Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="848" width="848"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 ... ... @@ -8,1003 +8,910 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 13 +**Table of Contents:** 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 40 40 25 +((( 26 + 41 41 28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 42 42 43 - ==1.2Features==30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 56 56 57 - ==1.3Specification==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 58 58 59 - MeasureVolume:Base onthe centrapinof theprobe,acylinderwith 7cm diameter and10cmheight.36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 83 ((( 84 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 85 85 ))) 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 - 91 - 92 - 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 - 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 - 97 - 98 -[[image:1654503992078-669.png]] 99 - 100 - 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 - 103 - 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 - 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:165450 4881641-514.png]]45 +[[image:1654503236291-817.png]] 165 165 166 166 48 +[[image:1657245163077-232.png]] 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 -|((( 173 -**Size** 52 +== 1.2 Features == 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 179 179 180 -(Reserve, Ignore now) 181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 -MOD & Digital Interrupt 183 183 184 -(Optional) 185 -))) 186 186 187 - [[image:1654504907647-967.png]]69 +== 1.3 Specification == 188 188 189 189 72 +(% style="color:#037691" %)**Common DC Characteristics:** 190 190 191 -=== 2.3.3 Battery Info === 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 192 192 193 - Checkthe batteryvoltageforLSE01.77 +(% style="color:#037691" %)**NB-IoT Spec:** 194 194 195 -Ex1: 0x0B45 = 2885mV 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 196 196 197 - Ex2:0x0B49= 2889mV86 +Probe(% style="color:#037691" %)** Specification:** 198 198 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 199 199 90 +[[image:image-20220708101224-1.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,if the data you get from the register is __0x05 0xDC__, the moisture content in thesoilis94 +== 1.4 Applications == 206 206 96 +* Smart Agriculture 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 209 209 101 +== 1.5 Pin Definitions == 210 210 211 211 212 - === 2.3.5 Soil Temperature===104 +[[image:1657246476176-652.png]] 213 213 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 -**Example**: 217 217 218 - Ifpayloadis 0105H:((0x0105& 0x8000)>>15 === 0),temp=0105(H)/100=2.61 °C108 += 2. Use NSE01 to communicate with IoT Server = 219 219 220 - If payload is FF7EH: ((FF7E & 0x8000)>>15===1),temp= (FF7E(H)-FFFF(H))/100=-1.29°C110 +== 2.1 How it works == 221 221 222 222 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 234 ((( 235 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.119 +The diagram below shows the working flow in default firmware of NSE01: 236 236 ))) 237 237 238 -((( 239 - 240 -))) 122 +[[image:image-20220708101605-2.png]] 241 241 242 242 ((( 243 243 244 244 ))) 245 245 246 -=== 2.3.7 MOD === 247 247 248 -Firmware version at least v2.1 supports changing mode. 249 249 250 - Forxample,bytes[10]=90130 +== 2.2 Configure the NSE01 == 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 133 +=== 2.2.1 Test Requirement === 254 254 255 -Downlink Command: 256 256 257 -If payload = 0x0A00, workmode=0 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 138 +))) 258 258 259 -If** **payload =** **0x0A01, workmode=1 140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 146 +))) 261 261 262 262 263 - ===2.3.8 Decodepayload inThe Things Network ===149 +[[image:1657249419225-449.png]] 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 - [[image:1654505570700-128.png]]153 +=== 2.2.2 Insert SIM card === 269 269 270 -The payload decoder function for TTN is here: 155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 273 273 274 274 275 -1. 276 -11. Uplink Interval 164 +[[image:1657249468462-536.png]] 277 277 278 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 279 279 280 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 281 281 282 -1. 283 -11. Downlink Payload 168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 284 284 285 -By default, LSE50 prints the downlink payload to console port. 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 286 286 287 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 288 -|TDC (Transmit Time Interval)|Any|01|4 289 -|RESET|Any|04|2 290 -|AT+CFM|Any|05|4 291 -|INTMOD|Any|06|4 292 -|MOD|Any|0A|2 293 293 294 -** Examples**177 +**Connection:** 295 295 179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 296 296 297 - **Set TDC**181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 298 298 299 - Ifthepayload=0100003C, it means set the END Node’s TDC to0x00003C=60(S),whiletypecodeis 01.183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 300 300 301 -Payload: 01 00 00 1E TDC=30S 302 302 303 -P ayload:0100 00 3C TDC=60S186 +In the PC, use below serial tool settings: 304 304 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 305 305 306 -**Reset** 194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 307 307 308 - If payload =0x04FF, it will reset the LSE01198 +[[image:image-20220708110657-3.png]] 309 309 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 310 310 311 -**CFM** 312 312 313 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 314 314 315 -1. 316 -11. Show Data in DataCake IoT Server 206 +=== 2.2.4 Use CoAP protocol to uplink data === 317 317 318 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendlyinterfacetoshowthe sensordata, oncewehavedatainTTN,wecanuse [[DATACAKE>>url:https://datacake.co/]] to connecttoTTN and seethedatainDATACAKE.Belowrehesteps:208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 319 319 320 320 321 -** Step 1**: Besurethat yourdevice is programmedandproperly connected to the network at thistime.211 +**Use below commands:** 322 322 323 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 324 324 217 +For parameter description, please refer to AT command set 325 325 326 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]219 +[[image:1657249793983-486.png]] 327 327 328 328 329 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 330 330 224 +[[image:1657249831934-534.png]] 331 331 332 332 333 333 228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 334 334 335 - Step3: CreateanaccountorloginDatacake.230 +This feature is supported since firmware version v1.0.1 336 336 337 -Step 4: Search the LSE01 and add DevEUI. 338 338 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 339 339 340 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]237 +[[image:1657249864775-321.png]] 341 341 342 342 240 +[[image:1657249930215-289.png]] 343 343 344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 345 345 346 346 347 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]244 +=== 2.2.6 Use MQTT protocol to uplink data === 348 348 246 +This feature is supported since firmware version v110 349 349 350 350 351 -1. 352 -11. Frequency Plans 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 353 353 354 - The LSE01 uses OTAAmodeand below frequency plans by default.If user want to use it with different frequencyplan, please refer the AT command sets.257 +[[image:1657249978444-674.png]] 355 355 356 -1. 357 -11. 358 -111. EU863-870 (EU868) 359 359 360 - Uplink:260 +[[image:1657249990869-686.png]] 361 361 362 -868.1 - SF7BW125 to SF12BW125 363 363 364 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 365 365 366 -868.5 - SF7BW125 to SF12BW125 367 367 368 -867.1 - SF7BW125 to SF12BW125 369 369 370 - 867.3-SF7BW125toSF12BW125269 +=== 2.2.7 Use TCP protocol to uplink data === 371 371 372 - 867.5-SF7BW125toSF12BW125271 +This feature is supported since firmware version v110 373 373 374 -867.7 - SF7BW125 to SF12BW125 375 375 376 -867.9 - SF7BW125 to SF12BW125 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 377 377 378 - 868.8-FSK277 +[[image:1657250217799-140.png]] 379 379 380 380 381 - Downlink:280 +[[image:1657250255956-604.png]] 382 382 383 -Uplink channels 1-9 (RX1) 384 384 385 -869.525 - SF9BW125 (RX2 downlink only) 386 386 284 +=== 2.2.8 Change Update Interval === 387 387 388 -1. 389 -11. 390 -111. US902-928(US915) 286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 391 391 392 - UsedinUSA,Canadaand South America. Defaultuse CHE=2288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 393 393 394 -Uplink: 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 395 395 396 -903.9 - SF7BW125 to SF10BW125 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 397 397 398 -904.1 - SF7BW125 to SF10BW125 399 399 400 -904.3 - SF7BW125 to SF10BW125 401 401 402 - 904.5- SF7BW125toSF10BW125300 +== 2.3 Uplink Payload == 403 403 404 - 904.7-SF7BW125toSF10BW125302 +In this mode, uplink payload includes in total 18 bytes 405 405 406 -904.9 - SF7BW125 to SF10BW125 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 407 407 408 -905.1 - SF7BW125 to SF10BW125 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 409 409 410 -905.3 - SF7BW125 to SF10BW125 411 411 315 +[[image:image-20220708111918-4.png]] 412 412 413 -Downlink: 414 414 415 - 923.3-SF7BW500toSF12BW500318 +The payload is ASCII string, representative same HEX: 416 416 417 - 923.9- SF7BW500to SF12BW500320 +0x72403155615900640c7817075e0a8c02f900 where: 418 418 419 -924.5 - SF7BW500 to SF12BW500 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 420 420 421 -925.1 - SF7BW500 to SF12BW500 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 422 422 423 -925.7 - SF7BW500 to SF12BW500 424 424 425 -926.3 - SF7BW500 to SF12BW500 426 426 427 - 926.9-SF7BW500to SF12BW500334 +== 2.4 Payload Explanation and Sensor Interface == 428 428 429 -927.5 - SF7BW500 to SF12BW500 430 430 431 - 923.3 - SF12BW500(RX2 downlinkonly)337 +=== 2.4.1 Device ID === 432 432 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 433 433 434 - 1.435 - 11.436 - 111. CN470-510 (CN470)343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 437 437 438 -Used in China, Default use CHE=1 347 +((( 348 +**Example:** 349 +))) 439 439 440 -Uplink: 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 441 441 442 -486.3 - SF7BW125 to SF12BW125 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 443 443 444 -486.5 - SF7BW125 to SF12BW125 445 445 446 -486.7 - SF7BW125 to SF12BW125 447 447 448 -4 86.9 - SF7BW125toSF12BW125361 +=== 2.4.2 Version Info === 449 449 450 -487.1 - SF7BW125 to SF12BW125 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 451 451 452 -487.3 - SF7BW125 to SF12BW125 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 453 453 454 -487.5 - SF7BW125 to SF12BW125 455 455 456 -487.7 - SF7BW125 to SF12BW125 457 457 373 +=== 2.4.3 Battery Info === 458 458 459 -Downlink: 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 460 460 461 -506.7 - SF7BW125 to SF12BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 462 462 463 -506.9 - SF7BW125 to SF12BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 464 464 465 -507.1 - SF7BW125 to SF12BW125 466 466 467 -507.3 - SF7BW125 to SF12BW125 468 468 469 - 507.5-SF7BW125toSF12BW125389 +=== 2.4.4 Signal Strength === 470 470 471 -507.7 - SF7BW125 to SF12BW125 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 472 472 473 -507.9 - SF7BW125 to SF12BW125 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 474 474 475 -508.1 - SF7BW125 to SF12BW125 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 476 476 477 -505.3 - SF12BW125 (RX2 downlink only) 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 478 478 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 479 479 480 - 1.481 -11 .482 - 111. AU915-928(AU915)411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 483 483 484 -Default use CHE=2 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 485 485 486 -Uplink: 487 487 488 -916.8 - SF7BW125 to SF12BW125 489 489 490 - 917.0- SF7BW125toSF12BW125421 +=== 2.4.5 Soil Moisture === 491 491 492 -917.2 - SF7BW125 to SF12BW125 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 493 493 494 -917.4 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 495 495 496 -917.6 - SF7BW125 to SF12BW125 435 +((( 436 + 437 +))) 497 497 498 -917.8 - SF7BW125 to SF12BW125 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 499 499 500 -918.0 - SF7BW125 to SF12BW125 501 501 502 -918.2 - SF7BW125 to SF12BW125 503 503 445 +=== 2.4.6 Soil Temperature === 504 504 505 -Downlink: 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 506 506 507 -923.3 - SF7BW500 to SF12BW500 451 +((( 452 +**Example**: 453 +))) 508 508 509 -923.9 - SF7BW500 to SF12BW500 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 510 510 511 -924.5 - SF7BW500 to SF12BW500 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 512 512 513 -925.1 - SF7BW500 to SF12BW500 514 514 515 -925.7 - SF7BW500 to SF12BW500 516 516 517 - 926.3-SF7BW500toSF12BW500465 +=== 2.4.7 Soil Conductivity (EC) === 518 518 519 -926.9 - SF7BW500 to SF12BW500 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 520 520 521 -927.5 - SF7BW500 to SF12BW500 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 522 522 523 -923.3 - SF12BW500(RX2 downlink only) 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 524 524 525 - 1.526 - 11.527 - 111. AS920-923 & AS923-925 (AS923)479 +((( 480 + 481 +))) 528 528 529 -**Default Uplink channel:** 483 +((( 484 + 485 +))) 530 530 531 - 923.2-SF7BW125toSF10BW125487 +=== 2.4.8 Digital Interrupt === 532 532 533 -923.4 - SF7BW125 to SF10BW125 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 534 534 493 +((( 494 +The command is: 495 +))) 535 535 536 -**Additional Uplink Channel**: 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 537 537 538 -(OTAA mode, channel added by JoinAccept message) 539 539 540 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 541 541 542 -922.2 - SF7BW125 to SF10BW125 543 543 544 -922.4 - SF7BW125 to SF10BW125 507 +((( 508 +Example: 509 +))) 545 545 546 -922.6 - SF7BW125 to SF10BW125 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 547 547 548 -922.8 - SF7BW125 to SF10BW125 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 549 549 550 -923.0 - SF7BW125 to SF10BW125 551 551 552 -922.0 - SF7BW125 to SF10BW125 553 553 521 +=== 2.4.9 +5V Output === 554 554 555 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 556 556 557 -923.6 - SF7BW125 to SF10BW125 558 558 559 -923.8 - SF7BW125 to SF10BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 560 560 561 -924.0 - SF7BW125 to SF10BW125 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 562 562 563 -924.2 - SF7BW125 to SF10BW125 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 564 564 565 -924.4 - SF7BW125 to SF10BW125 566 566 567 -924.6 - SF7BW125 to SF10BW125 568 568 542 +== 2.5 Downlink Payload == 569 569 544 +By default, NSE01 prints the downlink payload to console port. 570 570 571 - **Downlink:**546 +[[image:image-20220708133731-5.png]] 572 572 573 -Uplink channels 1-8 (RX1) 574 574 575 -923.2 - SF10BW125 (RX2) 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 576 576 553 +((( 554 + 555 +))) 577 577 578 - 1.579 - 11.580 - 111. KR920-923 (KR920)557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 581 581 582 -Default channel: 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 583 583 584 -922.1 - SF7BW125 to SF12BW125 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 585 585 586 -922.3 - SF7BW125 to SF12BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 587 587 588 -922.5 - SF7BW125 to SF12BW125 573 +((( 574 + 575 +))) 589 589 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 590 590 591 -Uplink: (OTAA mode, channel added by JoinAccept message) 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 592 592 593 -922.1 - SF7BW125 to SF12BW125 594 594 595 - 922.3-SF7BW125toSF12BW125586 +* (% style="color:blue" %)**INTMOD** 596 596 597 -922.5 - SF7BW125 to SF12BW125 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 598 598 599 -922.7 - SF7BW125 to SF12BW125 600 600 601 -922.9 - SF7BW125 to SF12BW125 602 602 603 - 923.1-SF7BW125toSF12BW125594 +== 2.6 LED Indicator == 604 604 605 -923.3 - SF7BW125 to SF12BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 606 606 607 607 608 -Downlink: 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 609 609 610 -Uplink channels 1-7(RX1) 611 611 612 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 613 613 614 614 615 -1. 616 -11. 617 -111. IN865-867 (IN865) 609 +== 2.7 Installation in Soil == 618 618 619 - Uplink:611 +__**Measurement the soil surface**__ 620 620 621 -865.0625 - SF7BW125 to SF12BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 622 622 623 - 865.4025 - SF7BW125to SF12BW125617 +[[image:1657259653666-883.png]] 624 624 625 -865.9850 - SF7BW125 to SF12BW125 626 626 620 +((( 621 + 627 627 628 -Downlink: 629 - 630 -Uplink channels 1-3 (RX1) 631 - 632 -866.550 - SF10BW125 (RX2) 633 - 634 - 635 -1. 636 -11. LED Indicator 637 - 638 -The LSE01 has an internal LED which is to show the status of different state. 639 - 640 - 641 -* Blink once when device power on. 642 -* Solid ON for 5 seconds once device successful Join the network. 643 -* Blink once when device transmit a packet. 644 - 645 -1. 646 -11. Installation in Soil 647 - 648 -**Measurement the soil surface** 649 - 650 - 651 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 652 - 653 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 654 - 655 - 656 - 657 - 658 - 659 - 660 - 661 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 662 - 663 - 664 - 623 +((( 665 665 Dig a hole with diameter > 20CM. 625 +))) 666 666 627 +((( 667 667 Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 668 668 632 +[[image:1654506665940-119.png]] 669 669 634 +((( 635 + 636 +))) 670 670 671 671 672 -1. 673 -11. Firmware Change Log 639 +== 2.8 Firmware Change Log == 674 674 675 -**Firmware download link:** 676 676 677 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]642 +Download URL & Firmware Change log 678 678 644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 679 679 680 -**Firmware Upgrade Method:** 681 681 682 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 683 683 684 684 685 -**V1.0.** 686 686 687 - Release651 +== 2.9 Battery Analysis == 688 688 653 +=== 2.9.1 Battery Type === 689 689 690 690 691 - 1.692 -1 1.Battery Analysis693 - 111. Battery Type656 +((( 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 658 +))) 694 694 695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 696 661 +((( 662 +The battery is designed to last for several years depends on the actually use environment and update interval. 663 +))) 697 697 698 -The battery is designed to last for more than 5 years for the LSN50. 699 699 700 - 666 +((( 701 701 The battery related documents as below: 668 +))) 702 702 703 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],704 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]705 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 706 706 707 - |(((708 - JST-XH-2P connector674 +((( 675 +[[image:image-20220708140453-6.png]] 709 709 ))) 710 710 711 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 712 712 713 713 680 +=== 2.9.2 Power consumption Analyze === 714 714 715 - 1.716 - 11.717 - 111. Battery Note682 +((( 683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 +))) 718 718 719 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 720 720 687 +((( 688 +Instruction to use as below: 689 +))) 721 721 722 - 1.723 -1 1.724 - 111. Replace the battery691 +((( 692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 693 +))) 725 725 726 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 727 727 696 +((( 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 698 +))) 728 728 729 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 700 +* ((( 701 +Product Model 702 +))) 703 +* ((( 704 +Uplink Interval 705 +))) 706 +* ((( 707 +Working Mode 708 +))) 730 730 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 731 731 732 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)714 +[[image:image-20220708141352-7.jpeg]] 733 733 734 734 735 735 718 +=== 2.9.3 Battery Note === 736 736 720 +((( 721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 +))) 737 737 738 738 739 -= 3. Using the AT Commands = 740 740 741 -== 3.1AccessATCommands==726 +=== 2.9.4 Replace the battery === 742 742 728 +((( 729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 730 +))) 743 743 744 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 745 745 746 -[[image:1654501986557-872.png]] 747 747 734 += 3. Access NB-IoT Module = 748 748 749 -Or if you have below board, use below connection: 736 +((( 737 +Users can directly access the AT command set of the NB-IoT module. 738 +))) 750 750 740 +((( 741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 742 +))) 751 751 752 -[[image:165 4502005655-729.png]]744 +[[image:1657261278785-153.png]] 753 753 754 754 755 755 756 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:748 += 4. Using the AT Commands = 757 757 750 +== 4.1 Access AT Commands == 758 758 759 - [[ima ge:1654502050864-459.png]]752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 760 760 761 761 762 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]755 +AT+<CMD>? : Help on <CMD> 763 763 757 +AT+<CMD> : Run <CMD> 764 764 765 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>759 +AT+<CMD>=<value> : Set the value 766 766 767 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>761 +AT+<CMD>=? : Get the value 768 768 769 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 770 770 771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 772 - 773 - 774 774 (% style="color:#037691" %)**General Commands**(%%) 775 775 776 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 777 777 778 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 779 779 780 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 781 781 782 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 783 783 774 +AT+CFG : Print all configurations 784 784 785 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 786 786 787 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 802 802 803 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 804 804 805 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 808 808 809 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 810 810 811 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 812 812 813 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 814 814 815 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 816 816 817 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 818 818 807 +AT+CLIENT : Get or Set MQTT client 819 819 820 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 827 827 828 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 829 829 830 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 835 835 836 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 839 839 840 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 841 841 842 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 847 847 848 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 835 +((( 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 837 +))) 849 849 850 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 839 +((( 840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 841 +))) 851 851 852 852 853 -(% style="color:#037691" %)**Information** 854 854 855 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket845 +== 5.2 Can I calibrate NSE01 to different soil types? == 856 856 857 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 858 858 859 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 860 860 861 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset852 += 6. Trouble Shooting = 862 862 863 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort854 +== 6.1 Connection problem when uploading firmware == 864 864 865 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 868 - 869 - 870 -= 4. FAQ = 871 - 872 -== 4.1 How to change the LoRa Frequency Bands/Region? == 873 - 874 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 875 -When downloading the images, choose the required image file for download. 876 - 877 - 878 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 879 - 880 - 881 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 882 - 883 - 884 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 885 - 886 -[[image:image-20220606154726-3.png]] 887 - 888 -When you use the TTN network, the US915 frequency bands use are: 889 - 890 -* 903.9 - SF7BW125 to SF10BW125 891 -* 904.1 - SF7BW125 to SF10BW125 892 -* 904.3 - SF7BW125 to SF10BW125 893 -* 904.5 - SF7BW125 to SF10BW125 894 -* 904.7 - SF7BW125 to SF10BW125 895 -* 904.9 - SF7BW125 to SF10BW125 896 -* 905.1 - SF7BW125 to SF10BW125 897 -* 905.3 - SF7BW125 to SF10BW125 898 -* 904.6 - SF8BW500 899 - 900 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 901 - 902 -(% class="box infomessage" %) 903 903 ((( 904 -** AT+CHE=2**858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 905 905 ))) 906 906 907 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 908 908 ((( 909 - **ATZ**863 + 910 910 ))) 911 911 912 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 913 913 867 +== 6.2 AT Command input doesn't work == 914 914 915 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 916 916 917 -[[image:image-20220606154825-4.png]] 872 + 873 +))) 918 918 919 919 876 += 7. Order Info = 920 920 921 -= 5. Trouble Shooting = 922 922 923 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 924 924 925 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 926 926 882 +(% class="wikigeneratedid" %) 883 +((( 884 + 885 +))) 927 927 928 -= =5.2AT Commandinputdoesn’t work==887 += 8. Packing Info = 929 929 930 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 +((( 890 + 931 931 892 +(% style="color:#037691" %)**Package Includes**: 932 932 933 -== 5.3 Device rejoin in at the second uplink packet == 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 896 +))) 934 934 935 -(% style="color:#4f81bd" %)**Issue describe as below:** 898 +((( 899 + 936 936 937 - [[image:1654500909990-784.png]]901 +(% style="color:#037691" %)**Dimension and weight**: 938 938 939 - 940 -(% style="color:#4f81bd" %)**Cause for this issue:** 941 - 942 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 943 - 944 - 945 -(% style="color:#4f81bd" %)**Solution: ** 946 - 947 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 948 - 949 -[[image:1654500929571-736.png]] 950 - 951 - 952 -= 6. Order Info = 953 - 954 - 955 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 956 - 957 - 958 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 959 - 960 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 961 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 962 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 963 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 964 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 965 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 966 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 967 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 968 - 969 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 970 - 971 -* (% style="color:red" %)**4**(%%): 4000mAh battery 972 -* (% style="color:red" %)**8**(%%): 8500mAh battery 973 - 974 -= 7. Packing Info = 975 - 976 -((( 977 -**Package Includes**: 903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 978 978 ))) 979 979 980 -* ((( 981 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 982 -))) 983 - 984 984 ((( 985 985 986 -))) 987 987 988 -((( 989 -**Dimension and weight**: 990 -))) 991 991 992 -* ((( 993 -Device Size: cm 911 + 994 994 ))) 995 -* ((( 996 -Device Weight: g 997 -))) 998 -* ((( 999 -Package Size / pcs : cm 1000 -))) 1001 -* ((( 1002 -Weight / pcs : g 1003 -))) 1004 1004 1005 -= 8. Support =914 += 9. Support = 1006 1006 1007 1007 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1008 1008 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1009 - 1010 -
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content