 - **Step 1**: Be sure that your device is programmedand properly connected to the network at this time.204 +[[image:1657249793983-486.png]] 325 325 326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 327 327 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 328 328 329 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]209 +[[image:1657249831934-534.png]] 330 330 331 331 332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 333 333 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 334 334 215 +This feature is supported since firmware version v1.0.1 335 335 336 336 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 337 337 338 - Step 3: Create an account or login Datacake.222 +[[image:1657249864775-321.png]] 339 339 340 -Step 4: Search the LSE01 and add DevEUI. 341 341 225 +[[image:1657249930215-289.png]] 342 342 343 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 344 344 345 345 229 +=== 2.2.6 Use MQTT protocol to uplink data === 346 346 347 - Afteradded,the sensordataarriveTTN,itwillalso arriveandshowinMydevices.231 +This feature is supported since firmware version v110 348 348 349 349 350 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 351 351 242 +[[image:1657249978444-674.png]] 352 352 353 353 354 -1. 355 -11. Frequency Plans 245 +[[image:1657249990869-686.png]] 356 356 357 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 358 358 359 - 1.360 - 11.361 - 111. EU863-870 (EU868)248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 362 362 363 -Uplink: 364 364 365 -868.1 - SF7BW125 to SF12BW125 366 366 367 - 868.3-SF7BW125toSF12BW125andSF7BW250254 +=== 2.2.7 Use TCP protocol to uplink data === 368 368 369 - 868.5-SF7BW125toSF12BW125256 +This feature is supported since firmware version v110 370 370 371 -867.1 - SF7BW125 to SF12BW125 372 372 373 -867.3 - SF7BW125 to SF12BW125 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 374 374 375 - 867.5- SF7BW125to SF12BW125262 +[[image:1657250217799-140.png]] 376 376 377 -867.7 - SF7BW125 to SF12BW125 378 378 379 - 867.9 - SF7BW125to SF12BW125265 +[[image:1657250255956-604.png]] 380 380 381 -868.8 - FSK 382 382 383 383 384 - Downlink:269 +=== 2.2.8 Change Update Interval === 385 385 386 -U plinkchannels1-9(RX1)271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 387 387 388 - 869.525-SF9BW125(RX2downlinkonly)273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 389 389 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 390 390 391 - 1.392 -1 1.393 - 111. US902-928(US915)279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 394 394 395 -Used in USA, Canada and South America. Default use CHE=2 396 396 397 -Uplink: 398 398 399 - 903.9- SF7BW125toSF10BW125285 +== 2.3 Uplink Payload == 400 400 401 - 904.1-SF7BW125toSF10BW125287 +In this mode, uplink payload includes in total 18 bytes 402 402 403 -904.3 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 404 404 405 - 904.5-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 406 406 407 -904.7 - SF7BW125 to SF10BW125 408 408 409 - 904.9-SF7BW125 to SF10BW125298 +[[image:image-20220708111918-4.png]] 410 410 411 -905.1 - SF7BW125 to SF10BW125 412 412 413 - 905.3-SF7BW125toSF10BW125301 +The payload is ASCII string, representative same HEX: 414 414 303 +0x72403155615900640c7817075e0a8c02f900 where: 415 415 416 -Downlink: 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 417 417 418 -923.3 - SF7BW500 to SF12BW500 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 419 419 420 - 923.9-SF7BW500to SF12BW500315 +== 2.4 Payload Explanation and Sensor Interface == 421 421 422 -924.5 - SF7BW500 to SF12BW500 423 423 424 - 925.1-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 425 425 426 - 925.7-SF7BW500toSF12BW500320 +By default, the Device ID equal to the last 6 bytes of IMEI. 427 427 428 - 926.3-SF7BW500toSF12BW500322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 429 429 430 - 926.9 - SF7BW500 to SF12BW500324 +**Example:** 431 431 432 - 927.5 - SF7BW500 to SF12BW500326 +AT+DEUI=A84041F15612 433 433 434 - 923.3-SF12BW500(RX2downlinkonly)328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 435 435 436 436 437 -1. 438 -11. 439 -111. CN470-510 (CN470) 440 440 441 - UsedinChina,Defaultuse CHE=1332 +=== 2.4.2 Version Info === 442 442 443 - Uplink:334 +Specify the software version: 0x64=100, means firmware version 1.00. 444 444 445 - 486.3-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 446 446 447 -486.5 - SF7BW125 to SF12BW125 448 448 449 -486.7 - SF7BW125 to SF12BW125 450 450 451 -4 86.9- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 452 452 453 -487.1 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 454 454 455 -487.3 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 456 456 457 -487.5 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 458 458 459 -487.7 - SF7BW125 to SF12BW125 460 460 461 461 462 - Downlink:356 +=== 2.4.4 Signal Strength === 463 463 464 - 506.7-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 465 465 466 - 506.9- SF7BW125toSF12BW125360 +**Ex1: 0x1d = 29** 467 467 468 - 507.1-SF7BW125toSF12BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 469 469 470 - 507.3-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 471 471 472 - 507.5- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 473 473 474 - 507.7-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 475 475 476 - 507.9-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 477 477 478 -508.1 - SF7BW125 to SF12BW125 479 479 480 -505.3 - SF12BW125 (RX2 downlink only) 481 481 374 +=== 2.4.5 Soil Moisture === 482 482 483 - 1.484 -11 .485 - 111. AU915-928(AU915)376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 486 486 487 -Default use CHE=2 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 488 488 489 -Uplink: 384 +((( 385 + 386 +))) 490 490 491 -916.8 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 492 492 493 -917.0 - SF7BW125 to SF12BW125 494 494 495 -917.2 - SF7BW125 to SF12BW125 496 496 497 - 917.4-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 498 498 499 -917.6 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 500 500 501 -917.8 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 502 502 503 -918.0 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 504 504 505 -918.2 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 506 506 507 507 508 -Downlink: 509 509 510 - 923.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 511 511 512 -923.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 513 513 514 -924.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 515 515 516 -925.1 - SF7BW500 to SF12BW500 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 517 517 518 -925.7 - SF7BW500 to SF12BW500 428 +((( 429 + 430 +))) 519 519 520 -926.3 - SF7BW500 to SF12BW500 432 +((( 433 + 434 +))) 521 521 522 - 926.9-SF7BW500toSF12BW500436 +=== 2.4.8 Digital Interrupt === 523 523 524 - 927.5-SF7BW500toSF12BW500438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 525 525 526 - 923.3- SF12BW500(RX2 downlinkonly)440 +The command is: 527 527 528 -1. 529 -11. 530 -111. AS920-923 & AS923-925 (AS923) 442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 531 531 532 -**Default Uplink channel:** 533 533 534 - 923.2-SF7BW125toSF10BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 535 535 536 -923.4 - SF7BW125 to SF10BW125 537 537 448 +Example: 538 538 539 - **AdditionalUplinkChannel**:450 +0x(00): Normal uplink packet. 540 540 541 -( OTAAmode, channeladded by JoinAcceptmessage)452 +0x(01): Interrupt Uplink Packet. 542 542 543 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 544 545 -922.2 - SF7BW125 to SF10BW125 546 546 547 - 922.4- SF7BW125 toSF10BW125456 +=== 2.4.9 +5V Output === 548 548 549 - 922.6 -SF7BW125 toSF10BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 550 550 551 -922.8 - SF7BW125 to SF10BW125 552 552 553 - 923.0- SF7BW125 toSF10BW125461 +The 5V output time can be controlled by AT Command. 554 554 555 - 922.0- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 556 556 465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 557 557 558 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 559 559 560 -923.6 - SF7BW125 to SF10BW125 561 561 562 - 923.8- SF7BW125toSF10BW125469 +== 2.5 Downlink Payload == 563 563 564 - 924.0-SF7BW125toSF10BW125471 +By default, NSE01 prints the downlink payload to console port. 565 565 566 - 924.2- SF7BW125 to SF10BW125473 +[[image:image-20220708133731-5.png]] 567 567 568 -924.4 - SF7BW125 to SF10BW125 569 569 570 -924.6 - SF7BW125 to SF10BW125 571 571 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 572 572 481 +((( 482 + 483 +))) 573 573 574 -**Downlink:** 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 575 575 576 -Uplink channels 1-8 (RX1) 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 577 577 578 -923.2 - SF10BW125 (RX2) 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 579 579 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 580 580 581 - 1.582 - 11.583 - 111. KR920-923 (KR920)501 +((( 502 + 503 +))) 584 584 585 -Default channel: 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 586 586 587 -922.1 - SF7BW125 to SF12BW125 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 588 588 589 -922.3 - SF7BW125 to SF12BW125 590 590 591 - 922.5-SF7BW125toSF12BW125514 +* (% style="color:blue" %)**INTMOD** 592 592 516 +Downlink Payload: 06000003, Set AT+INTMOD=3 593 593 594 -Uplink: (OTAA mode, channel added by JoinAccept message) 595 595 596 -922.1 - SF7BW125 to SF12BW125 597 597 598 - 922.3-SF7BW125toSF12BW125520 +== 2.6 LED Indicator == 599 599 600 -922.5 - SF7BW125 to SF12BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 601 601 602 -922.7 - SF7BW125 to SF12BW125 603 603 604 -922.9 - SF7BW125 to SF12BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 605 605 606 -923.1 - SF7BW125 to SF12BW125 607 607 608 -923.3 - SF7BW125 to SF12BW125 609 609 610 610 611 - Downlink:535 +== 2.7 Installation in Soil == 612 612 613 - Uplinkchannels1-7(RX1)537 +__**Measurement the soil surface**__ 614 614 615 - 921.9-SF12BW125(RX2downlinkonly;SF12BW125might bechangedSF9BW125)539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 616 616 541 +[[image:1657259653666-883.png]] 617 617 618 -1. 619 -11. 620 -111. IN865-867 (IN865) 621 621 622 -Uplink: 544 +((( 545 + 623 623 624 -865.0625 - SF7BW125 to SF12BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 625 625 626 -865.4025 - SF7BW125 to SF12BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 627 627 628 - 865.9850SF7BW125 to SF12BW125556 +[[image:1654506665940-119.png]] 629 629 558 +((( 559 + 560 +))) 630 630 631 -Downlink: 632 632 633 - Uplinkchannels1-3(RX1)563 +== 2.8 Firmware Change Log == 634 634 635 -866.550 - SF10BW125 (RX2) 636 636 566 +Download URL & Firmware Change log 637 637 638 -1. 639 -11. LED Indicator 568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 640 640 641 -The LSE01 has an internal LED which is to show the status of different state. 642 642 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 643 643 644 -* Blink once when device power on. 645 -* Solid ON for 5 seconds once device successful Join the network. 646 -* Blink once when device transmit a packet. 647 647 648 -1. 649 -11. Installation in Soil 650 650 651 - **Measurementhe soilsurface**575 +== 2.9 Battery Analysis == 652 652 577 +=== 2.9.1 Battery Type === 653 653 654 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 655 655 656 - Choose thepropermeasuringposition.Avoidtheprobetotouchrocksor hardthings.Split thesurfacesoilaccordingtothemeasureddeep.Keep the measuredas originaldensity.Vertical insertthe probe intothesoiltobemeasured.Makesure notshakewheninserting.580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 657 657 658 658 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 659 659 660 660 586 +The battery related documents as below: 661 661 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 662 662 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 663 663 664 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 665 665 666 666 598 +2.9.2 667 667 668 -D ig ahole with diameter>20CM.600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 669 669 670 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 671 671 603 +Instruction to use as below: 672 672 673 673 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 674 674 675 -1. 676 -11. Firmware Change Log 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 677 677 678 -**Firmware download link:** 679 679 680 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]611 +Step 2: Open it and choose 681 681 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 682 682 683 - **FirmwareUpgradeMethod:**617 +And the Life expectation in difference case will be shown on the right. 684 684 685 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 686 686 687 687 688 - **V1.0.**621 +=== 2.9.3 Battery Note === 689 689 690 -Release 691 - 692 - 693 - 694 -1. 695 -11. Battery Analysis 696 -111. Battery Type 697 - 698 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 699 - 700 - 701 -The battery is designed to last for more than 5 years for the LSN50. 702 - 703 - 704 -The battery related documents as below: 705 - 706 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 707 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 708 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 709 - 710 -|((( 711 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 712 712 ))) 713 713 714 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 715 715 716 716 629 +=== 2.9.4 Replace the battery === 717 717 718 -1. 719 -11. 720 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 721 721 722 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 723 723 724 724 725 -1. 726 -11. 727 -111. Replace the battery 728 - 729 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 730 - 731 - 732 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 733 - 734 - 735 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 736 - 737 - 738 - 739 - 740 - 741 - 742 742 = 3. Using the AT Commands = 743 743 744 744 == 3.1 Access AT Commands == ... ... @@ -746,13 +746,13 @@ 746 746 747 747 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 748 748 749 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 750 750 751 751 752 752 Or if you have below board, use below connection: 753 753 754 754 755 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 756 756 757 757 758 758 ... ... @@ -759,10 +759,10 @@ 759 759 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 760 760 761 761 762 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 763 763 764 764 765 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 766 766 767 767 768 768 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -874,20 +874,38 @@ 874 874 875 875 == 4.1 How to change the LoRa Frequency Bands/Region? == 876 876 877 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 878 878 When downloading the images, choose the required image file for download. 773 +))) 879 879 775 +((( 776 + 777 +))) 880 880 779 +((( 881 881 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 882 882 783 +((( 784 + 785 +))) 883 883 787 +((( 884 884 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 885 885 791 +((( 792 + 793 +))) 886 886 795 +((( 887 887 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 888 888 889 889 [[image:image-20220606154726-3.png]] 890 890 801 + 891 891 When you use the TTN network, the US915 frequency bands use are: 892 892 893 893 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -900,37 +900,47 @@ 900 900 * 905.3 - SF7BW125 to SF10BW125 901 901 * 904.6 - SF8BW500 902 902 814 +((( 903 903 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 904 904 905 -(% class="box infomessage" %) 906 -((( 907 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 908 908 ))) 909 909 910 -(% class="box infomessage" %) 911 911 ((( 912 -**ATZ** 913 -))) 822 + 914 914 915 915 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 916 916 827 +((( 828 + 829 +))) 917 917 831 +((( 918 918 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 919 919 920 920 [[image:image-20220606154825-4.png]] 921 921 922 922 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 923 923 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 924 924 = 5. Trouble Shooting = 925 925 926 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 927 927 928 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 929 929 930 930 931 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 932 932 933 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 934 934 935 935 936 936 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -942,7 +942,9 @@ 942 942 943 943 (% style="color:#4f81bd" %)**Cause for this issue:** 944 944 866 +((( 945 945 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 946 946 947 947 948 948 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -949,7 +949,7 @@ 949 949 950 950 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 951 951 952 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 953 953 954 954 955 955 = 6. Order Info = ... ... @@ -974,10 +974,17 @@ 974 974 * (% style="color:red" %)**4**(%%): 4000mAh battery 975 975 * (% style="color:red" %)**8**(%%): 8500mAh battery 976 976 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 977 977 = 7. Packing Info = 978 978 979 979 ((( 980 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 981 981 ))) 982 982 983 983 * ((( ... ... @@ -986,10 +986,8 @@ 986 986 987 987 ((( 988 988 989 -))) 990 990 991 -((( 992 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 993 993 ))) 994 994 995 995 * ((( ... ... @@ -1003,6 +1003,8 @@ 1003 1003 ))) 1004 1004 * ((( 1005 1005 Weight / pcs : g 934 + 935 + 1006 1006 ))) 1007 1007 1008 1008 = 8. Support = ... ... @@ -1009,5 +1009,3 @@ 1009 1009 1010 1010 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1011 1011 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1012 - 1013 -
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content