Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="848" width="848"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 ... ... @@ -8,1002 +8,910 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 13 +**Table of Contents:** 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 40 40 25 +((( 26 + 41 41 28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 42 42 43 - ==1.2Features==30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 56 56 57 - ==1.3Specification==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 58 58 59 - MeasureVolume:Base onthe centrapinof theprobe,acylinderwith 7cm diameter and10cmheight.36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 83 ((( 84 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 85 85 ))) 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 - 91 - 92 - 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 - 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 - 97 - 98 -[[image:1654503992078-669.png]] 99 - 100 - 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 - 103 - 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 - 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:165450 4881641-514.png]]45 +[[image:1654503236291-817.png]] 165 165 166 166 48 +[[image:1657245163077-232.png]] 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 -|((( 173 -**Size** 52 +== 1.2 Features == 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 179 179 180 -(Reserve, Ignore now) 181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 -MOD & Digital Interrupt 183 183 184 -(Optional) 185 -))) 186 186 187 - [[image:1654504907647-967.png]]69 +== 1.3 Specification == 188 188 189 189 72 +(% style="color:#037691" %)**Common DC Characteristics:** 190 190 191 -=== 2.3.3 Battery Info === 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 192 192 193 - Checkthe batteryvoltageforLSE01.77 +(% style="color:#037691" %)**NB-IoT Spec:** 194 194 195 -Ex1: 0x0B45 = 2885mV 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 196 196 197 - Ex2:0x0B49= 2889mV86 +Probe(% style="color:#037691" %)** Specification:** 198 198 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 199 199 90 +[[image:image-20220708101224-1.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,if the data you get from the register is __0x05 0xDC__, the moisture content in thesoilis94 +== 1.4 Applications == 206 206 96 +* Smart Agriculture 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 209 209 101 +== 1.5 Pin Definitions == 210 210 211 211 212 - === 2.3.5 Soil Temperature===104 +[[image:1657246476176-652.png]] 213 213 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 -**Example**: 217 217 218 - Ifpayloadis 0105H:((0x0105& 0x8000)>>15 === 0),temp=0105(H)/100=2.61 °C108 += 2. Use NSE01 to communicate with IoT Server = 219 219 220 - If payload is FF7EH: ((FF7E & 0x8000)>>15===1),temp= (FF7E(H)-FFFF(H))/100=-1.29°C110 +== 2.1 How it works == 221 221 222 222 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 234 ((( 235 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.119 +The diagram below shows the working flow in default firmware of NSE01: 236 236 ))) 237 237 238 -((( 239 - 240 -))) 122 +[[image:image-20220708101605-2.png]] 241 241 242 242 ((( 243 243 244 244 ))) 245 245 246 -=== 2.3.7 MOD === 247 247 248 -Firmware version at least v2.1 supports changing mode. 249 249 250 - Forxample,bytes[10]=90130 +== 2.2 Configure the NSE01 == 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 133 +=== 2.2.1 Test Requirement === 254 254 255 -Downlink Command: 256 256 257 -If payload = 0x0A00, workmode=0 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 138 +))) 258 258 259 -If** **payload =** **0x0A01, workmode=1 140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 146 +))) 261 261 262 262 263 - ===2.3.8 Decodepayload inThe Things Network ===149 +[[image:1657249419225-449.png]] 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 - [[image:1654505570700-128.png]]153 +=== 2.2.2 Insert SIM card === 269 269 270 -The payload decoder function for TTN is here: 155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 273 273 274 274 275 - ==2.4Uplink Interval ==164 +[[image:1657249468462-536.png]] 276 276 277 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 278 278 279 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 280 280 281 -1. 282 -11. Downlink Payload 168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 283 283 284 -By default, LSE50 prints the downlink payload to console port. 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 285 285 286 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 287 -|TDC (Transmit Time Interval)|Any|01|4 288 -|RESET|Any|04|2 289 -|AT+CFM|Any|05|4 290 -|INTMOD|Any|06|4 291 -|MOD|Any|0A|2 292 292 293 -** Examples**177 +**Connection:** 294 294 179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 295 295 296 - **Set TDC**181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 297 297 298 - Ifthepayload=0100003C, it means set the END Node’s TDC to0x00003C=60(S),whiletypecodeis 01.183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 299 299 300 -Payload: 01 00 00 1E TDC=30S 301 301 302 -P ayload:0100 00 3C TDC=60S186 +In the PC, use below serial tool settings: 303 303 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 304 304 305 -**Reset** 194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 306 306 307 - If payload =0x04FF, it will reset the LSE01198 +[[image:image-20220708110657-3.png]] 308 308 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 309 309 310 -**CFM** 311 311 312 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 313 313 314 -1. 315 -11. Show Data in DataCake IoT Server 206 +=== 2.2.4 Use CoAP protocol to uplink data === 316 316 317 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendlyinterfacetoshowthe sensordata, oncewehavedatainTTN,wecanuse [[DATACAKE>>url:https://datacake.co/]] to connecttoTTN and seethedatainDATACAKE.Belowrehesteps:208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 318 318 319 319 320 -** Step 1**: Besurethat yourdevice is programmedandproperly connected to the network at thistime.211 +**Use below commands:** 321 321 322 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 323 323 217 +For parameter description, please refer to AT command set 324 324 325 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]219 +[[image:1657249793983-486.png]] 326 326 327 327 328 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 329 329 224 +[[image:1657249831934-534.png]] 330 330 331 331 332 332 228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 333 333 334 - Step3: CreateanaccountorloginDatacake.230 +This feature is supported since firmware version v1.0.1 335 335 336 -Step 4: Search the LSE01 and add DevEUI. 337 337 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 338 338 339 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]237 +[[image:1657249864775-321.png]] 340 340 341 341 240 +[[image:1657249930215-289.png]] 342 342 343 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 344 344 345 345 346 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]244 +=== 2.2.6 Use MQTT protocol to uplink data === 347 347 246 +This feature is supported since firmware version v110 348 348 349 349 350 -1. 351 -11. Frequency Plans 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 352 352 353 - The LSE01 uses OTAAmodeand below frequency plans by default.If user want to use it with different frequencyplan, please refer the AT command sets.257 +[[image:1657249978444-674.png]] 354 354 355 -1. 356 -11. 357 -111. EU863-870 (EU868) 358 358 359 - Uplink:260 +[[image:1657249990869-686.png]] 360 360 361 -868.1 - SF7BW125 to SF12BW125 362 362 363 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 364 364 365 -868.5 - SF7BW125 to SF12BW125 366 366 367 -867.1 - SF7BW125 to SF12BW125 368 368 369 - 867.3-SF7BW125toSF12BW125269 +=== 2.2.7 Use TCP protocol to uplink data === 370 370 371 - 867.5-SF7BW125toSF12BW125271 +This feature is supported since firmware version v110 372 372 373 -867.7 - SF7BW125 to SF12BW125 374 374 375 -867.9 - SF7BW125 to SF12BW125 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 376 376 377 - 868.8-FSK277 +[[image:1657250217799-140.png]] 378 378 379 379 380 - Downlink:280 +[[image:1657250255956-604.png]] 381 381 382 -Uplink channels 1-9 (RX1) 383 383 384 -869.525 - SF9BW125 (RX2 downlink only) 385 385 284 +=== 2.2.8 Change Update Interval === 386 386 387 -1. 388 -11. 389 -111. US902-928(US915) 286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 390 390 391 - UsedinUSA,Canadaand South America. Defaultuse CHE=2288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 392 392 393 -Uplink: 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 394 394 395 -903.9 - SF7BW125 to SF10BW125 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 396 396 397 -904.1 - SF7BW125 to SF10BW125 398 398 399 -904.3 - SF7BW125 to SF10BW125 400 400 401 - 904.5- SF7BW125toSF10BW125300 +== 2.3 Uplink Payload == 402 402 403 - 904.7-SF7BW125toSF10BW125302 +In this mode, uplink payload includes in total 18 bytes 404 404 405 -904.9 - SF7BW125 to SF10BW125 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 406 406 407 -905.1 - SF7BW125 to SF10BW125 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 408 408 409 -905.3 - SF7BW125 to SF10BW125 410 410 315 +[[image:image-20220708111918-4.png]] 411 411 412 -Downlink: 413 413 414 - 923.3-SF7BW500toSF12BW500318 +The payload is ASCII string, representative same HEX: 415 415 416 - 923.9- SF7BW500to SF12BW500320 +0x72403155615900640c7817075e0a8c02f900 where: 417 417 418 -924.5 - SF7BW500 to SF12BW500 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 419 419 420 -925.1 - SF7BW500 to SF12BW500 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 421 421 422 -925.7 - SF7BW500 to SF12BW500 423 423 424 -926.3 - SF7BW500 to SF12BW500 425 425 426 - 926.9-SF7BW500to SF12BW500334 +== 2.4 Payload Explanation and Sensor Interface == 427 427 428 -927.5 - SF7BW500 to SF12BW500 429 429 430 - 923.3 - SF12BW500(RX2 downlinkonly)337 +=== 2.4.1 Device ID === 431 431 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 432 432 433 - 1.434 - 11.435 - 111. CN470-510 (CN470)343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 436 436 437 -Used in China, Default use CHE=1 347 +((( 348 +**Example:** 349 +))) 438 438 439 -Uplink: 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 440 440 441 -486.3 - SF7BW125 to SF12BW125 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 442 442 443 -486.5 - SF7BW125 to SF12BW125 444 444 445 -486.7 - SF7BW125 to SF12BW125 446 446 447 -4 86.9 - SF7BW125toSF12BW125361 +=== 2.4.2 Version Info === 448 448 449 -487.1 - SF7BW125 to SF12BW125 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 450 450 451 -487.3 - SF7BW125 to SF12BW125 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 452 452 453 -487.5 - SF7BW125 to SF12BW125 454 454 455 -487.7 - SF7BW125 to SF12BW125 456 456 373 +=== 2.4.3 Battery Info === 457 457 458 -Downlink: 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 459 459 460 -506.7 - SF7BW125 to SF12BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 461 461 462 -506.9 - SF7BW125 to SF12BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 463 463 464 -507.1 - SF7BW125 to SF12BW125 465 465 466 -507.3 - SF7BW125 to SF12BW125 467 467 468 - 507.5-SF7BW125toSF12BW125389 +=== 2.4.4 Signal Strength === 469 469 470 -507.7 - SF7BW125 to SF12BW125 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 471 471 472 -507.9 - SF7BW125 to SF12BW125 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 473 473 474 -508.1 - SF7BW125 to SF12BW125 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 475 475 476 -505.3 - SF12BW125 (RX2 downlink only) 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 477 477 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 478 478 479 - 1.480 -11 .481 - 111. AU915-928(AU915)411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 482 482 483 -Default use CHE=2 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 484 484 485 -Uplink: 486 486 487 -916.8 - SF7BW125 to SF12BW125 488 488 489 - 917.0- SF7BW125toSF12BW125421 +=== 2.4.5 Soil Moisture === 490 490 491 -917.2 - SF7BW125 to SF12BW125 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 492 492 493 -917.4 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 494 494 495 -917.6 - SF7BW125 to SF12BW125 435 +((( 436 + 437 +))) 496 496 497 -917.8 - SF7BW125 to SF12BW125 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 498 498 499 -918.0 - SF7BW125 to SF12BW125 500 500 501 -918.2 - SF7BW125 to SF12BW125 502 502 445 +=== 2.4.6 Soil Temperature === 503 503 504 -Downlink: 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 505 505 506 -923.3 - SF7BW500 to SF12BW500 451 +((( 452 +**Example**: 453 +))) 507 507 508 -923.9 - SF7BW500 to SF12BW500 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 509 509 510 -924.5 - SF7BW500 to SF12BW500 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 511 511 512 -925.1 - SF7BW500 to SF12BW500 513 513 514 -925.7 - SF7BW500 to SF12BW500 515 515 516 - 926.3-SF7BW500toSF12BW500465 +=== 2.4.7 Soil Conductivity (EC) === 517 517 518 -926.9 - SF7BW500 to SF12BW500 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 519 519 520 -927.5 - SF7BW500 to SF12BW500 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 521 521 522 -923.3 - SF12BW500(RX2 downlink only) 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 523 523 524 - 1.525 - 11.526 - 111. AS920-923 & AS923-925 (AS923)479 +((( 480 + 481 +))) 527 527 528 -**Default Uplink channel:** 483 +((( 484 + 485 +))) 529 529 530 - 923.2-SF7BW125toSF10BW125487 +=== 2.4.8 Digital Interrupt === 531 531 532 -923.4 - SF7BW125 to SF10BW125 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 533 533 493 +((( 494 +The command is: 495 +))) 534 534 535 -**Additional Uplink Channel**: 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 536 536 537 -(OTAA mode, channel added by JoinAccept message) 538 538 539 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 540 540 541 -922.2 - SF7BW125 to SF10BW125 542 542 543 -922.4 - SF7BW125 to SF10BW125 507 +((( 508 +Example: 509 +))) 544 544 545 -922.6 - SF7BW125 to SF10BW125 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 546 546 547 -922.8 - SF7BW125 to SF10BW125 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 548 548 549 -923.0 - SF7BW125 to SF10BW125 550 550 551 -922.0 - SF7BW125 to SF10BW125 552 552 521 +=== 2.4.9 +5V Output === 553 553 554 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 555 555 556 -923.6 - SF7BW125 to SF10BW125 557 557 558 -923.8 - SF7BW125 to SF10BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 559 559 560 -924.0 - SF7BW125 to SF10BW125 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 561 561 562 -924.2 - SF7BW125 to SF10BW125 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 563 563 564 -924.4 - SF7BW125 to SF10BW125 565 565 566 -924.6 - SF7BW125 to SF10BW125 567 567 542 +== 2.5 Downlink Payload == 568 568 544 +By default, NSE01 prints the downlink payload to console port. 569 569 570 - **Downlink:**546 +[[image:image-20220708133731-5.png]] 571 571 572 -Uplink channels 1-8 (RX1) 573 573 574 -923.2 - SF10BW125 (RX2) 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 575 575 553 +((( 554 + 555 +))) 576 576 577 - 1.578 - 11.579 - 111. KR920-923 (KR920)557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 580 580 581 -Default channel: 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 582 582 583 -922.1 - SF7BW125 to SF12BW125 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 584 584 585 -922.3 - SF7BW125 to SF12BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 586 586 587 -922.5 - SF7BW125 to SF12BW125 573 +((( 574 + 575 +))) 588 588 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 589 589 590 -Uplink: (OTAA mode, channel added by JoinAccept message) 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 591 591 592 -922.1 - SF7BW125 to SF12BW125 593 593 594 - 922.3-SF7BW125toSF12BW125586 +* (% style="color:blue" %)**INTMOD** 595 595 596 -922.5 - SF7BW125 to SF12BW125 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 597 597 598 -922.7 - SF7BW125 to SF12BW125 599 599 600 -922.9 - SF7BW125 to SF12BW125 601 601 602 - 923.1-SF7BW125toSF12BW125594 +== 2.6 LED Indicator == 603 603 604 -923.3 - SF7BW125 to SF12BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 605 605 606 606 607 -Downlink: 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 608 608 609 -Uplink channels 1-7(RX1) 610 610 611 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 612 612 613 613 614 -1. 615 -11. 616 -111. IN865-867 (IN865) 609 +== 2.7 Installation in Soil == 617 617 618 - Uplink:611 +__**Measurement the soil surface**__ 619 619 620 -865.0625 - SF7BW125 to SF12BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 621 621 622 - 865.4025 - SF7BW125to SF12BW125617 +[[image:1657259653666-883.png]] 623 623 624 -865.9850 - SF7BW125 to SF12BW125 625 625 620 +((( 621 + 626 626 627 -Downlink: 628 - 629 -Uplink channels 1-3 (RX1) 630 - 631 -866.550 - SF10BW125 (RX2) 632 - 633 - 634 -1. 635 -11. LED Indicator 636 - 637 -The LSE01 has an internal LED which is to show the status of different state. 638 - 639 - 640 -* Blink once when device power on. 641 -* Solid ON for 5 seconds once device successful Join the network. 642 -* Blink once when device transmit a packet. 643 - 644 -1. 645 -11. Installation in Soil 646 - 647 -**Measurement the soil surface** 648 - 649 - 650 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 651 - 652 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 653 - 654 - 655 - 656 - 657 - 658 - 659 - 660 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 661 - 662 - 663 - 623 +((( 664 664 Dig a hole with diameter > 20CM. 625 +))) 665 665 627 +((( 666 666 Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 667 667 632 +[[image:1654506665940-119.png]] 668 668 634 +((( 635 + 636 +))) 669 669 670 670 671 -1. 672 -11. Firmware Change Log 639 +== 2.8 Firmware Change Log == 673 673 674 -**Firmware download link:** 675 675 676 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]642 +Download URL & Firmware Change log 677 677 644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 678 678 679 -**Firmware Upgrade Method:** 680 680 681 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 682 682 683 683 684 -**V1.0.** 685 685 686 - Release651 +== 2.9 Battery Analysis == 687 687 653 +=== 2.9.1 Battery Type === 688 688 689 689 690 - 1.691 -1 1.Battery Analysis692 - 111. Battery Type656 +((( 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 658 +))) 693 693 694 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 695 695 661 +((( 662 +The battery is designed to last for several years depends on the actually use environment and update interval. 663 +))) 696 696 697 -The battery is designed to last for more than 5 years for the LSN50. 698 698 699 - 666 +((( 700 700 The battery related documents as below: 668 +))) 701 701 702 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],703 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]704 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 705 705 706 - |(((707 - JST-XH-2P connector674 +((( 675 +[[image:image-20220708140453-6.png]] 708 708 ))) 709 709 710 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 711 711 712 712 680 +=== 2.9.2 Power consumption Analyze === 713 713 714 - 1.715 - 11.716 - 111. Battery Note682 +((( 683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 +))) 717 717 718 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 719 719 687 +((( 688 +Instruction to use as below: 689 +))) 720 720 721 - 1.722 -1 1.723 - 111. Replace the battery691 +((( 692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 693 +))) 724 724 725 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 726 726 696 +((( 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 698 +))) 727 727 728 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 700 +* ((( 701 +Product Model 702 +))) 703 +* ((( 704 +Uplink Interval 705 +))) 706 +* ((( 707 +Working Mode 708 +))) 729 729 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 730 730 731 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)714 +[[image:image-20220708141352-7.jpeg]] 732 732 733 733 734 734 718 +=== 2.9.3 Battery Note === 735 735 720 +((( 721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 +))) 736 736 737 737 738 -= 3. Using the AT Commands = 739 739 740 -== 3.1AccessATCommands==726 +=== 2.9.4 Replace the battery === 741 741 728 +((( 729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 730 +))) 742 742 743 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 744 744 745 -[[image:1654501986557-872.png]] 746 746 734 += 3. Access NB-IoT Module = 747 747 748 -Or if you have below board, use below connection: 736 +((( 737 +Users can directly access the AT command set of the NB-IoT module. 738 +))) 749 749 740 +((( 741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 742 +))) 750 750 751 -[[image:165 4502005655-729.png]]744 +[[image:1657261278785-153.png]] 752 752 753 753 754 754 755 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:748 += 4. Using the AT Commands = 756 756 750 +== 4.1 Access AT Commands == 757 757 758 - [[ima ge:1654502050864-459.png]]752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 759 759 760 760 761 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]755 +AT+<CMD>? : Help on <CMD> 762 762 757 +AT+<CMD> : Run <CMD> 763 763 764 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>759 +AT+<CMD>=<value> : Set the value 765 765 766 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>761 +AT+<CMD>=? : Get the value 767 767 768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 769 769 770 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 771 - 772 - 773 773 (% style="color:#037691" %)**General Commands**(%%) 774 774 775 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 776 776 777 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 778 778 779 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 780 780 781 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 782 782 774 +AT+CFG : Print all configurations 783 783 784 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 801 801 802 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 803 803 804 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 807 807 808 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 809 809 810 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 813 813 814 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 815 815 816 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 817 817 807 +AT+CLIENT : Get or Set MQTT client 818 818 819 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 826 826 827 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 828 828 829 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 838 838 839 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 840 840 841 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 835 +((( 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 837 +))) 848 848 849 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 839 +((( 840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 841 +))) 850 850 851 851 852 -(% style="color:#037691" %)**Information** 853 853 854 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket845 +== 5.2 Can I calibrate NSE01 to different soil types? == 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 857 857 858 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 859 859 860 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset852 += 6. Trouble Shooting = 861 861 862 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort854 +== 6.1 Connection problem when uploading firmware == 863 863 864 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 867 - 868 - 869 -= 4. FAQ = 870 - 871 -== 4.1 How to change the LoRa Frequency Bands/Region? == 872 - 873 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 874 -When downloading the images, choose the required image file for download. 875 - 876 - 877 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 878 - 879 - 880 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 881 - 882 - 883 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 884 - 885 -[[image:image-20220606154726-3.png]] 886 - 887 -When you use the TTN network, the US915 frequency bands use are: 888 - 889 -* 903.9 - SF7BW125 to SF10BW125 890 -* 904.1 - SF7BW125 to SF10BW125 891 -* 904.3 - SF7BW125 to SF10BW125 892 -* 904.5 - SF7BW125 to SF10BW125 893 -* 904.7 - SF7BW125 to SF10BW125 894 -* 904.9 - SF7BW125 to SF10BW125 895 -* 905.1 - SF7BW125 to SF10BW125 896 -* 905.3 - SF7BW125 to SF10BW125 897 -* 904.6 - SF8BW500 898 - 899 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 900 - 901 -(% class="box infomessage" %) 902 902 ((( 903 -** AT+CHE=2**858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 904 904 ))) 905 905 906 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 907 907 ((( 908 - **ATZ**863 + 909 909 ))) 910 910 911 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 912 912 867 +== 6.2 AT Command input doesn't work == 913 913 914 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 915 915 916 -[[image:image-20220606154825-4.png]] 872 + 873 +))) 917 917 918 918 876 += 7. Order Info = 919 919 920 -= 5. Trouble Shooting = 921 921 922 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 923 923 924 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 925 925 882 +(% class="wikigeneratedid" %) 883 +((( 884 + 885 +))) 926 926 927 -= =5.2AT Commandinputdoesn’t work==887 += 8. Packing Info = 928 928 929 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 +((( 890 + 930 930 892 +(% style="color:#037691" %)**Package Includes**: 931 931 932 -== 5.3 Device rejoin in at the second uplink packet == 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 896 +))) 933 933 934 -(% style="color:#4f81bd" %)**Issue describe as below:** 898 +((( 899 + 935 935 936 - [[image:1654500909990-784.png]]901 +(% style="color:#037691" %)**Dimension and weight**: 937 937 938 - 939 -(% style="color:#4f81bd" %)**Cause for this issue:** 940 - 941 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 942 - 943 - 944 -(% style="color:#4f81bd" %)**Solution: ** 945 - 946 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 947 - 948 -[[image:1654500929571-736.png]] 949 - 950 - 951 -= 6. Order Info = 952 - 953 - 954 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 955 - 956 - 957 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 958 - 959 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 960 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 961 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 962 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 963 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 964 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 965 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 966 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 967 - 968 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 969 - 970 -* (% style="color:red" %)**4**(%%): 4000mAh battery 971 -* (% style="color:red" %)**8**(%%): 8500mAh battery 972 - 973 -= 7. Packing Info = 974 - 975 -((( 976 -**Package Includes**: 903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 977 977 ))) 978 978 979 -* ((( 980 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 981 -))) 982 - 983 983 ((( 984 984 985 -))) 986 986 987 -((( 988 -**Dimension and weight**: 989 -))) 990 990 991 -* ((( 992 -Device Size: cm 911 + 993 993 ))) 994 -* ((( 995 -Device Weight: g 996 -))) 997 -* ((( 998 -Package Size / pcs : cm 999 -))) 1000 -* ((( 1001 -Weight / pcs : g 1002 -))) 1003 1003 1004 -= 8. Support =914 += 9. Support = 1005 1005 1006 1006 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1007 1007 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1008 - 1009 -
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content