Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 10 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,61 +8,87 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 - * LoRaWAN 1.0.3 Class A46 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 63 + 64 +== 1.3 Specification == 65 + 66 + 67 +(% style="color:#037691" %)**Common DC Characteristics:** 68 + 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 71 + 72 + 73 +(% style="color:#037691" %)**NB-IoT Spec:** 74 + 75 +* - B1 @H-FDD: 2100MHz 76 +* - B3 @H-FDD: 1800MHz 77 +* - B8 @H-FDD: 900MHz 78 +* - B5 @H-FDD: 850MHz 79 +* - B20 @H-FDD: 800MHz 80 +* - B28 @H-FDD: 700MHz 81 + 82 + 83 +(% style="color:#037691" %)**Probe Specification:** 84 + 59 59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220 606162220-5.png]]87 +[[image:image-20220708101224-1.png]] 62 62 63 63 64 64 65 -== 1.4 Applications == 91 +== 1.4 Applications == 66 66 67 67 * Smart Agriculture 68 68 ... ... @@ -69,155 +69,314 @@ 69 69 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 70 71 71 72 -== 1.5 Firmware Changelog==98 +== 1.5 Pin Definitions == 73 73 74 74 75 - **LSE01v1.0 :** Release101 +[[image:1657246476176-652.png]] 76 76 77 77 78 78 79 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=105 += 2. Use NSE01 to communicate with IoT Server = 80 80 81 -== 2.1 How it works == 107 +== 2.1 How it works == 82 82 109 + 83 83 ((( 84 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 85 85 ))) 86 86 114 + 87 87 ((( 88 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.UsingtheATCommands"]].116 +The diagram below shows the working flow in default firmware of NSE01: 89 89 ))) 90 90 119 +[[image:image-20220708101605-2.png]] 91 91 121 +((( 122 + 123 +))) 92 92 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 96 127 +== 2.2 Configure the NSE01 == 97 97 98 - [[image:1654503992078-669.png]]129 +=== 2.2.1 Test Requirement === 99 99 100 100 101 -T heLG308 isalreadyset to connected to [[TTN network>>url:https://console.cloud.thethings.network/]],so whatweneedtonowis configuretheTTNserver.132 +To use NSE01 in your city, make sure meet below requirements: 102 102 134 +* Your local operator has already distributed a NB-IoT Network there. 135 +* The local NB-IoT network used the band that NSE01 supports. 136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 103 103 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 105 106 - EachLSE01isshippedwithasticker with the defaultdeviceEUIasbelow:139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 107 107 108 -[[image:image-20220606163732-6.jpeg]] 109 109 110 - You canenter thiskey intheLoRaWAN Serverportal. Belowis TTN screen shot:142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]] 111 111 112 -**Add APP EUI in the application** 113 113 114 114 115 -[[image:1654504596150-405.png]] 146 +1. 147 +11. 148 +111. Insert SIM card 116 116 150 +Insert the NB-IoT Card get from your provider. 117 117 118 118 119 - **AddAPPKEYandDEVEUI**153 +User need to take out the NB-IoT module and insert the SIM card like below: 120 120 121 -[[image:1654504683289-357.png]] 122 122 156 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]] 123 123 124 124 125 -**Step 2**: Power on LSE01 159 +1. 160 +11. 161 +111. Connect USB – TTL to NSE01 to configure it 126 126 127 127 128 - Put aJumper onJP2topoweron the device.(TheJumpermustbeinFLASHposition).164 +User need to configure NSE01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 129 129 130 -[[image:image-20220606163915-7.png]] 131 131 132 132 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 134 135 - [[image:1654504778294-788.png]]169 +Connection: 136 136 171 +USB TTL GND <~-~-~-~-> GND 137 137 173 +USB TTL TXD <~-~-~-~-> UART_RXD 138 138 175 +USB TTL RXD <~-~-~-~-> UART_TXD 176 + 177 + 178 + 179 +In the PC, use below serial tool settings: 180 + 181 +* Baud: **9600** 182 +* Data bits:** 8** 183 +* Stop bits: **1** 184 +* Parity: **None** 185 +* Flow Control: **None** 186 + 187 + 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input. 189 + 190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]] 191 + 192 +Note: the valid AT Commands can be found at: 193 + 194 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 195 + 196 + 197 +1. 198 +11. 199 +111. Use CoAP protocol to uplink data 200 + 201 + 202 +Note: if you don’t have CoAP server, you can refer this link to set up one: 203 + 204 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]] 205 + 206 + 207 +Use below commands: 208 + 209 +* **AT+PRO=1** ~/~/ Set to use CoAP protocol to uplink 210 +* **AT+SERVADDR=120.24.4.116,5683 **~/~/ to set CoAP server address and port 211 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" **~/~/Set COAP resource path 212 + 213 + 214 +For parameter description, please refer to AT command set 215 + 216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]] 217 + 218 + 219 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 220 + 221 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]] 222 + 223 +1. 224 +11. 225 +111. Use UDP protocol to uplink data(Default protocol) 226 + 227 + 228 +This feature is supported since firmware version v1.0.1 229 + 230 + 231 +* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 232 +* **AT+SERVADDR=120.24.4.116,5601 **~/~/ to set UDP server address and port 233 +* **AT+CFM=1 **~/~/If the server does not respond, this command is unnecessary 234 + 235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]] 236 + 237 + 238 + 239 + 240 + 241 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]] 242 + 243 + 244 +1. 245 +11. 246 +111. Use MQTT protocol to uplink data 247 + 248 + 249 +This feature is supported since firmware version v110 250 + 251 + 252 +* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 253 +* **AT+SERVADDR=120.24.4.116,1883 **~/~/Set MQTT server address and port 254 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT 255 +* **AT+UNAME=UNAME **~/~/Set the username of MQTT 256 +* **AT+PWD=PWD **~/~/Set the password of MQTT 257 +* **AT+PUBTOPIC=NSE01_PUB **~/~/Set the sending topic of MQTT 258 +* **AT+SUBTOPIC=NSE01_SUB **~/~/Set the subscription topic of MQTT 259 + 260 + 261 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]] 262 + 263 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]] 264 + 265 + 266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 267 + 268 + 269 +1. 270 +11. 271 +111. Use TCP protocol to uplink data 272 + 273 + 274 +This feature is supported since firmware version v110 275 + 276 + 277 +* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 278 +* **AT+SERVADDR=120.24.4.116,5600 **~/~/ to set TCP server address and port 279 + 280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]] 281 + 282 + 283 + 284 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]] 285 + 286 + 287 +1. 288 +11. 289 +111. Change Update Interval 290 + 291 +User can use below command to change the **uplink interval**. 292 + 293 +**~ AT+TDC=600 **~/~/ Set Update Interval to 600s 294 + 295 + 296 +**NOTE:** 297 + 298 +1. By default, the device will send an uplink message every 1 hour. 299 + 300 + 301 + 302 + 303 + 304 + 305 + 139 139 == 2.3 Uplink Payload == 140 140 308 + 141 141 === 2.3.1 MOD~=0(Default Mode) === 142 142 143 143 LSE01 will uplink payload via LoRaWAN with below payload format: 144 144 145 - 313 +((( 146 146 Uplink payload includes in total 11 bytes. 147 - 315 +))) 148 148 317 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 149 149 |((( 150 150 **Size** 151 151 152 152 **(bytes)** 153 153 )))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>> path:#bat]]|(((323 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 155 155 Temperature 156 156 157 157 (Reserve, Ignore now) 158 -)))|[[Soil Moisture>> path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((327 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 159 159 MOD & Digital Interrupt 160 160 161 161 (Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 - 166 - 167 - 168 168 === 2.3.2 MOD~=1(Original value) === 169 169 170 170 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 337 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 172 172 |((( 173 173 **Size** 174 174 175 175 **(bytes)** 176 176 )))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>> path:#bat]]|(((343 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 178 178 Temperature 179 179 180 180 (Reserve, Ignore now) 181 -)))|[[Soil Moisture>> path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((347 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 182 182 MOD & Digital Interrupt 183 183 184 184 (Optional) 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 - 189 - 190 - 191 191 === 2.3.3 Battery Info === 192 192 355 +((( 193 193 Check the battery voltage for LSE01. 357 +))) 194 194 359 +((( 195 195 Ex1: 0x0B45 = 2885mV 361 +))) 196 196 363 +((( 197 197 Ex2: 0x0B49 = 2889mV 365 +))) 198 198 199 199 200 200 201 201 === 2.3.4 Soil Moisture === 202 202 371 +((( 203 203 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 373 +))) 204 204 375 +((( 205 205 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 377 +))) 206 206 379 +((( 380 + 381 +))) 207 207 383 +((( 208 208 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 385 +))) 209 209 210 210 211 211 212 212 === 2.3.5 Soil Temperature === 213 213 391 +((( 214 214 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 393 +))) 215 215 395 +((( 216 216 **Example**: 397 +))) 217 217 399 +((( 218 218 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 401 +))) 219 219 403 +((( 220 220 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 405 +))) 221 221 222 222 223 223 ... ... @@ -252,7 +252,7 @@ 252 252 mod=(bytes[10]>>7)&0x01=1. 253 253 254 254 255 -Downlink Command: 440 +**Downlink Command:** 256 256 257 257 If payload = 0x0A00, workmode=0 258 258 ... ... @@ -267,19 +267,21 @@ 267 267 268 268 [[image:1654505570700-128.png]] 269 269 455 +((( 270 270 The payload decoder function for TTN is here: 457 +))) 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 459 +((( 460 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 461 +))) 273 273 274 274 275 275 == 2.4 Uplink Interval == 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 466 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 281 281 282 - 283 283 == 2.5 Downlink Payload == 284 284 285 285 By default, LSE50 prints the downlink payload to console port. ... ... @@ -286,82 +286,98 @@ 286 286 287 287 [[image:image-20220606165544-8.png]] 288 288 289 -(% border="1" cellspacing="10" style="background-color:#f7faff; width:591px" %) 290 -|=(% style="width: 209px;" %)**Downlink Control Type**|=(% style="width: 63px;" %)**FPort**|=(% style="width: 92px;" %)**Type Code**|=(% style="width: 224px;" %)**Downlink payload size(bytes)** 291 -|(% style="width:209px" %)TDC (Transmit Time Interval)|(% style="width:63px" %)Any|(% style="width:92px" %)01|(% style="width:224px" %)4 292 -|(% style="width:209px" %)RESET|(% style="width:63px" %)Any|(% style="width:92px" %)04|(% style="width:224px" %)2 293 -|(% style="width:209px" %)AT+CFM|(% style="width:63px" %)Any|(% style="width:92px" %)05|(% style="width:224px" %)4 294 -|(% style="width:209px" %)INTMOD|(% style="width:63px" %)Any|(% style="width:92px" %)06|(% style="width:224px" %)4 295 -|(% style="width:209px" %)MOD|(% style="width:63px" %)Any|(% style="width:92px" %)0A|(% style="width:224px" %)2 296 296 297 -**Examples** 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 298 298 481 +((( 482 + 483 +))) 299 299 300 -**Set TDC** 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 301 301 489 +((( 302 302 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 491 +))) 303 303 493 +((( 304 304 Payload: 01 00 00 1E TDC=30S 495 +))) 305 305 497 +((( 306 306 Payload: 01 00 00 3C TDC=60S 499 +))) 307 307 501 +((( 502 + 503 +))) 308 308 309 -**Reset** 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 310 310 509 +((( 311 311 If payload = 0x04FF, it will reset the LSE01 511 +))) 312 312 313 313 314 -**CFM** 514 +* (% style="color:blue" %)**CFM** 315 315 316 316 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 317 317 318 -1. 319 -11. Show Data in DataCake IoT Server 320 320 321 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 322 322 520 +== 2.6 Show Data in DataCake IoT Server == 323 323 324 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 522 +((( 523 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 524 +))) 325 325 326 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 526 +((( 527 + 528 +))) 327 327 530 +((( 531 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 532 +))) 328 328 329 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 534 +((( 535 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 536 +))) 330 330 331 331 332 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]539 +[[image:1654505857935-743.png]] 333 333 334 334 542 +[[image:1654505874829-548.png]] 335 335 336 336 545 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 337 337 338 -Step 3:Create an accountor log inDatacake.547 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 339 339 340 -Step 4: Search the LSE01 and add DevEUI. 341 341 550 +[[image:1654505905236-553.png]] 342 342 343 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 344 344 345 - 346 - 347 347 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 348 348 555 +[[image:1654505925508-181.png]] 349 349 350 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 351 351 352 352 559 +== 2.7 Frequency Plans == 353 353 354 -1. 355 -11. Frequency Plans 356 - 357 357 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 358 358 359 -1. 360 -11. 361 -111. EU863-870 (EU868) 362 362 363 -U plink:564 +=== 2.7.1 EU863-870 (EU868) === 364 364 566 +(% style="color:#037691" %)** Uplink:** 567 + 365 365 868.1 - SF7BW125 to SF12BW125 366 366 367 367 868.3 - SF7BW125 to SF12BW125 and SF7BW250 ... ... @@ -381,7 +381,7 @@ 381 381 868.8 - FSK 382 382 383 383 384 -Downlink: 587 +(% style="color:#037691" %)** Downlink:** 385 385 386 386 Uplink channels 1-9 (RX1) 387 387 ... ... @@ -388,13 +388,12 @@ 388 388 869.525 - SF9BW125 (RX2 downlink only) 389 389 390 390 391 -1. 392 -11. 393 -111. US902-928(US915) 394 394 595 +=== 2.7.2 US902-928(US915) === 596 + 395 395 Used in USA, Canada and South America. Default use CHE=2 396 396 397 -Uplink: 599 +(% style="color:#037691" %)**Uplink:** 398 398 399 399 903.9 - SF7BW125 to SF10BW125 400 400 ... ... @@ -413,7 +413,7 @@ 413 413 905.3 - SF7BW125 to SF10BW125 414 414 415 415 416 -Downlink: 618 +(% style="color:#037691" %)**Downlink:** 417 417 418 418 923.3 - SF7BW500 to SF12BW500 419 419 ... ... @@ -434,13 +434,12 @@ 434 434 923.3 - SF12BW500(RX2 downlink only) 435 435 436 436 437 -1. 438 -11. 439 -111. CN470-510 (CN470) 440 440 640 +=== 2.7.3 CN470-510 (CN470) === 641 + 441 441 Used in China, Default use CHE=1 442 442 443 -Uplink: 644 +(% style="color:#037691" %)**Uplink:** 444 444 445 445 486.3 - SF7BW125 to SF12BW125 446 446 ... ... @@ -459,7 +459,7 @@ 459 459 487.7 - SF7BW125 to SF12BW125 460 460 461 461 462 -Downlink: 663 +(% style="color:#037691" %)**Downlink:** 463 463 464 464 506.7 - SF7BW125 to SF12BW125 465 465 ... ... @@ -480,13 +480,12 @@ 480 480 505.3 - SF12BW125 (RX2 downlink only) 481 481 482 482 483 -1. 484 -11. 485 -111. AU915-928(AU915) 486 486 685 +=== 2.7.4 AU915-928(AU915) === 686 + 487 487 Default use CHE=2 488 488 489 -Uplink: 689 +(% style="color:#037691" %)**Uplink:** 490 490 491 491 916.8 - SF7BW125 to SF12BW125 492 492 ... ... @@ -505,7 +505,7 @@ 505 505 918.2 - SF7BW125 to SF12BW125 506 506 507 507 508 -Downlink: 708 +(% style="color:#037691" %)**Downlink:** 509 509 510 510 923.3 - SF7BW500 to SF12BW500 511 511 ... ... @@ -525,22 +525,22 @@ 525 525 526 526 923.3 - SF12BW500(RX2 downlink only) 527 527 528 -1. 529 -11. 530 -111. AS920-923 & AS923-925 (AS923) 531 531 532 -**Default Uplink channel:** 533 533 730 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 731 + 732 +(% style="color:#037691" %)**Default Uplink channel:** 733 + 534 534 923.2 - SF7BW125 to SF10BW125 535 535 536 536 923.4 - SF7BW125 to SF10BW125 537 537 538 538 539 -**Additional Uplink Channel**: 739 +(% style="color:#037691" %)**Additional Uplink Channel**: 540 540 541 541 (OTAA mode, channel added by JoinAccept message) 542 542 543 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 743 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 544 545 545 922.2 - SF7BW125 to SF10BW125 546 546 ... ... @@ -555,7 +555,7 @@ 555 555 922.0 - SF7BW125 to SF10BW125 556 556 557 557 558 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 758 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 559 559 560 560 923.6 - SF7BW125 to SF10BW125 561 561 ... ... @@ -570,18 +570,16 @@ 570 570 924.6 - SF7BW125 to SF10BW125 571 571 572 572 773 +(% style="color:#037691" %)** Downlink:** 573 573 574 -**Downlink:** 575 - 576 576 Uplink channels 1-8 (RX1) 577 577 578 578 923.2 - SF10BW125 (RX2) 579 579 580 580 581 -1. 582 -11. 583 -111. KR920-923 (KR920) 584 584 781 +=== 2.7.6 KR920-923 (KR920) === 782 + 585 585 Default channel: 586 586 587 587 922.1 - SF7BW125 to SF12BW125 ... ... @@ -591,7 +591,7 @@ 591 591 922.5 - SF7BW125 to SF12BW125 592 592 593 593 594 -Uplink: (OTAA mode, channel added by JoinAccept message) 792 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 595 595 596 596 922.1 - SF7BW125 to SF12BW125 597 597 ... ... @@ -608,7 +608,7 @@ 608 608 923.3 - SF7BW125 to SF12BW125 609 609 610 610 611 -Downlink: 809 +(% style="color:#037691" %)**Downlink:** 612 612 613 613 Uplink channels 1-7(RX1) 614 614 ... ... @@ -615,12 +615,11 @@ 615 615 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 616 616 617 617 618 -1. 619 -11. 620 -111. IN865-867 (IN865) 621 621 622 - Uplink:817 +=== 2.7.7 IN865-867 (IN865) === 623 623 819 +(% style="color:#037691" %)** Uplink:** 820 + 624 624 865.0625 - SF7BW125 to SF12BW125 625 625 626 626 865.4025 - SF7BW125 to SF12BW125 ... ... @@ -628,7 +628,7 @@ 628 628 865.9850 - SF7BW125 to SF12BW125 629 629 630 630 631 -Downlink: 828 +(% style="color:#037691" %) **Downlink:** 632 632 633 633 Uplink channels 1-3 (RX1) 634 634 ... ... @@ -635,110 +635,129 @@ 635 635 866.550 - SF10BW125 (RX2) 636 636 637 637 638 -1. 639 -11. LED Indicator 640 640 641 -The LSE01 has an internal LED which is to show the status of different state. 642 642 837 +== 2.8 LED Indicator == 643 643 839 +The LSE01 has an internal LED which is to show the status of different state. 840 + 644 644 * Blink once when device power on. 645 645 * Solid ON for 5 seconds once device successful Join the network. 646 646 * Blink once when device transmit a packet. 647 647 648 -1. 649 -11. Installation in Soil 845 +== 2.9 Installation in Soil == 650 650 651 651 **Measurement the soil surface** 652 652 653 653 654 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 850 +[[image:1654506634463-199.png]] 655 655 852 +((( 853 +((( 656 656 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 855 +))) 856 +))) 657 657 658 658 659 659 860 +[[image:1654506665940-119.png]] 660 660 661 - 662 - 663 - 664 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 665 - 666 - 667 - 862 +((( 668 668 Dig a hole with diameter > 20CM. 864 +))) 669 669 866 +((( 670 670 Horizontal insert the probe to the soil and fill the hole for long term measurement. 868 +))) 671 671 672 672 871 +== 2.10 Firmware Change Log == 673 673 674 - 675 -1. 676 -11. Firmware Change Log 677 - 873 +((( 678 678 **Firmware download link:** 875 +))) 679 679 877 +((( 680 680 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 879 +))) 681 681 881 +((( 882 + 883 +))) 682 682 683 -**Firmware Upgrade Method:** 885 +((( 886 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 887 +))) 684 684 685 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 889 +((( 890 + 891 +))) 686 686 687 - 893 +((( 688 688 **V1.0.** 895 +))) 689 689 897 +((( 690 690 Release 899 +))) 691 691 692 692 902 +== 2.11 Battery Analysis == 693 693 694 -1. 695 -11. Battery Analysis 696 -111. Battery Type 904 +=== 2.11.1 Battery Type === 697 697 906 +((( 698 698 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 908 +))) 699 699 700 - 910 +((( 701 701 The battery is designed to last for more than 5 years for the LSN50. 912 +))) 702 702 914 +((( 915 +((( 916 +The battery-related documents are as below: 917 +))) 918 +))) 703 703 704 -The battery related documents as below: 705 - 706 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 707 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 708 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 709 - 710 -|((( 711 -JST-XH-2P connector 920 +* ((( 921 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 712 712 ))) 923 +* ((( 924 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 925 +))) 926 +* ((( 927 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 928 +))) 713 713 714 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]930 + [[image:image-20220610172436-1.png]] 715 715 716 716 717 717 718 -1. 719 -11. 720 -111. Battery Note 934 +=== 2.11.2 Battery Note === 721 721 936 +((( 722 722 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 938 +))) 723 723 724 724 725 -1. 726 -11. 727 -111. Replace the battery 728 728 942 +=== 2.11.3 Replace the battery === 943 + 944 +((( 729 729 If Battery is lower than 2.7v, user should replace the battery of LSE01. 946 +))) 730 730 731 - 948 +((( 732 732 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 950 +))) 733 733 734 - 952 +((( 735 735 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 954 +))) 736 736 737 737 738 738 739 - 740 - 741 - 742 742 = 3. Using the AT Commands = 743 743 744 744 == 3.1 Access AT Commands == ... ... @@ -746,13 +746,13 @@ 746 746 747 747 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 748 748 749 -[[image:1654501986557-872.png]] 965 +[[image:1654501986557-872.png||height="391" width="800"]] 750 750 751 751 752 752 Or if you have below board, use below connection: 753 753 754 754 755 -[[image:1654502005655-729.png]] 971 +[[image:1654502005655-729.png||height="503" width="801"]] 756 756 757 757 758 758 ... ... @@ -759,10 +759,10 @@ 759 759 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 760 760 761 761 762 - [[image:1654502050864-459.png]] 978 + [[image:1654502050864-459.png||height="564" width="806"]] 763 763 764 764 765 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]981 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 766 766 767 767 768 768 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -874,20 +874,38 @@ 874 874 875 875 == 4.1 How to change the LoRa Frequency Bands/Region? == 876 876 877 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 1093 +((( 1094 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 878 878 When downloading the images, choose the required image file for download. 1096 +))) 879 879 1098 +((( 1099 + 1100 +))) 880 880 1102 +((( 881 881 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 1104 +))) 882 882 1106 +((( 1107 + 1108 +))) 883 883 1110 +((( 884 884 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 1112 +))) 885 885 1114 +((( 1115 + 1116 +))) 886 886 1118 +((( 887 887 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 1120 +))) 888 888 889 889 [[image:image-20220606154726-3.png]] 890 890 1124 + 891 891 When you use the TTN network, the US915 frequency bands use are: 892 892 893 893 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -900,37 +900,47 @@ 900 900 * 905.3 - SF7BW125 to SF10BW125 901 901 * 904.6 - SF8BW500 902 902 1137 +((( 903 903 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 904 904 905 -(% class="box infomessage" %) 906 -((( 907 -**AT+CHE=2** 1140 +* (% style="color:#037691" %)**AT+CHE=2** 1141 +* (% style="color:#037691" %)**ATZ** 908 908 ))) 909 909 910 -(% class="box infomessage" %) 911 911 ((( 912 -**ATZ** 913 -))) 1145 + 914 914 915 915 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1148 +))) 916 916 1150 +((( 1151 + 1152 +))) 917 917 1154 +((( 918 918 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1156 +))) 919 919 920 920 [[image:image-20220606154825-4.png]] 921 921 922 922 1161 +== 4.2 Can I calibrate LSE01 to different soil types? == 923 923 1163 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1164 + 1165 + 924 924 = 5. Trouble Shooting = 925 925 926 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==1168 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 927 927 928 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.1170 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 929 929 930 930 931 -== 5.2 AT Command input doesn ’t work ==1173 +== 5.2 AT Command input doesn't work == 932 932 933 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1175 +((( 1176 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1177 +))) 934 934 935 935 936 936 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -942,7 +942,9 @@ 942 942 943 943 (% style="color:#4f81bd" %)**Cause for this issue:** 944 944 1189 +((( 945 945 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1191 +))) 946 946 947 947 948 948 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -949,7 +949,7 @@ 949 949 950 950 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 951 951 952 -[[image:1654500929571-736.png]] 1198 +[[image:1654500929571-736.png||height="458" width="832"]] 953 953 954 954 955 955 = 6. Order Info = ... ... @@ -974,10 +974,17 @@ 974 974 * (% style="color:red" %)**4**(%%): 4000mAh battery 975 975 * (% style="color:red" %)**8**(%%): 8500mAh battery 976 976 1223 +(% class="wikigeneratedid" %) 1224 +((( 1225 + 1226 +))) 1227 + 977 977 = 7. Packing Info = 978 978 979 979 ((( 980 -**Package Includes**: 1231 + 1232 + 1233 +(% style="color:#037691" %)**Package Includes**: 981 981 ))) 982 982 983 983 * ((( ... ... @@ -986,10 +986,8 @@ 986 986 987 987 ((( 988 988 989 -))) 990 990 991 -((( 992 -**Dimension and weight**: 1243 +(% style="color:#037691" %)**Dimension and weight**: 993 993 ))) 994 994 995 995 * ((( ... ... @@ -1003,6 +1003,8 @@ 1003 1003 ))) 1004 1004 * ((( 1005 1005 Weight / pcs : g 1257 + 1258 + 1006 1006 ))) 1007 1007 1008 1008 = 8. Support = ... ... @@ -1009,5 +1009,3 @@ 1009 1009 1010 1010 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1011 1011 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1012 - 1013 -
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content