Last modified by Mengting Qiu on 2024/04/02 16:44

From version 26.1
edited by Xiaoling
on 2022/06/06 16:57
Change comment: Uploaded new attachment "1654505874829-548.png", version {1}
To version 57.6
edited by Xiaoling
on 2022/07/08 11:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,61 +8,83 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
62 +== 1.3  Specification ==
58 58  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
... ... @@ -69,159 +69,330 @@
69 69  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 70  ​
71 71  
72 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
73 73  
74 74  
75 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
76 76  
77 77  
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
80 80  
81 -== 2.1 How it works ==
103 +== 2.1  How it works ==
82 82  
105 +
83 83  (((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
85 85  )))
86 86  
110 +
87 87  (((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
89 89  )))
90 90  
115 +[[image:image-20220708101605-2.png]]
91 91  
117 +(((
118 +
119 +)))
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 96  
123 +== 2.2 ​ Configure the NSE01 ==
97 97  
98 -[[image:1654503992078-669.png]]
99 99  
126 +=== 2.2.1 Test Requirement ===
100 100  
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 102  
129 +To use NSE01 in your city, make sure meet below requirements:
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
105 105  
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
107 107  
108 -[[image:image-20220606163732-6.jpeg]]
109 109  
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
111 111  
112 -**Add APP EUI in the application**
113 113  
114 114  
115 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
116 116  
146 +Insert the NB-IoT Card get from your provider.
117 117  
148 +User need to take out the NB-IoT module and insert the SIM card like below:
118 118  
119 -**Add APP KEY and DEV EUI**
120 120  
121 -[[image:1654504683289-357.png]]
151 +[[image:1657249468462-536.png]]
122 122  
123 123  
124 124  
125 -**Step 2**: Power on LSE01
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
126 126  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
127 127  
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 129  
130 -[[image:image-20220606163915-7.png]]
164 +**Connection:**
131 131  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
132 132  
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
134 134  
135 -[[image:1654504778294-788.png]]
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
136 136  
137 137  
173 +In the PC, use below serial tool settings:
138 138  
139 -== 2.3 Uplink Payload ==
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
140 140  
141 -=== 2.3.1 MOD~=0(Default Mode) ===
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
142 142  
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
185 +[[image:image-20220708110657-3.png]]
144 144  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
145 145  
146 -Uplink payload includes in total 11 bytes.
147 -
148 148  
149 -|(((
150 -**Size**
151 151  
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
156 156  
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
160 160  
161 -(Optional)
195 +
196 +**Use below commands:**
197 +
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 +
202 +
203 +For parameter description, please refer to AT command set
204 +
205 +[[image:1657249793983-486.png]]
206 +
207 +
208 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
209 +
210 +[[image:1657249831934-534.png]]
211 +
212 +
213 +
214 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
215 +
216 +This feature is supported since firmware version v1.0.1
217 +
218 +
219 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
221 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
222 +
223 +[[image:1657249864775-321.png]]
224 +
225 +
226 +[[image:1657249930215-289.png]]
227 +
228 +
229 +
230 +=== 2.2.6 Use MQTT protocol to uplink data ===
231 +
232 +This feature is supported since firmware version v110
233 +
234 +
235 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
237 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
238 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
239 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
240 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
241 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
242 +
243 +[[image:1657249978444-674.png]]
244 +
245 +
246 +[[image:1657249990869-686.png]]
247 +
248 +
249 +(((
250 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
255 +=== 2.2.7 Use TCP protocol to uplink data ===
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
257 +This feature is supported since firmware version v110
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171 171  
172 -|(((
173 -**Size**
260 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
263 +[[image:1657250217799-140.png]]
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
183 183  
184 -(Optional)
266 +[[image:1657250255956-604.png]]
267 +
268 +
269 +
270 +=== 2.2.8 Change Update Interval ===
271 +
272 +User can use below command to change the (% style="color:green" %)**uplink interval**.
273 +
274 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
275 +
276 +(((
277 +(% style="color:red" %)**NOTE:**
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
280 +(((
281 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
282 +)))
188 188  
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
286 +== 2.3  Uplink Payload ==
192 192  
288 +In this mode, uplink payload includes in total 18 bytes
289 +
290 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
291 +|=(% style="width: 50px;" %)(((
292 +**Size(bytes)**
293 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
294 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
295 +
296 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
297 +
298 +
299 +[[image:image-20220708111918-4.png]]
300 +
301 +
302 +The payload is ASCII string, representative same HEX:
303 +
304 +0x72403155615900640c7817075e0a8c02f900 where:
305 +
306 +* Device ID: 0x 724031556159 = 724031556159
307 +* Version: 0x0064=100=1.0.0
308 +
309 +* BAT: 0x0c78 = 3192 mV = 3.192V
310 +* Singal: 0x17 = 23
311 +* Soil Moisture: 0x075e= 1886 = 18.86  %
312 +* Soil Temperature:0x0a8c =2700=27 °C
313 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
314 +* Interrupt: 0x00 = 0
315 +
316 +
317 +
318 +
319 +== 2.4  Payload Explanation and Sensor Interface ==
320 +
321 +=== 2.4.1  Device ID ===
322 +
323 +By default, the Device ID equal to the last 6 bytes of IMEI.
324 +
325 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
326 +
327 +**Example:**
328 +
329 +AT+DEUI=A84041F15612
330 +
331 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
332 +
333 +
334 +
335 +=== 2.4.2  Version Info ===
336 +
337 +Specify the software version: 0x64=100, means firmware version 1.00.
338 +
339 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
340 +
341 +
342 +
343 +=== 2.4.3  Battery Info ===
344 +
345 +(((
193 193  Check the battery voltage for LSE01.
347 +)))
194 194  
349 +(((
195 195  Ex1: 0x0B45 = 2885mV
351 +)))
196 196  
353 +(((
197 197  Ex2: 0x0B49 = 2889mV
355 +)))
198 198  
199 199  
200 200  
201 -=== 2.3.4 Soil Moisture ===
359 +=== 2.4.4  Signal Strength ===
202 202  
361 +NB-IoT Network signal Strength.
362 +
363 +**Ex1: 0x1d = 29**
364 +
365 +(% style="color:blue" %)**0**(%%)  -113dBm or less
366 +
367 +(% style="color:blue" %)**1**(%%)  -111dBm
368 +
369 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
370 +
371 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
372 +
373 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
374 +
375 +
376 +
377 +=== 2.4.5  Soil Moisture ===
378 +
379 +(((
203 203  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
381 +)))
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
383 +(((
384 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
385 +)))
206 206  
387 +(((
388 +
389 +)))
207 207  
391 +(((
208 208  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
393 +)))
209 209  
210 210  
211 211  
212 -=== 2.3.5 Soil Temperature ===
397 +=== 2.4. Soil Temperature ===
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
399 +(((
400 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
401 +)))
215 215  
403 +(((
216 216  **Example**:
405 +)))
217 217  
407 +(((
218 218  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
409 +)))
219 219  
411 +(((
220 220  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
413 +)))
221 221  
222 222  
223 223  
224 -=== 2.3.6 Soil Conductivity (EC) ===
417 +=== 2.4. Soil Conductivity (EC) ===
225 225  
226 226  (((
227 227  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -228,7 +228,7 @@
228 228  )))
229 229  
230 230  (((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
424 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 232  )))
233 233  
234 234  (((
... ... @@ -243,43 +243,48 @@
243 243  
244 244  )))
245 245  
246 -=== 2.3.7 MOD ===
439 +=== 2.4. Digital Interrupt ===
247 247  
248 -Firmware version at least v2.1 supports changing mode.
249 249  
250 -For example, bytes[10]=90
442 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
444 +The command is:
253 253  
446 +**AT+INTMOD=3    ~/~/(more info about INMOD please refer **[[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]]**).**
254 254  
255 -Downlink Command:
256 256  
257 -If payload = 0x0A00, workmode=0
449 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
258 258  
259 -If** **payload =** **0x0A01, workmode=1
260 260  
452 +Example:
261 261  
454 +0x(00): Normal uplink packet.
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
456 +0x(01): Interrupt Uplink Packet.
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
266 266  
267 267  
268 -[[image:1654505570700-128.png]]
269 269  
270 -The payload decoder function for TTN is here:
461 +=== 2.4.9  ​+5V Output ===
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
273 273  
464 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling.
274 274  
275 -== 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
467 +The 5V output time can be controlled by AT Command.
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
469 +**(% style="color:blue" %)AT+5VT=1000**
280 280  
471 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
281 281  
282 282  
474 +
475 +== 2.4 Uplink Interval ==
476 +
477 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
478 +
479 +
480 +
283 283  == 2.5 Downlink Payload ==
284 284  
285 285  By default, LSE50 prints the downlink payload to console port.
... ... @@ -286,82 +286,98 @@
286 286  
287 287  [[image:image-20220606165544-8.png]]
288 288  
289 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:591px" %)
290 -|=(% style="width: 209px;" %)**Downlink Control Type**|=(% style="width: 63px;" %)**FPort**|=(% style="width: 92px;" %)**Type Code**|=(% style="width: 224px;" %)**Downlink payload size(bytes)**
291 -|(% style="width:209px" %)TDC (Transmit Time Interval)|(% style="width:63px" %)Any|(% style="width:92px" %)01|(% style="width:224px" %)4
292 -|(% style="width:209px" %)RESET|(% style="width:63px" %)Any|(% style="width:92px" %)04|(% style="width:224px" %)2
293 -|(% style="width:209px" %)AT+CFM|(% style="width:63px" %)Any|(% style="width:92px" %)05|(% style="width:224px" %)4
294 -|(% style="width:209px" %)INTMOD|(% style="width:63px" %)Any|(% style="width:92px" %)06|(% style="width:224px" %)4
295 -|(% style="width:209px" %)MOD|(% style="width:63px" %)Any|(% style="width:92px" %)0A|(% style="width:224px" %)2
296 296  
297 -**Examples**
488 +(((
489 +(% style="color:blue" %)**Examples:**
490 +)))
298 298  
492 +(((
493 +
494 +)))
299 299  
300 -**Set TDC**
496 +* (((
497 +(% style="color:blue" %)**Set TDC**
498 +)))
301 301  
500 +(((
302 302  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
502 +)))
303 303  
504 +(((
304 304  Payload:    01 00 00 1E    TDC=30S
506 +)))
305 305  
508 +(((
306 306  Payload:    01 00 00 3C    TDC=60S
510 +)))
307 307  
512 +(((
513 +
514 +)))
308 308  
309 -**Reset**
516 +* (((
517 +(% style="color:blue" %)**Reset**
518 +)))
310 310  
520 +(((
311 311  If payload = 0x04FF, it will reset the LSE01
522 +)))
312 312  
313 313  
314 -**CFM**
525 +* (% style="color:blue" %)**CFM**
315 315  
316 316  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
317 317  
318 -1.
319 -11. ​Show Data in DataCake IoT Server
320 320  
321 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
322 322  
531 +== 2.6 ​Show Data in DataCake IoT Server ==
323 323  
324 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
533 +(((
534 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
535 +)))
325 325  
326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
537 +(((
538 +
539 +)))
327 327  
541 +(((
542 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
543 +)))
328 328  
329 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
545 +(((
546 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
547 +)))
330 330  
331 331  
332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
550 +[[image:1654505857935-743.png]]
333 333  
334 334  
553 +[[image:1654505874829-548.png]]
335 335  
336 336  
556 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
337 337  
338 -Step 3: Create an account or log in Datacake.
558 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
339 339  
340 -Step 4: Search the LSE01 and add DevEUI.
341 341  
561 +[[image:1654505905236-553.png]]
342 342  
343 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
344 344  
345 -
346 -
347 347  After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
348 348  
566 +[[image:1654505925508-181.png]]
349 349  
350 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
351 351  
352 352  
570 +== 2.7 Frequency Plans ==
353 353  
354 -1.
355 -11. Frequency Plans
356 -
357 357  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
358 358  
359 -1.
360 -11.
361 -111. EU863-870 (EU868)
362 362  
363 -Uplink:
575 +=== 2.7.1 EU863-870 (EU868) ===
364 364  
577 +(% style="color:#037691" %)** Uplink:**
578 +
365 365  868.1 - SF7BW125 to SF12BW125
366 366  
367 367  868.3 - SF7BW125 to SF12BW125 and SF7BW250
... ... @@ -381,7 +381,7 @@
381 381  868.8 - FSK
382 382  
383 383  
384 -Downlink:
598 +(% style="color:#037691" %)** Downlink:**
385 385  
386 386  Uplink channels 1-9 (RX1)
387 387  
... ... @@ -388,13 +388,12 @@
388 388  869.525 - SF9BW125 (RX2 downlink only)
389 389  
390 390  
391 -1.
392 -11.
393 -111. US902-928(US915)
394 394  
606 +=== 2.7.2 US902-928(US915) ===
607 +
395 395  Used in USA, Canada and South America. Default use CHE=2
396 396  
397 -Uplink:
610 +(% style="color:#037691" %)**Uplink:**
398 398  
399 399  903.9 - SF7BW125 to SF10BW125
400 400  
... ... @@ -413,7 +413,7 @@
413 413  905.3 - SF7BW125 to SF10BW125
414 414  
415 415  
416 -Downlink:
629 +(% style="color:#037691" %)**Downlink:**
417 417  
418 418  923.3 - SF7BW500 to SF12BW500
419 419  
... ... @@ -434,13 +434,12 @@
434 434  923.3 - SF12BW500(RX2 downlink only)
435 435  
436 436  
437 -1.
438 -11.
439 -111. CN470-510 (CN470)
440 440  
651 +=== 2.7.3 CN470-510 (CN470) ===
652 +
441 441  Used in China, Default use CHE=1
442 442  
443 -Uplink:
655 +(% style="color:#037691" %)**Uplink:**
444 444  
445 445  486.3 - SF7BW125 to SF12BW125
446 446  
... ... @@ -459,7 +459,7 @@
459 459  487.7 - SF7BW125 to SF12BW125
460 460  
461 461  
462 -Downlink:
674 +(% style="color:#037691" %)**Downlink:**
463 463  
464 464  506.7 - SF7BW125 to SF12BW125
465 465  
... ... @@ -480,13 +480,12 @@
480 480  505.3 - SF12BW125 (RX2 downlink only)
481 481  
482 482  
483 -1.
484 -11.
485 -111. AU915-928(AU915)
486 486  
696 +=== 2.7.4 AU915-928(AU915) ===
697 +
487 487  Default use CHE=2
488 488  
489 -Uplink:
700 +(% style="color:#037691" %)**Uplink:**
490 490  
491 491  916.8 - SF7BW125 to SF12BW125
492 492  
... ... @@ -505,7 +505,7 @@
505 505  918.2 - SF7BW125 to SF12BW125
506 506  
507 507  
508 -Downlink:
719 +(% style="color:#037691" %)**Downlink:**
509 509  
510 510  923.3 - SF7BW500 to SF12BW500
511 511  
... ... @@ -525,22 +525,22 @@
525 525  
526 526  923.3 - SF12BW500(RX2 downlink only)
527 527  
528 -1.
529 -11.
530 -111. AS920-923 & AS923-925 (AS923)
531 531  
532 -**Default Uplink channel:**
533 533  
741 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
742 +
743 +(% style="color:#037691" %)**Default Uplink channel:**
744 +
534 534  923.2 - SF7BW125 to SF10BW125
535 535  
536 536  923.4 - SF7BW125 to SF10BW125
537 537  
538 538  
539 -**Additional Uplink Channel**:
750 +(% style="color:#037691" %)**Additional Uplink Channel**:
540 540  
541 541  (OTAA mode, channel added by JoinAccept message)
542 542  
543 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
754 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 544  
545 545  922.2 - SF7BW125 to SF10BW125
546 546  
... ... @@ -555,7 +555,7 @@
555 555  922.0 - SF7BW125 to SF10BW125
556 556  
557 557  
558 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
769 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
559 559  
560 560  923.6 - SF7BW125 to SF10BW125
561 561  
... ... @@ -570,18 +570,16 @@
570 570  924.6 - SF7BW125 to SF10BW125
571 571  
572 572  
784 +(% style="color:#037691" %)** Downlink:**
573 573  
574 -**Downlink:**
575 -
576 576  Uplink channels 1-8 (RX1)
577 577  
578 578  923.2 - SF10BW125 (RX2)
579 579  
580 580  
581 -1.
582 -11.
583 -111. KR920-923 (KR920)
584 584  
792 +=== 2.7.6 KR920-923 (KR920) ===
793 +
585 585  Default channel:
586 586  
587 587  922.1 - SF7BW125 to SF12BW125
... ... @@ -591,7 +591,7 @@
591 591  922.5 - SF7BW125 to SF12BW125
592 592  
593 593  
594 -Uplink: (OTAA mode, channel added by JoinAccept message)
803 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
595 595  
596 596  922.1 - SF7BW125 to SF12BW125
597 597  
... ... @@ -608,7 +608,7 @@
608 608  923.3 - SF7BW125 to SF12BW125
609 609  
610 610  
611 -Downlink:
820 +(% style="color:#037691" %)**Downlink:**
612 612  
613 613  Uplink channels 1-7(RX1)
614 614  
... ... @@ -615,12 +615,11 @@
615 615  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
616 616  
617 617  
618 -1.
619 -11.
620 -111. IN865-867 (IN865)
621 621  
622 -Uplink:
828 +=== 2.7.7 IN865-867 (IN865) ===
623 623  
830 +(% style="color:#037691" %)** Uplink:**
831 +
624 624  865.0625 - SF7BW125 to SF12BW125
625 625  
626 626  865.4025 - SF7BW125 to SF12BW125
... ... @@ -628,7 +628,7 @@
628 628  865.9850 - SF7BW125 to SF12BW125
629 629  
630 630  
631 -Downlink:
839 +(% style="color:#037691" %) **Downlink:**
632 632  
633 633  Uplink channels 1-3 (RX1)
634 634  
... ... @@ -635,110 +635,129 @@
635 635  866.550 - SF10BW125 (RX2)
636 636  
637 637  
638 -1.
639 -11. LED Indicator
640 640  
641 -The LSE01 has an internal LED which is to show the status of different state.
642 642  
848 +== 2.8 LED Indicator ==
643 643  
850 +The LSE01 has an internal LED which is to show the status of different state.
851 +
644 644  * Blink once when device power on.
645 645  * Solid ON for 5 seconds once device successful Join the network.
646 646  * Blink once when device transmit a packet.
647 647  
648 -1.
649 -11. Installation in Soil
856 +== 2.9 Installation in Soil ==
650 650  
651 651  **Measurement the soil surface**
652 652  
653 653  
654 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
861 +[[image:1654506634463-199.png]] ​
655 655  
863 +(((
864 +(((
656 656  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
866 +)))
867 +)))
657 657  
658 658  
659 659  
871 +[[image:1654506665940-119.png]]
660 660  
661 -
662 -
663 -
664 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
665 -
666 -
667 -
873 +(((
668 668  Dig a hole with diameter > 20CM.
875 +)))
669 669  
877 +(((
670 670  Horizontal insert the probe to the soil and fill the hole for long term measurement.
879 +)))
671 671  
672 672  
882 +== 2.10 ​Firmware Change Log ==
673 673  
674 -
675 -1.
676 -11. ​Firmware Change Log
677 -
884 +(((
678 678  **Firmware download link:**
886 +)))
679 679  
888 +(((
680 680  [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
890 +)))
681 681  
892 +(((
893 +
894 +)))
682 682  
683 -**Firmware Upgrade Method:**
896 +(((
897 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
898 +)))
684 684  
685 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
900 +(((
901 +
902 +)))
686 686  
687 -
904 +(((
688 688  **V1.0.**
906 +)))
689 689  
908 +(((
690 690  Release
910 +)))
691 691  
692 692  
913 +== 2.11 ​Battery Analysis ==
693 693  
694 -1.
695 -11. ​Battery Analysis
696 -111. ​Battery Type
915 +=== 2.11.1 ​Battery Type ===
697 697  
917 +(((
698 698  The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
919 +)))
699 699  
700 -
921 +(((
701 701  The battery is designed to last for more than 5 years for the LSN50.
923 +)))
702 702  
925 +(((
926 +(((
927 +The battery-related documents are as below:
928 +)))
929 +)))
703 703  
704 -The battery related documents as below:
705 -
706 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
707 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
708 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
709 -
710 -|(((
711 -JST-XH-2P connector
931 +* (((
932 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 712  )))
934 +* (((
935 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
936 +)))
937 +* (((
938 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
939 +)))
713 713  
714 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
941 + [[image:image-20220610172436-1.png]]
715 715  
716 716  
717 717  
718 -1.
719 -11.
720 -111. ​Battery Note
945 +=== 2.11.2 ​Battery Note ===
721 721  
947 +(((
722 722  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
949 +)))
723 723  
724 724  
725 -1.
726 -11.
727 -111. ​Replace the battery
728 728  
953 +=== 2.11.3 Replace the battery ===
954 +
955 +(((
729 729  If Battery is lower than 2.7v, user should replace the battery of LSE01.
957 +)))
730 730  
731 -
959 +(((
732 732  You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
961 +)))
733 733  
734 -
963 +(((
735 735  The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
965 +)))
736 736  
737 737  
738 738  
739 -
740 -
741 -
742 742  = 3. ​Using the AT Commands =
743 743  
744 744  == 3.1 Access AT Commands ==
... ... @@ -746,13 +746,13 @@
746 746  
747 747  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
748 748  
749 -[[image:1654501986557-872.png]]
976 +[[image:1654501986557-872.png||height="391" width="800"]]
750 750  
751 751  
752 752  Or if you have below board, use below connection:
753 753  
754 754  
755 -[[image:1654502005655-729.png]]
982 +[[image:1654502005655-729.png||height="503" width="801"]]
756 756  
757 757  
758 758  
... ... @@ -759,10 +759,10 @@
759 759  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
760 760  
761 761  
762 - [[image:1654502050864-459.png]]
989 + [[image:1654502050864-459.png||height="564" width="806"]]
763 763  
764 764  
765 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
992 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
766 766  
767 767  
768 768  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -874,20 +874,38 @@
874 874  
875 875  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
876 876  
877 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
1104 +(((
1105 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
878 878  When downloading the images, choose the required image file for download. ​
1107 +)))
879 879  
1109 +(((
1110 +
1111 +)))
880 880  
1113 +(((
881 881  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1115 +)))
882 882  
1117 +(((
1118 +
1119 +)))
883 883  
1121 +(((
884 884  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1123 +)))
885 885  
1125 +(((
1126 +
1127 +)))
886 886  
1129 +(((
887 887  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1131 +)))
888 888  
889 889  [[image:image-20220606154726-3.png]]
890 890  
1135 +
891 891  When you use the TTN network, the US915 frequency bands use are:
892 892  
893 893  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -900,37 +900,47 @@
900 900  * 905.3 - SF7BW125 to SF10BW125
901 901  * 904.6 - SF8BW500
902 902  
1148 +(((
903 903  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
904 904  
905 -(% class="box infomessage" %)
906 -(((
907 -**AT+CHE=2**
1151 +* (% style="color:#037691" %)**AT+CHE=2**
1152 +* (% style="color:#037691" %)**ATZ**
908 908  )))
909 909  
910 -(% class="box infomessage" %)
911 911  (((
912 -**ATZ**
913 -)))
1156 +
914 914  
915 915  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1159 +)))
916 916  
1161 +(((
1162 +
1163 +)))
917 917  
1165 +(((
918 918  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1167 +)))
919 919  
920 920  [[image:image-20220606154825-4.png]]
921 921  
922 922  
1172 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
923 923  
1174 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1175 +
1176 +
924 924  = 5. Trouble Shooting =
925 925  
926 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1179 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
927 927  
928 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1181 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
929 929  
930 930  
931 -== 5.2 AT Command input doesnt work ==
1184 +== 5.2 AT Command input doesn't work ==
932 932  
933 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1186 +(((
1187 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1188 +)))
934 934  
935 935  
936 936  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -942,7 +942,9 @@
942 942  
943 943  (% style="color:#4f81bd" %)**Cause for this issue:**
944 944  
1200 +(((
945 945  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1202 +)))
946 946  
947 947  
948 948  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -949,7 +949,7 @@
949 949  
950 950  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
951 951  
952 -[[image:1654500929571-736.png]]
1209 +[[image:1654500929571-736.png||height="458" width="832"]]
953 953  
954 954  
955 955  = 6. ​Order Info =
... ... @@ -974,10 +974,17 @@
974 974  * (% style="color:red" %)**4**(%%): 4000mAh battery
975 975  * (% style="color:red" %)**8**(%%): 8500mAh battery
976 976  
1234 +(% class="wikigeneratedid" %)
1235 +(((
1236 +
1237 +)))
1238 +
977 977  = 7. Packing Info =
978 978  
979 979  (((
980 -**Package Includes**:
1242 +
1243 +
1244 +(% style="color:#037691" %)**Package Includes**:
981 981  )))
982 982  
983 983  * (((
... ... @@ -986,10 +986,8 @@
986 986  
987 987  (((
988 988  
989 -)))
990 990  
991 -(((
992 -**Dimension and weight**:
1254 +(% style="color:#037691" %)**Dimension and weight**:
993 993  )))
994 994  
995 995  * (((
... ... @@ -1003,6 +1003,8 @@
1003 1003  )))
1004 1004  * (((
1005 1005  Weight / pcs : g
1268 +
1269 +
1006 1006  )))
1007 1007  
1008 1008  = 8. Support =
... ... @@ -1009,5 +1009,3 @@
1009 1009  
1010 1010  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1011 1011  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1012 -
1013 -
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content