Last modified by Mengting Qiu on 2024/04/02 16:44

From version 23.3
edited by Xiaoling
on 2022/06/06 16:53
Change comment: There is no comment for this version
To version 68.2
edited by Xiaoling
on 2022/07/09 08:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
1 +[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
3 3  
4 4  
5 5  
... ... @@ -8,61 +8,82 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
11 +**Table of Contents:**
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
15 +
16 +
17 +
18 +
19 += 1.  Introduction =
20 +
21 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
22 +
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
24 +
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
27 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
29 29  )))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 +
33 33  )))
34 34  
35 -
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
41 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
45 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
60 +== 1.3  Specification ==
58 58  
62 +
63 +(% style="color:#037691" %)**Common DC Characteristics:**
64 +
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
67 +
68 +(% style="color:#037691" %)**NB-IoT Spec:**
69 +
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
76 +
77 +Probe(% style="color:#037691" %)** Specification:**
78 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
81 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
85 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
... ... @@ -69,941 +69,818 @@
69 69  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 70  ​
71 71  
72 -== 1.5 Firmware Change log ==
92 +== 1.5  Pin Definitions ==
73 73  
74 74  
75 -**LSE01 v1.0 :**  Release
95 +[[image:1657246476176-652.png]]
76 76  
77 77  
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
99 += 2.  Use NSE01 to communicate with IoT Server =
80 80  
81 -== 2.1 How it works ==
101 +== 2.1  How it works ==
82 82  
103 +
83 83  (((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
105 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
85 85  )))
86 86  
108 +
87 87  (((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
110 +The diagram below shows the working flow in default firmware of NSE01:
89 89  )))
90 90  
113 +[[image:image-20220708101605-2.png]]
91 91  
92 -
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 -
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 -
97 -
98 -[[image:1654503992078-669.png]]
99 -
100 -
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 -
103 -
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
105 -
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
107 -
108 -[[image:image-20220606163732-6.jpeg]]
109 -
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 -
112 -**Add APP EUI in the application**
113 -
114 -
115 -[[image:1654504596150-405.png]]
116 -
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -[[image:1654504683289-357.png]]
122 -
123 -
124 -
125 -**Step 2**: Power on LSE01
126 -
127 -
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 -
130 -[[image:image-20220606163915-7.png]]
131 -
132 -
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 -
135 -[[image:1654504778294-788.png]]
136 -
137 -
138 -
139 -== 2.3 Uplink Payload ==
140 -
141 -=== 2.3.1 MOD~=0(Default Mode) ===
142 -
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
115 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
121 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
124 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
127 +(((
128 +To use NSE01 in your city, make sure meet below requirements:
129 +)))
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
140 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
144 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
146 +(((
147 +Insert the NB-IoT Card get from your provider.
148 +)))
196 196  
197 -Ex2: 0x0B49 = 2889mV
150 +(((
151 +User need to take out the NB-IoT module and insert the SIM card like below:
152 +)))
198 198  
199 199  
155 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
159 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
161 +(((
162 +(((
163 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
164 +)))
165 +)))
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
168 +**Connection:**
210 210  
170 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
211 211  
212 -=== 2.3.5 Soil Temperature ===
172 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
174 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
215 215  
216 -**Example**:
217 217  
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
177 +In the PC, use below serial tool settings:
219 219  
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
179 +* Baud:  (% style="color:green" %)**9600**
180 +* Data bits:** (% style="color:green" %)8(%%)**
181 +* Stop bits: (% style="color:green" %)**1**
182 +* Parity:  (% style="color:green" %)**None**
183 +* Flow Control: (% style="color:green" %)**None**
221 221  
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
186 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
228 228  )))
229 229  
230 -(((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 -)))
189 +[[image:image-20220708110657-3.png]]
233 233  
234 234  (((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
236 236  )))
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 -
244 -)))
245 245  
246 -=== 2.3.7 MOD ===
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
247 247  
248 -Firmware version at least v2.1 supports changing mode.
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
249 249  
250 -For example, bytes[10]=90
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
202 +**Use below commands:**
253 253  
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
254 254  
255 -Downlink Command:
208 +For parameter description, please refer to AT command set
256 256  
257 -If payload = 0x0A00, workmode=0
210 +[[image:1657249793983-486.png]]
258 258  
259 -If** **payload =** **0x0A01, workmode=1
260 260  
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
261 261  
215 +[[image:1657249831934-534.png]]
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
266 266  
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
267 267  
268 -[[image:1654505570700-128.png]]
221 +This feature is supported since firmware version v1.0.1
269 269  
270 -The payload decoder function for TTN is here:
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
273 273  
228 +[[image:1657249864775-321.png]]
274 274  
275 -== 2.4 Uplink Interval ==
276 276  
277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
231 +[[image:1657249930215-289.png]]
278 278  
279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
280 280  
281 -1.
282 -11. ​Downlink Payload
283 283  
284 -By default, LSE50 prints the downlink payload to console port.
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
285 285  
286 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
287 -|TDC (Transmit Time Interval)|Any|01|4
288 -|RESET|Any|04|2
289 -|AT+CFM|Any|05|4
290 -|INTMOD|Any|06|4
291 -|MOD|Any|0A|2
237 +This feature is supported since firmware version v110
292 292  
293 -**Examples**
294 294  
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
295 295  
296 -**Set TDC**
248 +[[image:1657249978444-674.png]]
297 297  
298 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
299 299  
300 -Payload:    01 00 00 1E    TDC=30S
251 +[[image:1657249990869-686.png]]
301 301  
302 -Payload:    01 00 00 3C    TDC=60S
303 303  
254 +(((
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 +)))
304 304  
305 -**Reset**
306 306  
307 -If payload = 0x04FF, it will reset the LSE01
308 308  
260 +=== 2.2.7 Use TCP protocol to uplink data ===
309 309  
310 -**CFM**
262 +This feature is supported since firmware version v110
311 311  
312 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
313 313  
314 -1.
315 -11. ​Show Data in DataCake IoT Server
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
316 316  
317 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
268 +[[image:1657250217799-140.png]]
318 318  
319 319  
320 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
271 +[[image:1657250255956-604.png]]
321 321  
322 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
323 323  
324 324  
325 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
275 +=== 2.2.8 Change Update Interval ===
326 326  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
327 327  
328 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
329 329  
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
330 330  
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
331 331  
332 332  
333 333  
334 -Step 3: Create an account or log in Datacake.
291 +== 2.3  Uplink Payload ==
335 335  
336 -Step 4: Search the LSE01 and add DevEUI.
293 +In this mode, uplink payload includes in total 18 bytes
337 337  
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 60px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
338 338  
339 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
301 +(((
302 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
303 +)))
340 340  
341 341  
306 +[[image:image-20220708111918-4.png]]
342 342  
343 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
344 344  
309 +The payload is ASCII string, representative same HEX:
345 345  
346 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
311 +0x72403155615900640c7817075e0a8c02f900 where:
347 347  
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
348 348  
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
349 349  
350 -1.
351 -11. Frequency Plans
323 +== 2.4  Payload Explanation and Sensor Interface ==
352 352  
353 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
354 354  
355 -1.
356 -11.
357 -111. EU863-870 (EU868)
326 +=== 2.4.1  Device ID ===
358 358  
359 -Uplink:
328 +(((
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
330 +)))
360 360  
361 -868.1 - SF7BW125 to SF12BW125
332 +(((
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
334 +)))
362 362  
363 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
336 +(((
337 +**Example:**
338 +)))
364 364  
365 -868.5 - SF7BW125 to SF12BW125
340 +(((
341 +AT+DEUI=A84041F15612
342 +)))
366 366  
367 -867.1 - SF7BW125 to SF12BW125
344 +(((
345 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
346 +)))
368 368  
369 -867.3 - SF7BW125 to SF12BW125
370 370  
371 -867.5 - SF7BW125 to SF12BW125
372 372  
373 -867.7 - SF7BW125 to SF12BW125
350 +=== 2.4.2  Version Info ===
374 374  
375 -867.9 - SF7BW125 to SF12BW125
352 +(((
353 +Specify the software version: 0x64=100, means firmware version 1.00.
354 +)))
376 376  
377 -868.8 - FSK
356 +(((
357 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
358 +)))
378 378  
379 379  
380 -Downlink:
381 381  
382 -Uplink channels 1-9 (RX1)
362 +=== 2.4.3  Battery Info ===
383 383  
384 -869.525 - SF9BW125 (RX2 downlink only)
364 +(((
365 +Check the battery voltage for LSE01.
366 +)))
385 385  
368 +(((
369 +Ex1: 0x0B45 = 2885mV
370 +)))
386 386  
387 -1.
388 -11.
389 -111. US902-928(US915)
372 +(((
373 +Ex2: 0x0B49 = 2889mV
374 +)))
390 390  
391 -Used in USA, Canada and South America. Default use CHE=2
392 392  
393 -Uplink:
394 394  
395 -903.9 - SF7BW125 to SF10BW125
378 +=== 2.4.4  Signal Strength ===
396 396  
397 -904.1 - SF7BW125 to SF10BW125
380 +(((
381 +NB-IoT Network signal Strength.
382 +)))
398 398  
399 -904.3 - SF7BW125 to SF10BW125
384 +(((
385 +**Ex1: 0x1d = 29**
386 +)))
400 400  
401 -904.5 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:blue" %)**0**(%%)  -113dBm or less
390 +)))
402 402  
403 -904.7 - SF7BW125 to SF10BW125
392 +(((
393 +(% style="color:blue" %)**1**(%%)  -111dBm
394 +)))
404 404  
405 -904.9 - SF7BW125 to SF10BW125
396 +(((
397 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
398 +)))
406 406  
407 -905.1 - SF7BW125 to SF10BW125
400 +(((
401 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
402 +)))
408 408  
409 -905.3 - SF7BW125 to SF10BW125
404 +(((
405 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 +)))
410 410  
411 411  
412 -Downlink:
413 413  
414 -923.3 - SF7BW500 to SF12BW500
410 +=== 2.4.5  Soil Moisture ===
415 415  
416 -923.9 - SF7BW500 to SF12BW500
412 +(((
413 +(((
414 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 +)))
416 +)))
417 417  
418 -924.5 - SF7BW500 to SF12BW500
418 +(((
419 +(((
420 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 +)))
422 +)))
419 419  
420 -925.1 - SF7BW500 to SF12BW500
424 +(((
425 +
426 +)))
421 421  
422 -925.7 - SF7BW500 to SF12BW500
428 +(((
429 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 +)))
423 423  
424 -926.3 - SF7BW500 to SF12BW500
425 425  
426 -926.9 - SF7BW500 to SF12BW500
427 427  
428 -927.5 - SF7BW500 to SF12BW500
434 +=== 2.4.6  Soil Temperature ===
429 429  
430 -923.3 - SF12BW500(RX2 downlink only)
436 +(((
437 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 +)))
431 431  
440 +(((
441 +**Example**:
442 +)))
432 432  
433 -1.
434 -11.
435 -111. CN470-510 (CN470)
444 +(((
445 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 +)))
436 436  
437 -Used in China, Default use CHE=1
448 +(((
449 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 +)))
438 438  
439 -Uplink:
440 440  
441 -486.3 - SF7BW125 to SF12BW125
442 442  
443 -486.5 - SF7BW125 to SF12BW125
454 +=== 2.4. Soil Conductivity (EC) ===
444 444  
445 -486.7 - SF7BW125 to SF12BW125
456 +(((
457 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 +)))
446 446  
447 -486.9 - SF7BW125 to SF12BW125
460 +(((
461 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 +)))
448 448  
449 -487.1 - SF7BW125 to SF12BW125
464 +(((
465 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 +)))
450 450  
451 -487.3 - SF7BW125 to SF12BW125
468 +(((
469 +
470 +)))
452 452  
453 -487.5 - SF7BW125 to SF12BW125
472 +(((
473 +
474 +)))
454 454  
455 -487.7 - SF7BW125 to SF12BW125
476 +=== 2.4. Digital Interrupt ===
456 456  
478 +(((
479 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 +)))
457 457  
458 -Downlink:
482 +(((
483 +The command is:
484 +)))
459 459  
460 -506.7 - SF7BW125 to SF12BW125
486 +(((
487 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 +)))
461 461  
462 -506.9 - SF7BW125 to SF12BW125
463 463  
464 -507.1 - SF7BW125 to SF12BW125
491 +(((
492 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 +)))
465 465  
466 -507.3 - SF7BW125 to SF12BW125
467 467  
468 -507.5 - SF7BW125 to SF12BW125
496 +(((
497 +Example:
498 +)))
469 469  
470 -507.7 - SF7BW125 to SF12BW125
500 +(((
501 +0x(00): Normal uplink packet.
502 +)))
471 471  
472 -507.9 - SF7BW125 to SF12BW125
504 +(((
505 +0x(01): Interrupt Uplink Packet.
506 +)))
473 473  
474 -508.1 - SF7BW125 to SF12BW125
475 475  
476 -505.3 - SF12BW125 (RX2 downlink only)
477 477  
510 +=== 2.4.9  ​+5V Output ===
478 478  
479 -1.
480 -11.
481 -111. AU915-928(AU915)
512 +(((
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 +)))
482 482  
483 -Default use CHE=2
484 484  
485 -Uplink:
517 +(((
518 +The 5V output time can be controlled by AT Command.
519 +)))
486 486  
487 -916.8 - SF7BW125 to SF12BW125
521 +(((
522 +(% style="color:blue" %)**AT+5VT=1000**
523 +)))
488 488  
489 -917.0 - SF7BW125 to SF12BW125
525 +(((
526 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 +)))
490 490  
491 -917.2 - SF7BW125 to SF12BW125
492 492  
493 -917.4 - SF7BW125 to SF12BW125
494 494  
495 -917.6 - SF7BW125 to SF12BW125
531 +== 2.5  Downlink Payload ==
496 496  
497 -917.8 - SF7BW125 to SF12BW125
533 +By default, NSE01 prints the downlink payload to console port.
498 498  
499 -918.0 - SF7BW125 to SF12BW125
535 +[[image:image-20220708133731-5.png]]
500 500  
501 -918.2 - SF7BW125 to SF12BW125
502 502  
538 +(((
539 +(% style="color:blue" %)**Examples:**
540 +)))
503 503  
504 -Downlink:
542 +(((
543 +
544 +)))
505 505  
506 -923.3 - SF7BW500 to SF12BW500
546 +* (((
547 +(% style="color:blue" %)**Set TDC**
548 +)))
507 507  
508 -923.9 - SF7BW500 to SF12BW500
550 +(((
551 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 +)))
509 509  
510 -924.5 - SF7BW500 to SF12BW500
554 +(((
555 +Payload:    01 00 00 1E    TDC=30S
556 +)))
511 511  
512 -925.1 - SF7BW500 to SF12BW500
558 +(((
559 +Payload:    01 00 00 3C    TDC=60S
560 +)))
513 513  
514 -925.7 - SF7BW500 to SF12BW500
562 +(((
563 +
564 +)))
515 515  
516 -926.3 - SF7BW500 to SF12BW500
566 +* (((
567 +(% style="color:blue" %)**Reset**
568 +)))
517 517  
518 -926.9 - SF7BW500 to SF12BW500
570 +(((
571 +If payload = 0x04FF, it will reset the NSE01
572 +)))
519 519  
520 -927.5 - SF7BW500 to SF12BW500
521 521  
522 -923.3 - SF12BW500(RX2 downlink only)
575 +* (% style="color:blue" %)**INTMOD**
523 523  
524 -1.
525 -11.
526 -111. AS920-923 & AS923-925 (AS923)
577 +(((
578 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 +)))
527 527  
528 -**Default Uplink channel:**
529 529  
530 -923.2 - SF7BW125 to SF10BW125
531 531  
532 -923.4 - SF7BW125 to SF10BW125
583 +== 2. ​LED Indicator ==
533 533  
585 +(((
586 +The NSE01 has an internal LED which is to show the status of different state.
534 534  
535 -**Additional Uplink Channel**:
536 536  
537 -(OTAA mode, channel added by JoinAccept message)
589 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 +* Then the LED will be on for 1 second means device is boot normally.
591 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 +* For each uplink probe, LED will be on for 500ms.
593 +)))
538 538  
539 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
540 540  
541 -922.2 - SF7BW125 to SF10BW125
542 542  
543 -922.4 - SF7BW125 to SF10BW125
544 544  
545 -922.6 - SF7BW125 to SF10BW125
598 +== 2.7  Installation in Soil ==
546 546  
547 -922.8 - SF7BW125 to SF10BW125
600 +__**Measurement the soil surface**__
548 548  
549 -923.0 - SF7BW125 to SF10BW125
602 +(((
603 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 +)))
550 550  
551 -922.0 - SF7BW125 to SF10BW125
606 +[[image:1657259653666-883.png]] ​
552 552  
553 553  
554 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
609 +(((
610 +
555 555  
556 -923.6 - SF7BW125 to SF10BW125
557 -
558 -923.8 - SF7BW125 to SF10BW125
559 -
560 -924.0 - SF7BW125 to SF10BW125
561 -
562 -924.2 - SF7BW125 to SF10BW125
563 -
564 -924.4 - SF7BW125 to SF10BW125
565 -
566 -924.6 - SF7BW125 to SF10BW125
567 -
568 -
569 -
570 -**Downlink:**
571 -
572 -Uplink channels 1-8 (RX1)
573 -
574 -923.2 - SF10BW125 (RX2)
575 -
576 -
577 -1.
578 -11.
579 -111. KR920-923 (KR920)
580 -
581 -Default channel:
582 -
583 -922.1 - SF7BW125 to SF12BW125
584 -
585 -922.3 - SF7BW125 to SF12BW125
586 -
587 -922.5 - SF7BW125 to SF12BW125
588 -
589 -
590 -Uplink: (OTAA mode, channel added by JoinAccept message)
591 -
592 -922.1 - SF7BW125 to SF12BW125
593 -
594 -922.3 - SF7BW125 to SF12BW125
595 -
596 -922.5 - SF7BW125 to SF12BW125
597 -
598 -922.7 - SF7BW125 to SF12BW125
599 -
600 -922.9 - SF7BW125 to SF12BW125
601 -
602 -923.1 - SF7BW125 to SF12BW125
603 -
604 -923.3 - SF7BW125 to SF12BW125
605 -
606 -
607 -Downlink:
608 -
609 -Uplink channels 1-7(RX1)
610 -
611 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
612 -
613 -
614 -1.
615 -11.
616 -111. IN865-867 (IN865)
617 -
618 -Uplink:
619 -
620 -865.0625 - SF7BW125 to SF12BW125
621 -
622 -865.4025 - SF7BW125 to SF12BW125
623 -
624 -865.9850 - SF7BW125 to SF12BW125
625 -
626 -
627 -Downlink:
628 -
629 -Uplink channels 1-3 (RX1)
630 -
631 -866.550 - SF10BW125 (RX2)
632 -
633 -
634 -1.
635 -11. LED Indicator
636 -
637 -The LSE01 has an internal LED which is to show the status of different state.
638 -
639 -
640 -* Blink once when device power on.
641 -* Solid ON for 5 seconds once device successful Join the network.
642 -* Blink once when device transmit a packet.
643 -
644 -1.
645 -11. Installation in Soil
646 -
647 -**Measurement the soil surface**
648 -
649 -
650 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
651 -
652 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
653 -
654 -
655 -
656 -
657 -
658 -
659 -
660 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
661 -
662 -
663 -
612 +(((
664 664  Dig a hole with diameter > 20CM.
614 +)))
665 665  
616 +(((
666 666  Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +)))
619 +)))
667 667  
621 +[[image:1654506665940-119.png]]
668 668  
623 +(((
624 +
625 +)))
669 669  
670 670  
671 -1.
672 -11. ​Firmware Change Log
628 +== 2.8  ​Firmware Change Log ==
673 673  
674 -**Firmware download link:**
675 675  
676 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
631 +Download URL & Firmware Change log
677 677  
633 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
678 678  
679 -**Firmware Upgrade Method:**
680 680  
681 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
636 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
682 682  
683 683  
684 -**V1.0.**
685 685  
686 -Release
640 +== 2.9  ​Battery Analysis ==
687 687  
642 +=== 2.9.1  ​Battery Type ===
688 688  
689 689  
690 -1.
691 -11. ​Battery Analysis
692 -111. ​Battery Type
645 +(((
646 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
647 +)))
693 693  
694 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
695 695  
650 +(((
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
652 +)))
696 696  
697 -The battery is designed to last for more than 5 years for the LSN50.
698 698  
699 -
655 +(((
700 700  The battery related documents as below:
657 +)))
701 701  
702 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
703 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
704 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
659 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
705 705  
706 -|(((
707 -JST-XH-2P connector
663 +(((
664 +[[image:image-20220708140453-6.png]]
708 708  )))
709 709  
710 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
711 711  
712 712  
669 +=== 2.9.2  Power consumption Analyze ===
713 713  
714 -1.
715 -11.
716 -111. ​Battery Note
671 +(((
672 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
673 +)))
717 717  
718 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
719 719  
676 +(((
677 +Instruction to use as below:
678 +)))
720 720  
721 -1.
722 -11.
723 -111. ​Replace the battery
680 +(((
681 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
682 +)))
724 724  
725 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
726 726  
685 +(((
686 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
687 +)))
727 727  
728 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
689 +* (((
690 +Product Model
691 +)))
692 +* (((
693 +Uplink Interval
694 +)))
695 +* (((
696 +Working Mode
697 +)))
729 729  
699 +(((
700 +And the Life expectation in difference case will be shown on the right.
701 +)))
730 730  
731 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
703 +[[image:image-20220708141352-7.jpeg]]
732 732  
733 733  
734 734  
707 +=== 2.9.3  ​Battery Note ===
735 735  
709 +(((
710 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
711 +)))
736 736  
737 737  
738 -= 3. ​Using the AT Commands =
739 739  
740 -== 3.1 Access AT Commands ==
715 +=== 2.9.4  Replace the battery ===
741 741  
717 +(((
718 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
719 +)))
742 742  
743 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
744 744  
745 -[[image:1654501986557-872.png]]
746 746  
723 += 3. ​ Access NB-IoT Module =
747 747  
748 -Or if you have below board, use below connection:
725 +(((
726 +Users can directly access the AT command set of the NB-IoT module.
727 +)))
749 749  
729 +(((
730 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
731 +)))
750 750  
751 -[[image:1654502005655-729.png]]
733 +[[image:1657261278785-153.png]]
752 752  
753 753  
754 754  
755 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
737 += 4.  Using the AT Commands =
756 756  
739 +== 4.1  Access AT Commands ==
757 757  
758 - [[image:1654502050864-459.png]]
741 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
759 759  
760 760  
761 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
744 +AT+<CMD>?  : Help on <CMD>
762 762  
746 +AT+<CMD>         : Run <CMD>
763 763  
764 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
748 +AT+<CMD>=<value> : Set the value
765 765  
766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
750 +AT+<CMD>=?  : Get the value
767 767  
768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
769 769  
770 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
771 -
772 -
773 773  (% style="color:#037691" %)**General Commands**(%%)      
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 +AT  : Attention       
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 +AT?  : Short Help     
778 778  
779 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 +ATZ  : MCU Reset    
780 780  
781 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 +AT+TDC  : Application Data Transmission Interval
782 782  
763 +AT+CFG  : Print all configurations
783 783  
784 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 +AT+CFGMOD           : Working mode selection
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 +AT+INTMOD            : Set the trigger interrupt mode
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 +AT+5VT  : Set extend the time of 5V power  
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 +AT+PRO  : Choose agreement
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 +AT+WEIGRE  : Get weight or set weight to 0
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 +AT+WEIGAP  : Get or Set the GapValue of weight
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
777 +AT+RXDL  : Extend the sending and receiving time
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 +AT+CNTFAC  : Get or set counting parameters
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 +AT+SERVADDR  : Server Address
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 +(% style="color:#037691" %)**COAP Management**      
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 +AT+URI            : Resource parameters
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 +(% style="color:#037691" %)**UDP Management**
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 +AT+CFM          : Upload confirmation mode (only valid for UDP)
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 +(% style="color:#037691" %)**MQTT Management**
817 817  
796 +AT+CLIENT               : Get or Set MQTT client
818 818  
819 -(% style="color:#037691" %)**LoRa Network Management**
798 +AT+UNAME  : Get or Set MQTT Username
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 +AT+PWD                  : Get or Set MQTT password
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 +AT+PUBTOPI : Get or Set MQTT publish topic
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 +(% style="color:#037691" %)**Information**          
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 +AT+FDR  : Factory Data Reset
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 +AT+PWOR : Serial Access Password
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 += ​5.  FAQ =
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 +== 5.1 How to Upgrade Firmware ==
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
820 +(((
821 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
822 +)))
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
824 +(((
825 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
826 +)))
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
828 +(((
829 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
830 +)))
850 850  
851 851  
852 -(% style="color:#037691" %)**Information** 
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
834 +== 5.2  Can I calibrate NSE01 to different soil types? ==
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
836 +(((
837 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
838 +)))
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
841 += 6.  Trouble Shooting =
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
843 +== 6.1  ​Connection problem when uploading firmware ==
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
865 865  
866 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
867 -
868 -
869 -= ​4. FAQ =
870 -
871 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
872 -
873 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
874 -When downloading the images, choose the required image file for download. ​
875 -
876 -
877 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
878 -
879 -
880 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
881 -
882 -
883 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
884 -
885 -[[image:image-20220606154726-3.png]]
886 -
887 -When you use the TTN network, the US915 frequency bands use are:
888 -
889 -* 903.9 - SF7BW125 to SF10BW125
890 -* 904.1 - SF7BW125 to SF10BW125
891 -* 904.3 - SF7BW125 to SF10BW125
892 -* 904.5 - SF7BW125 to SF10BW125
893 -* 904.7 - SF7BW125 to SF10BW125
894 -* 904.9 - SF7BW125 to SF10BW125
895 -* 905.1 - SF7BW125 to SF10BW125
896 -* 905.3 - SF7BW125 to SF10BW125
897 -* 904.6 - SF8BW500
898 -
899 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
900 -
901 -(% class="box infomessage" %)
902 902  (((
903 -**AT+CHE=2**
847 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
904 904  )))
905 905  
906 -(% class="box infomessage" %)
850 +(% class="wikigeneratedid" %)
907 907  (((
908 -**ATZ**
852 +
909 909  )))
910 910  
911 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
912 912  
856 +== 6.2  AT Command input doesn't work ==
913 913  
914 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
858 +(((
859 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
915 915  
916 -[[image:image-20220606154825-4.png]]
861 +
862 +)))
917 917  
918 918  
865 += 7. ​ Order Info =
919 919  
920 -= 5. Trouble Shooting =
921 921  
922 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
868 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
923 923  
924 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
925 925  
871 +(% class="wikigeneratedid" %)
872 +(((
873 +
874 +)))
926 926  
927 -== 5.2 AT Command input doesn’t work ==
876 += 8.  Packing Info =
928 928  
929 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
878 +(((
879 +
930 930  
881 +(% style="color:#037691" %)**Package Includes**:
931 931  
932 -== 5.3 Device rejoin in at the second uplink packet ==
883 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 +* External antenna x 1
885 +)))
933 933  
934 -(% style="color:#4f81bd" %)**Issue describe as below:**
887 +(((
888 +
935 935  
936 -[[image:1654500909990-784.png]]
890 +(% style="color:#037691" %)**Dimension and weight**:
937 937  
938 -
939 -(% style="color:#4f81bd" %)**Cause for this issue:**
940 -
941 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
942 -
943 -
944 -(% style="color:#4f81bd" %)**Solution: **
945 -
946 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
947 -
948 -[[image:1654500929571-736.png]]
949 -
950 -
951 -= 6. ​Order Info =
952 -
953 -
954 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
955 -
956 -
957 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
958 -
959 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
960 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
961 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
962 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
963 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
964 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
965 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
966 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
967 -
968 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
969 -
970 -* (% style="color:red" %)**4**(%%): 4000mAh battery
971 -* (% style="color:red" %)**8**(%%): 8500mAh battery
972 -
973 -= 7. Packing Info =
974 -
975 -(((
976 -**Package Includes**:
892 +* Size: 195 x 125 x 55 mm
893 +* Weight:   420g
977 977  )))
978 978  
979 -* (((
980 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
981 -)))
982 -
983 983  (((
984 984  
985 -)))
986 986  
987 -(((
988 -**Dimension and weight**:
989 -)))
990 990  
991 -* (((
992 -Device Size: cm
900 +
993 993  )))
994 -* (((
995 -Device Weight: g
996 -)))
997 -* (((
998 -Package Size / pcs : cm
999 -)))
1000 -* (((
1001 -Weight / pcs : g
1002 -)))
1003 1003  
1004 -= 8. Support =
903 += 9.  Support =
1005 1005  
1006 1006  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1007 1007  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1008 -
1009 -
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content