Last modified by Mengting Qiu on 2024/04/02 16:44

From version 24.1
edited by Xiaoling
on 2022/06/06 16:55
Change comment: Uploaded new attachment "image-20220606165544-8.png", version {1}
To version 45.4
edited by Xiaoling
on 2022/07/08 10:36
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,61 +8,87 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
63 +
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
... ... @@ -69,155 +69,314 @@
69 69  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 70  ​
71 71  
72 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
73 73  
74 74  
75 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
76 76  
77 77  
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
80 80  
81 -== 2.1 How it works ==
107 +== 2.1  How it works ==
82 82  
109 +
83 83  (((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
85 85  )))
86 86  
114 +
87 87  (((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
116 +The diagram below shows the working flow in default firmware of NSE01:
89 89  )))
90 90  
119 +[[image:image-20220708101605-2.png]]
91 91  
121 +(((
122 +
123 +)))
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 96  
127 +== 2.2 ​ Configure the NSE01 ==
97 97  
98 -[[image:1654503992078-669.png]]
129 +=== 2.2.1 Test Requirement ===
99 99  
100 100  
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 +To use NSE01 in your city, make sure meet below requirements:
102 102  
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
105 105  
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
107 107  
108 -[[image:image-20220606163732-6.jpeg]]
109 109  
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
111 111  
112 -**Add APP EUI in the application**
113 113  
114 114  
115 -[[image:1654504596150-405.png]]
146 +1.
147 +11.
148 +111. Insert SIM card
116 116  
150 +Insert the NB-IoT Card get from your provider.
117 117  
118 118  
119 -**Add APP KEY and DEV EUI**
153 +User need to take out the NB-IoT module and insert the SIM card like below:
120 120  
121 -[[image:1654504683289-357.png]]
122 122  
156 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
123 123  
124 124  
125 -**Step 2**: Power on LSE01
159 +1.
160 +11.
161 +111. Connect USB – TTL to NSE01 to configure it
126 126  
127 127  
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
164 +User need to configure NSE01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
129 129  
130 -[[image:image-20220606163915-7.png]]
131 131  
132 132  
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 134  
135 -[[image:1654504778294-788.png]]
169 +Connection:
136 136  
171 +USB TTL GND <~-~-~-~-> GND
137 137  
173 +USB TTL TXD <~-~-~-~-> UART_RXD
138 138  
175 +USB TTL RXD <~-~-~-~-> UART_TXD
176 +
177 +
178 +
179 +In the PC, use below serial tool settings:
180 +
181 +* Baud: **9600**
182 +* Data bits:** 8**
183 +* Stop bits: **1**
184 +* Parity: **None**
185 +* Flow Control: **None**
186 +
187 +
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
189 +
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
191 +
192 +Note: the valid AT Commands can be found at:
193 +
194 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
195 +
196 +
197 +1.
198 +11.
199 +111. Use CoAP protocol to uplink data 
200 +
201 +
202 +Note: if you don’t have CoAP server, you can refer this link to set up one:
203 +
204 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
205 +
206 +
207 +Use below commands:
208 +
209 +* **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
210 +* **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
211 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
212 +
213 +
214 +For parameter description, please refer to AT command set
215 +
216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
217 +
218 +
219 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
220 +
221 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
222 +
223 +1.
224 +11.
225 +111. Use UDP protocol to uplink data(Default protocol)
226 +
227 +
228 +This feature is supported since firmware version v1.0.1
229 +
230 +
231 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
232 +* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
233 +* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
234 +
235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
236 +
237 +
238 +
239 +
240 +
241 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
242 +
243 +
244 +1.
245 +11.
246 +111. Use MQTT protocol to uplink data
247 +
248 +
249 +This feature is supported since firmware version v110
250 +
251 +
252 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
253 +* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
254 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
255 +* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
256 +* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
257 +* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
258 +* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
259 +
260 +
261 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
262 +
263 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
264 +
265 +
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +
268 +
269 +1.
270 +11.
271 +111. Use TCP protocol to uplink data
272 +
273 +
274 +This feature is supported since firmware version v110
275 +
276 +
277 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
278 +* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
279 +
280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
281 +
282 +
283 +
284 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
285 +
286 +
287 +1.
288 +11.
289 +111. Change Update Interval
290 +
291 +User can use below command to change the **uplink interval**.
292 +
293 +**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
294 +
295 +
296 +**NOTE:**
297 +
298 +1. By default, the device will send an uplink message every 1 hour.
299 +
300 +
301 +
302 +
303 +
304 +
305 +
139 139  == 2.3 Uplink Payload ==
140 140  
308 +
141 141  === 2.3.1 MOD~=0(Default Mode) ===
142 142  
143 143  LSE01 will uplink payload via LoRaWAN with below payload format: 
144 144  
145 -
313 +(((
146 146  Uplink payload includes in total 11 bytes.
147 -
315 +)))
148 148  
317 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
149 149  |(((
150 150  **Size**
151 151  
152 152  **(bytes)**
153 153  )))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
323 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
155 155  Temperature
156 156  
157 157  (Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
327 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
159 159  MOD & Digital Interrupt
160 160  
161 161  (Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 -
166 -
167 -
168 168  === 2.3.2 MOD~=1(Original value) ===
169 169  
170 170  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171 171  
337 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
172 172  |(((
173 173  **Size**
174 174  
175 175  **(bytes)**
176 176  )))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
343 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
178 178  Temperature
179 179  
180 180  (Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
347 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
182 182  MOD & Digital Interrupt
183 183  
184 184  (Optional)
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 -
189 -
190 -
191 191  === 2.3.3 Battery Info ===
192 192  
355 +(((
193 193  Check the battery voltage for LSE01.
357 +)))
194 194  
359 +(((
195 195  Ex1: 0x0B45 = 2885mV
361 +)))
196 196  
363 +(((
197 197  Ex2: 0x0B49 = 2889mV
365 +)))
198 198  
199 199  
200 200  
201 201  === 2.3.4 Soil Moisture ===
202 202  
371 +(((
203 203  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
373 +)))
204 204  
375 +(((
205 205  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
377 +)))
206 206  
379 +(((
380 +
381 +)))
207 207  
383 +(((
208 208  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
385 +)))
209 209  
210 210  
211 211  
212 212  === 2.3.5 Soil Temperature ===
213 213  
391 +(((
214 214   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
393 +)))
215 215  
395 +(((
216 216  **Example**:
397 +)))
217 217  
399 +(((
218 218  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
401 +)))
219 219  
403 +(((
220 220  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
405 +)))
221 221  
222 222  
223 223  
... ... @@ -252,7 +252,7 @@
252 252  mod=(bytes[10]>>7)&0x01=1.
253 253  
254 254  
255 -Downlink Command:
440 +**Downlink Command:**
256 256  
257 257  If payload = 0x0A00, workmode=0
258 258  
... ... @@ -267,97 +267,119 @@
267 267  
268 268  [[image:1654505570700-128.png]]
269 269  
455 +(((
270 270  The payload decoder function for TTN is here:
457 +)))
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
459 +(((
460 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
461 +)))
273 273  
274 274  
275 275  == 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
466 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
281 -1.
282 -11. ​Downlink Payload
283 283  
470 +== 2.5 Downlink Payload ==
471 +
284 284  By default, LSE50 prints the downlink payload to console port.
285 285  
286 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
287 -|TDC (Transmit Time Interval)|Any|01|4
288 -|RESET|Any|04|2
289 -|AT+CFM|Any|05|4
290 -|INTMOD|Any|06|4
291 -|MOD|Any|0A|2
474 +[[image:image-20220606165544-8.png]]
292 292  
293 -**Examples**
294 294  
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
295 295  
296 -**Set TDC**
481 +(((
482 +
483 +)))
297 297  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
488 +
489 +(((
298 298  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
491 +)))
299 299  
493 +(((
300 300  Payload:    01 00 00 1E    TDC=30S
495 +)))
301 301  
497 +(((
302 302  Payload:    01 00 00 3C    TDC=60S
499 +)))
303 303  
501 +(((
502 +
503 +)))
304 304  
305 -**Reset**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
306 306  
509 +(((
307 307  If payload = 0x04FF, it will reset the LSE01
511 +)))
308 308  
309 309  
310 -**CFM**
514 +* (% style="color:blue" %)**CFM**
311 311  
312 312  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
313 313  
314 -1.
315 -11. ​Show Data in DataCake IoT Server
316 316  
317 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
318 318  
520 +== 2.6 ​Show Data in DataCake IoT Server ==
319 319  
320 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
522 +(((
523 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
524 +)))
321 321  
322 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
526 +(((
527 +
528 +)))
323 323  
530 +(((
531 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
532 +)))
324 324  
325 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
534 +(((
535 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
536 +)))
326 326  
327 327  
328 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
539 +[[image:1654505857935-743.png]]
329 329  
330 330  
542 +[[image:1654505874829-548.png]]
331 331  
332 332  
545 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
333 333  
334 -Step 3: Create an account or log in Datacake.
547 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
335 335  
336 -Step 4: Search the LSE01 and add DevEUI.
337 337  
550 +[[image:1654505905236-553.png]]
338 338  
339 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
340 340  
341 -
342 -
343 343  After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
344 344  
555 +[[image:1654505925508-181.png]]
345 345  
346 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
347 347  
348 348  
559 +== 2.7 Frequency Plans ==
349 349  
350 -1.
351 -11. Frequency Plans
352 -
353 353  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
354 354  
355 -1.
356 -11.
357 -111. EU863-870 (EU868)
358 358  
359 -Uplink:
564 +=== 2.7.1 EU863-870 (EU868) ===
360 360  
566 +(% style="color:#037691" %)** Uplink:**
567 +
361 361  868.1 - SF7BW125 to SF12BW125
362 362  
363 363  868.3 - SF7BW125 to SF12BW125 and SF7BW250
... ... @@ -377,7 +377,7 @@
377 377  868.8 - FSK
378 378  
379 379  
380 -Downlink:
587 +(% style="color:#037691" %)** Downlink:**
381 381  
382 382  Uplink channels 1-9 (RX1)
383 383  
... ... @@ -384,13 +384,12 @@
384 384  869.525 - SF9BW125 (RX2 downlink only)
385 385  
386 386  
387 -1.
388 -11.
389 -111. US902-928(US915)
390 390  
595 +=== 2.7.2 US902-928(US915) ===
596 +
391 391  Used in USA, Canada and South America. Default use CHE=2
392 392  
393 -Uplink:
599 +(% style="color:#037691" %)**Uplink:**
394 394  
395 395  903.9 - SF7BW125 to SF10BW125
396 396  
... ... @@ -409,7 +409,7 @@
409 409  905.3 - SF7BW125 to SF10BW125
410 410  
411 411  
412 -Downlink:
618 +(% style="color:#037691" %)**Downlink:**
413 413  
414 414  923.3 - SF7BW500 to SF12BW500
415 415  
... ... @@ -430,13 +430,12 @@
430 430  923.3 - SF12BW500(RX2 downlink only)
431 431  
432 432  
433 -1.
434 -11.
435 -111. CN470-510 (CN470)
436 436  
640 +=== 2.7.3 CN470-510 (CN470) ===
641 +
437 437  Used in China, Default use CHE=1
438 438  
439 -Uplink:
644 +(% style="color:#037691" %)**Uplink:**
440 440  
441 441  486.3 - SF7BW125 to SF12BW125
442 442  
... ... @@ -455,7 +455,7 @@
455 455  487.7 - SF7BW125 to SF12BW125
456 456  
457 457  
458 -Downlink:
663 +(% style="color:#037691" %)**Downlink:**
459 459  
460 460  506.7 - SF7BW125 to SF12BW125
461 461  
... ... @@ -476,13 +476,12 @@
476 476  505.3 - SF12BW125 (RX2 downlink only)
477 477  
478 478  
479 -1.
480 -11.
481 -111. AU915-928(AU915)
482 482  
685 +=== 2.7.4 AU915-928(AU915) ===
686 +
483 483  Default use CHE=2
484 484  
485 -Uplink:
689 +(% style="color:#037691" %)**Uplink:**
486 486  
487 487  916.8 - SF7BW125 to SF12BW125
488 488  
... ... @@ -501,7 +501,7 @@
501 501  918.2 - SF7BW125 to SF12BW125
502 502  
503 503  
504 -Downlink:
708 +(% style="color:#037691" %)**Downlink:**
505 505  
506 506  923.3 - SF7BW500 to SF12BW500
507 507  
... ... @@ -521,22 +521,22 @@
521 521  
522 522  923.3 - SF12BW500(RX2 downlink only)
523 523  
524 -1.
525 -11.
526 -111. AS920-923 & AS923-925 (AS923)
527 527  
528 -**Default Uplink channel:**
529 529  
730 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
731 +
732 +(% style="color:#037691" %)**Default Uplink channel:**
733 +
530 530  923.2 - SF7BW125 to SF10BW125
531 531  
532 532  923.4 - SF7BW125 to SF10BW125
533 533  
534 534  
535 -**Additional Uplink Channel**:
739 +(% style="color:#037691" %)**Additional Uplink Channel**:
536 536  
537 537  (OTAA mode, channel added by JoinAccept message)
538 538  
539 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
743 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
540 540  
541 541  922.2 - SF7BW125 to SF10BW125
542 542  
... ... @@ -551,7 +551,7 @@
551 551  922.0 - SF7BW125 to SF10BW125
552 552  
553 553  
554 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
758 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
555 555  
556 556  923.6 - SF7BW125 to SF10BW125
557 557  
... ... @@ -566,18 +566,16 @@
566 566  924.6 - SF7BW125 to SF10BW125
567 567  
568 568  
773 +(% style="color:#037691" %)** Downlink:**
569 569  
570 -**Downlink:**
571 -
572 572  Uplink channels 1-8 (RX1)
573 573  
574 574  923.2 - SF10BW125 (RX2)
575 575  
576 576  
577 -1.
578 -11.
579 -111. KR920-923 (KR920)
580 580  
781 +=== 2.7.6 KR920-923 (KR920) ===
782 +
581 581  Default channel:
582 582  
583 583  922.1 - SF7BW125 to SF12BW125
... ... @@ -587,7 +587,7 @@
587 587  922.5 - SF7BW125 to SF12BW125
588 588  
589 589  
590 -Uplink: (OTAA mode, channel added by JoinAccept message)
792 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
591 591  
592 592  922.1 - SF7BW125 to SF12BW125
593 593  
... ... @@ -604,7 +604,7 @@
604 604  923.3 - SF7BW125 to SF12BW125
605 605  
606 606  
607 -Downlink:
809 +(% style="color:#037691" %)**Downlink:**
608 608  
609 609  Uplink channels 1-7(RX1)
610 610  
... ... @@ -611,12 +611,11 @@
611 611  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
612 612  
613 613  
614 -1.
615 -11.
616 -111. IN865-867 (IN865)
617 617  
618 -Uplink:
817 +=== 2.7.7 IN865-867 (IN865) ===
619 619  
819 +(% style="color:#037691" %)** Uplink:**
820 +
620 620  865.0625 - SF7BW125 to SF12BW125
621 621  
622 622  865.4025 - SF7BW125 to SF12BW125
... ... @@ -624,7 +624,7 @@
624 624  865.9850 - SF7BW125 to SF12BW125
625 625  
626 626  
627 -Downlink:
828 +(% style="color:#037691" %) **Downlink:**
628 628  
629 629  Uplink channels 1-3 (RX1)
630 630  
... ... @@ -631,110 +631,129 @@
631 631  866.550 - SF10BW125 (RX2)
632 632  
633 633  
634 -1.
635 -11. LED Indicator
636 636  
637 -The LSE01 has an internal LED which is to show the status of different state.
638 638  
837 +== 2.8 LED Indicator ==
639 639  
839 +The LSE01 has an internal LED which is to show the status of different state.
840 +
640 640  * Blink once when device power on.
641 641  * Solid ON for 5 seconds once device successful Join the network.
642 642  * Blink once when device transmit a packet.
643 643  
644 -1.
645 -11. Installation in Soil
845 +== 2.9 Installation in Soil ==
646 646  
647 647  **Measurement the soil surface**
648 648  
649 649  
650 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
850 +[[image:1654506634463-199.png]] ​
651 651  
852 +(((
853 +(((
652 652  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
855 +)))
856 +)))
653 653  
654 654  
655 655  
860 +[[image:1654506665940-119.png]]
656 656  
657 -
658 -
659 -
660 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
661 -
662 -
663 -
862 +(((
664 664  Dig a hole with diameter > 20CM.
864 +)))
665 665  
866 +(((
666 666  Horizontal insert the probe to the soil and fill the hole for long term measurement.
868 +)))
667 667  
668 668  
871 +== 2.10 ​Firmware Change Log ==
669 669  
670 -
671 -1.
672 -11. ​Firmware Change Log
673 -
873 +(((
674 674  **Firmware download link:**
875 +)))
675 675  
877 +(((
676 676  [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
879 +)))
677 677  
881 +(((
882 +
883 +)))
678 678  
679 -**Firmware Upgrade Method:**
885 +(((
886 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
887 +)))
680 680  
681 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
889 +(((
890 +
891 +)))
682 682  
683 -
893 +(((
684 684  **V1.0.**
895 +)))
685 685  
897 +(((
686 686  Release
899 +)))
687 687  
688 688  
902 +== 2.11 ​Battery Analysis ==
689 689  
690 -1.
691 -11. ​Battery Analysis
692 -111. ​Battery Type
904 +=== 2.11.1 ​Battery Type ===
693 693  
906 +(((
694 694  The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
908 +)))
695 695  
696 -
910 +(((
697 697  The battery is designed to last for more than 5 years for the LSN50.
912 +)))
698 698  
914 +(((
915 +(((
916 +The battery-related documents are as below:
917 +)))
918 +)))
699 699  
700 -The battery related documents as below:
701 -
702 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
703 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
704 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
705 -
706 -|(((
707 -JST-XH-2P connector
920 +* (((
921 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
708 708  )))
923 +* (((
924 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
925 +)))
926 +* (((
927 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
928 +)))
709 709  
710 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
930 + [[image:image-20220610172436-1.png]]
711 711  
712 712  
713 713  
714 -1.
715 -11.
716 -111. ​Battery Note
934 +=== 2.11.2 ​Battery Note ===
717 717  
936 +(((
718 718  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
938 +)))
719 719  
720 720  
721 -1.
722 -11.
723 -111. ​Replace the battery
724 724  
942 +=== 2.11.3 Replace the battery ===
943 +
944 +(((
725 725  If Battery is lower than 2.7v, user should replace the battery of LSE01.
946 +)))
726 726  
727 -
948 +(((
728 728  You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
950 +)))
729 729  
730 -
952 +(((
731 731  The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
954 +)))
732 732  
733 733  
734 734  
735 -
736 -
737 -
738 738  = 3. ​Using the AT Commands =
739 739  
740 740  == 3.1 Access AT Commands ==
... ... @@ -742,13 +742,13 @@
742 742  
743 743  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
744 744  
745 -[[image:1654501986557-872.png]]
965 +[[image:1654501986557-872.png||height="391" width="800"]]
746 746  
747 747  
748 748  Or if you have below board, use below connection:
749 749  
750 750  
751 -[[image:1654502005655-729.png]]
971 +[[image:1654502005655-729.png||height="503" width="801"]]
752 752  
753 753  
754 754  
... ... @@ -755,10 +755,10 @@
755 755  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
756 756  
757 757  
758 - [[image:1654502050864-459.png]]
978 + [[image:1654502050864-459.png||height="564" width="806"]]
759 759  
760 760  
761 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
981 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
762 762  
763 763  
764 764  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -870,20 +870,38 @@
870 870  
871 871  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
872 872  
873 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
1093 +(((
1094 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
874 874  When downloading the images, choose the required image file for download. ​
1096 +)))
875 875  
1098 +(((
1099 +
1100 +)))
876 876  
1102 +(((
877 877  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1104 +)))
878 878  
1106 +(((
1107 +
1108 +)))
879 879  
1110 +(((
880 880  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1112 +)))
881 881  
1114 +(((
1115 +
1116 +)))
882 882  
1118 +(((
883 883  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1120 +)))
884 884  
885 885  [[image:image-20220606154726-3.png]]
886 886  
1124 +
887 887  When you use the TTN network, the US915 frequency bands use are:
888 888  
889 889  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -896,37 +896,47 @@
896 896  * 905.3 - SF7BW125 to SF10BW125
897 897  * 904.6 - SF8BW500
898 898  
1137 +(((
899 899  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
900 900  
901 -(% class="box infomessage" %)
902 -(((
903 -**AT+CHE=2**
1140 +* (% style="color:#037691" %)**AT+CHE=2**
1141 +* (% style="color:#037691" %)**ATZ**
904 904  )))
905 905  
906 -(% class="box infomessage" %)
907 907  (((
908 -**ATZ**
909 -)))
1145 +
910 910  
911 911  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1148 +)))
912 912  
1150 +(((
1151 +
1152 +)))
913 913  
1154 +(((
914 914  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1156 +)))
915 915  
916 916  [[image:image-20220606154825-4.png]]
917 917  
918 918  
1161 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
919 919  
1163 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1164 +
1165 +
920 920  = 5. Trouble Shooting =
921 921  
922 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1168 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
923 923  
924 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1170 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
925 925  
926 926  
927 -== 5.2 AT Command input doesnt work ==
1173 +== 5.2 AT Command input doesn't work ==
928 928  
929 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1175 +(((
1176 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1177 +)))
930 930  
931 931  
932 932  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -938,7 +938,9 @@
938 938  
939 939  (% style="color:#4f81bd" %)**Cause for this issue:**
940 940  
1189 +(((
941 941  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1191 +)))
942 942  
943 943  
944 944  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -945,7 +945,7 @@
945 945  
946 946  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
947 947  
948 -[[image:1654500929571-736.png]]
1198 +[[image:1654500929571-736.png||height="458" width="832"]]
949 949  
950 950  
951 951  = 6. ​Order Info =
... ... @@ -970,10 +970,17 @@
970 970  * (% style="color:red" %)**4**(%%): 4000mAh battery
971 971  * (% style="color:red" %)**8**(%%): 8500mAh battery
972 972  
1223 +(% class="wikigeneratedid" %)
1224 +(((
1225 +
1226 +)))
1227 +
973 973  = 7. Packing Info =
974 974  
975 975  (((
976 -**Package Includes**:
1231 +
1232 +
1233 +(% style="color:#037691" %)**Package Includes**:
977 977  )))
978 978  
979 979  * (((
... ... @@ -982,10 +982,8 @@
982 982  
983 983  (((
984 984  
985 -)))
986 986  
987 -(((
988 -**Dimension and weight**:
1243 +(% style="color:#037691" %)**Dimension and weight**:
989 989  )))
990 990  
991 991  * (((
... ... @@ -999,6 +999,8 @@
999 999  )))
1000 1000  * (((
1001 1001  Weight / pcs : g
1257 +
1258 +
1002 1002  )))
1003 1003  
1004 1004  = 8. Support =
... ... @@ -1005,5 +1005,3 @@
1005 1005  
1006 1006  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1007 1007  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1008 -
1009 -
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content