Last modified by Mengting Qiu on 2024/04/02 16:44

From version 23.2
edited by Xiaoling
on 2022/06/06 16:53
Change comment: There is no comment for this version
To version 61.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "1657260785982-288.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,734 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
41 -
42 -
43 -== 1.2 ​Features ==
44 -
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
56 -
57 -== 1.3 Specification ==
58 -
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 -
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
71 -
72 -== 1.5 Firmware Change log ==
73 -
74 -
75 -**LSE01 v1.0 :**  Release
76 -
77 -
78 -
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
80 -
81 -== 2.1 How it works ==
82 -
83 83  (((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
85 -)))
26 +
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
90 90  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
91 91  
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 -
97 -
98 -[[image:1654503992078-669.png]]
99 -
100 -
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
102 -
103 -
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
105 -
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
107 -
108 -[[image:image-20220606163732-6.jpeg]]
109 -
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 -
112 -**Add APP EUI in the application**
113 -
114 -
115 -[[image:1654504596150-405.png]]
116 -
117 -
118 -
119 -**Add APP KEY and DEV EUI**
120 -
121 -[[image:1654504683289-357.png]]
122 -
123 -
124 -
125 -**Step 2**: Power on LSE01
126 -
127 -
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 -
130 -[[image:image-20220606163915-7.png]]
131 -
132 -
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 -
135 -[[image:1654504778294-788.png]]
136 -
137 -
138 -
139 -== 2.3 Uplink Payload ==
140 -
141 -=== 2.3.1 MOD~=0(Default Mode) ===
142 -
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
39 +[[image:1654503236291-817.png]]
165 165  
166 166  
42 +[[image:1657245163077-232.png]]
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171 171  
172 -|(((
173 -**Size**
46 +== 1.2 ​Features ==
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
183 183  
184 -(Optional)
185 -)))
62 +== 1.3  Specification ==
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
189 189  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
190 190  
191 -=== 2.3.3 Battery Info ===
70 +(% style="color:#037691" %)**NB-IoT Spec:**
192 192  
193 -Check the battery voltage for LSE01.
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
194 194  
195 -Ex1: 0x0B45 = 2885mV
79 +(% style="color:#037691" %)**Probe Specification:**
196 196  
197 -Ex2: 0x0B49 = 2889mV
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
198 198  
83 +[[image:image-20220708101224-1.png]]
199 199  
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
87 +== ​1. Applications ==
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
89 +* Smart Agriculture
206 206  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
94 +== 1.5  Pin Definitions ==
209 209  
210 210  
97 +[[image:1657246476176-652.png]]
211 211  
212 -=== 2.3.5 Soil Temperature ===
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
215 215  
216 -**Example**:
101 += 2.  Use NSE01 to communicate with IoT Server =
217 217  
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
103 +== 2.1  How it works ==
219 219  
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
221 221  
222 -
223 -
224 -=== 2.3.6 Soil Conductivity (EC) ===
225 -
226 226  (((
227 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
228 228  )))
229 229  
230 -(((
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
232 -)))
233 233  
234 234  (((
235 -Generally, the EC value of irrigation water is less than 800uS / cm.
112 +The diagram below shows the working flow in default firmware of NSE01:
236 236  )))
237 237  
238 -(((
239 -
240 -)))
115 +[[image:image-20220708101605-2.png]]
241 241  
242 242  (((
243 243  
244 244  )))
245 245  
246 -=== 2.3.7 MOD ===
247 247  
248 -Firmware version at least v2.1 supports changing mode.
249 249  
250 -For example, bytes[10]=90
123 +== 2.2 ​ Configure the NSE01 ==
251 251  
252 -mod=(bytes[10]>>7)&0x01=1.
253 253  
126 +=== 2.2.1 Test Requirement ===
254 254  
255 -Downlink Command:
256 256  
257 -If payload = 0x0A00, workmode=0
129 +To use NSE01 in your city, make sure meet below requirements:
258 258  
259 -If** **payload =** **0x0A01, workmode=1
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
260 260  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
261 261  
262 262  
263 -=== 2.3.8 ​Decode payload in The Things Network ===
140 +[[image:1657249419225-449.png]]
264 264  
265 -While using TTN network, you can add the payload format to decode the payload.
266 266  
267 267  
268 -[[image:1654505570700-128.png]]
144 +=== 2.2.2 Insert SIM card ===
269 269  
270 -The payload decoder function for TTN is here:
146 +Insert the NB-IoT Card get from your provider.
271 271  
272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
273 273  
274 274  
275 -1.
276 -11. Uplink Interval
151 +[[image:1657249468462-536.png]]
277 277  
278 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
279 279  
280 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
281 281  
282 -1.
283 -11. ​Downlink Payload
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
284 284  
285 -By default, LSE50 prints the downlink payload to console port.
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
286 286  
287 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
288 -|TDC (Transmit Time Interval)|Any|01|4
289 -|RESET|Any|04|2
290 -|AT+CFM|Any|05|4
291 -|INTMOD|Any|06|4
292 -|MOD|Any|0A|2
293 293  
294 -**Examples**
164 +**Connection:**
295 295  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
296 296  
297 -**Set TDC**
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
298 298  
299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
300 300  
301 -Payload:    01 00 00 1E    TDC=30S
302 302  
303 -Payload:    01 00 00 3C    TDC=60S
173 +In the PC, use below serial tool settings:
304 304  
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
305 305  
306 -**Reset**
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
307 307  
308 -If payload = 0x04FF, it will reset the LSE01
185 +[[image:image-20220708110657-3.png]]
309 309  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
310 310  
311 -**CFM**
312 312  
313 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
314 314  
315 -1.
316 -11. ​Show Data in DataCake IoT Server
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
317 317  
318 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
319 319  
320 320  
321 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
196 +**Use below commands:**
322 322  
323 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
324 324  
202 +For parameter description, please refer to AT command set
325 325  
326 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
204 +[[image:1657249793983-486.png]]
327 327  
328 328  
329 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
330 330  
209 +[[image:1657249831934-534.png]]
331 331  
332 332  
333 333  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
334 334  
335 -Step 3: Create an account or log in Datacake.
215 +This feature is supported since firmware version v1.0.1
336 336  
337 -Step 4: Search the LSE01 and add DevEUI.
338 338  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
339 339  
340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
222 +[[image:1657249864775-321.png]]
341 341  
342 342  
225 +[[image:1657249930215-289.png]]
343 343  
344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
345 345  
346 346  
347 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
348 348  
231 +This feature is supported since firmware version v110
349 349  
350 350  
351 -1.
352 -11. Frequency Plans
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
353 353  
354 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
242 +[[image:1657249978444-674.png]]
355 355  
356 -1.
357 -11.
358 -111. EU863-870 (EU868)
359 359  
360 -Uplink:
245 +[[image:1657249990869-686.png]]
361 361  
362 -868.1 - SF7BW125 to SF12BW125
363 363  
364 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
365 365  
366 -868.5 - SF7BW125 to SF12BW125
367 367  
368 -867.1 - SF7BW125 to SF12BW125
369 369  
370 -867.3 - SF7BW125 to SF12BW125
254 +=== 2.2.7 Use TCP protocol to uplink data ===
371 371  
372 -867.5 - SF7BW125 to SF12BW125
256 +This feature is supported since firmware version v110
373 373  
374 -867.7 - SF7BW125 to SF12BW125
375 375  
376 -867.9 - SF7BW125 to SF12BW125
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
377 377  
378 -868.8 - FSK
262 +[[image:1657250217799-140.png]]
379 379  
380 380  
381 -Downlink:
265 +[[image:1657250255956-604.png]]
382 382  
383 -Uplink channels 1-9 (RX1)
384 384  
385 -869.525 - SF9BW125 (RX2 downlink only)
386 386  
269 +=== 2.2.8 Change Update Interval ===
387 387  
388 -1.
389 -11.
390 -111. US902-928(US915)
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
391 391  
392 -Used in USA, Canada and South America. Default use CHE=2
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
393 393  
394 -Uplink:
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
395 395  
396 -903.9 - SF7BW125 to SF10BW125
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
397 397  
398 -904.1 - SF7BW125 to SF10BW125
399 399  
400 -904.3 - SF7BW125 to SF10BW125
401 401  
402 -904.5 - SF7BW125 to SF10BW125
285 +== 2.3  Uplink Payload ==
403 403  
404 -904.7 - SF7BW125 to SF10BW125
287 +In this mode, uplink payload includes in total 18 bytes
405 405  
406 -904.9 - SF7BW125 to SF10BW125
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
407 407  
408 -905.1 - SF7BW125 to SF10BW125
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
409 409  
410 -905.3 - SF7BW125 to SF10BW125
411 411  
298 +[[image:image-20220708111918-4.png]]
412 412  
413 -Downlink:
414 414  
415 -923.3 - SF7BW500 to SF12BW500
301 +The payload is ASCII string, representative same HEX:
416 416  
417 -923.9 - SF7BW500 to SF12BW500
303 +0x72403155615900640c7817075e0a8c02f900 where:
418 418  
419 -924.5 - SF7BW500 to SF12BW500
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
420 420  
421 -925.1 - SF7BW500 to SF12BW500
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
422 422  
423 -925.7 - SF7BW500 to SF12BW500
315 +== 2. Payload Explanation and Sensor Interface ==
424 424  
425 -926.3 - SF7BW500 to SF12BW500
426 426  
427 -926.9 - SF7BW500 to SF12BW500
318 +=== 2.4.1  Device ID ===
428 428  
429 -927.5 - SF7BW500 to SF12BW500
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
430 430  
431 -923.3 - SF12BW500(RX2 downlink only)
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
432 432  
324 +**Example:**
433 433  
434 -1.
435 -11.
436 -111. CN470-510 (CN470)
326 +AT+DEUI=A84041F15612
437 437  
438 -Used in China, Default use CHE=1
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
439 439  
440 -Uplink:
441 441  
442 -486.3 - SF7BW125 to SF12BW125
443 443  
444 -486.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
445 445  
446 -486.7 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
447 447  
448 -486.9 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
449 449  
450 -487.1 - SF7BW125 to SF12BW125
451 451  
452 -487.3 - SF7BW125 to SF12BW125
453 453  
454 -487.5 - SF7BW125 to SF12BW125
340 +=== 2.4. Battery Info ===
455 455  
456 -487.7 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
457 457  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
458 458  
459 -Downlink:
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
460 460  
461 -506.7 - SF7BW125 to SF12BW125
462 462  
463 -506.9 - SF7BW125 to SF12BW125
464 464  
465 -507.1 - SF7BW125 to SF12BW125
356 +=== 2.4.4  Signal Strength ===
466 466  
467 -507.3 - SF7BW125 to SF12BW125
358 +NB-IoT Network signal Strength.
468 468  
469 -507.5 - SF7BW125 to SF12BW125
360 +**Ex1: 0x1d = 29**
470 470  
471 -507.7 - SF7BW125 to SF12BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
472 472  
473 -507.9 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
474 474  
475 -508.1 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
476 476  
477 -505.3 - SF12BW125 (RX2 downlink only)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
478 478  
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
479 479  
480 -1.
481 -11.
482 -111. AU915-928(AU915)
483 483  
484 -Default use CHE=2
485 485  
486 -Uplink:
374 +=== 2.4.5  Soil Moisture ===
487 487  
488 -916.8 - SF7BW125 to SF12BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
489 489  
490 -917.0 - SF7BW125 to SF12BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
491 491  
492 -917.2 - SF7BW125 to SF12BW125
384 +(((
385 +
386 +)))
493 493  
494 -917.4 - SF7BW125 to SF12BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
495 495  
496 -917.6 - SF7BW125 to SF12BW125
497 497  
498 -917.8 - SF7BW125 to SF12BW125
499 499  
500 -918.0 - SF7BW125 to SF12BW125
394 +=== 2.4.6  Soil Temperature ===
501 501  
502 -918.2 - SF7BW125 to SF12BW125
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
503 503  
400 +(((
401 +**Example**:
402 +)))
504 504  
505 -Downlink:
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
506 506  
507 -923.3 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
508 508  
509 -923.9 - SF7BW500 to SF12BW500
510 510  
511 -924.5 - SF7BW500 to SF12BW500
512 512  
513 -925.1 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
514 514  
515 -925.7 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
516 516  
517 -926.3 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
518 518  
519 -926.9 - SF7BW500 to SF12BW500
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
520 520  
521 -927.5 - SF7BW500 to SF12BW500
428 +(((
429 +
430 +)))
522 522  
523 -923.3 - SF12BW500(RX2 downlink only)
432 +(((
433 +
434 +)))
524 524  
525 -1.
526 -11.
527 -111. AS920-923 & AS923-925 (AS923)
436 +=== 2.4.8  Digital Interrupt ===
528 528  
529 -**Default Uplink channel:**
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
530 530  
531 -923.2 - SF7BW125 to SF10BW125
440 +The command is:
532 532  
533 -923.4 - SF7BW125 to SF10BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
534 534  
535 535  
536 -**Additional Uplink Channel**:
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
537 537  
538 -(OTAA mode, channel added by JoinAccept message)
539 539  
540 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
448 +Example:
541 541  
542 -922.2 - SF7BW125 to SF10BW125
450 +0x(00): Normal uplink packet.
543 543  
544 -922.4 - SF7BW125 to SF10BW125
452 +0x(01): Interrupt Uplink Packet.
545 545  
546 -922.6 - SF7BW125 to SF10BW125
547 547  
548 -922.8 - SF7BW125 to SF10BW125
549 549  
550 -923.0 - SF7BW125 to SF10BW125
456 +=== 2.4.9  ​+5V Output ===
551 551  
552 -922.0 - SF7BW125 to SF10BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
553 553  
554 554  
555 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
461 +The 5V output time can be controlled by AT Command.
556 556  
557 -923.6 - SF7BW125 to SF10BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
558 558  
559 -923.8 - SF7BW125 to SF10BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
560 560  
561 -924.0 - SF7BW125 to SF10BW125
562 562  
563 -924.2 - SF7BW125 to SF10BW125
564 564  
565 -924.4 - SF7BW125 to SF10BW125
469 +== 2.5  Downlink Payload ==
566 566  
567 -924.6 - SF7BW125 to SF10BW125
471 +By default, NSE01 prints the downlink payload to console port.
568 568  
473 +[[image:image-20220708133731-5.png]]
569 569  
570 570  
571 -**Downlink:**
572 572  
573 -Uplink channels 1-8 (RX1)
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
574 574  
575 -923.2 - SF10BW125 (RX2)
481 +(((
482 +
483 +)))
576 576  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
577 577  
578 -1.
579 -11.
580 -111. KR920-923 (KR920)
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
581 581  
582 -Default channel:
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
583 583  
584 -922.1 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
585 585  
586 -922.3 - SF7BW125 to SF12BW125
501 +(((
502 +
503 +)))
587 587  
588 -922.5 - SF7BW125 to SF12BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
589 589  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
590 590  
591 -Uplink: (OTAA mode, channel added by JoinAccept message)
592 592  
593 -922.1 - SF7BW125 to SF12BW125
514 +* (% style="color:blue" %)**INTMOD**
594 594  
595 -922.3 - SF7BW125 to SF12BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
596 596  
597 -922.5 - SF7BW125 to SF12BW125
598 598  
599 -922.7 - SF7BW125 to SF12BW125
600 600  
601 -922.9 - SF7BW125 to SF12BW125
520 +== 2. ​LED Indicator ==
602 602  
603 -923.1 - SF7BW125 to SF12BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
604 604  
605 -923.3 - SF7BW125 to SF12BW125
606 606  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
607 607  
608 -Downlink:
609 609  
610 -Uplink channels 1-7(RX1)
611 611  
612 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
613 613  
535 +== 2.7  Installation in Soil ==
614 614  
615 -1.
616 -11.
617 -111. IN865-867 (IN865)
537 +__**Measurement the soil surface**__
618 618  
619 -Uplink:
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
620 620  
621 -865.0625 - SF7BW125 to SF12BW125
541 +[[image:1657259653666-883.png]] ​
622 622  
623 -865.4025 - SF7BW125 to SF12BW125
624 624  
625 -865.9850 - SF7BW125 to SF12BW125
544 +(((
545 +
626 626  
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
627 627  
628 -Downlink:
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
629 629  
630 -Uplink channels 1-3 (RX1)
556 +[[image:1654506665940-119.png]]
631 631  
632 -866.550 - SF10BW125 (RX2)
558 +(((
559 +
560 +)))
633 633  
634 634  
635 -1.
636 -11. LED Indicator
563 +== 2.8  ​Firmware Change Log ==
637 637  
638 -The LSE01 has an internal LED which is to show the status of different state.
639 639  
566 +Download URL & Firmware Change log
640 640  
641 -* Blink once when device power on.
642 -* Solid ON for 5 seconds once device successful Join the network.
643 -* Blink once when device transmit a packet.
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
644 644  
645 -1.
646 -11. Installation in Soil
647 647  
648 -**Measurement the soil surface**
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
649 649  
650 650  
651 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
652 652  
653 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
575 +== 2. ​Battery Analysis ==
654 654  
577 +=== 2.9.1  ​Battery Type ===
655 655  
656 656  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
657 657  
658 658  
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
659 659  
660 660  
661 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
586 +The battery related documents as below:
662 662  
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
663 663  
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
664 664  
665 -Dig a hole with diameter > 20CM.
666 666  
667 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
668 668  
598 +2.9.2 
669 669  
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
670 670  
671 671  
672 -1.
673 -11. ​Firmware Change Log
603 +Instruction to use as below:
674 674  
675 -**Firmware download link:**
676 676  
677 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
678 678  
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
679 679  
680 -**Firmware Upgrade Method:**
681 681  
682 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
611 +Step 2: Open it and choose
683 683  
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
684 684  
685 -**V1.0.**
617 +And the Life expectation in difference case will be shown on the right.
686 686  
687 -Release
688 688  
689 689  
621 +=== 2.9.3  ​Battery Note ===
690 690  
691 -1.
692 -11. ​Battery Analysis
693 -111. ​Battery Type
694 -
695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 -
697 -
698 -The battery is designed to last for more than 5 years for the LSN50.
699 -
700 -
701 -The battery related documents as below:
702 -
703 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
704 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
705 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
706 -
707 -|(((
708 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
709 709  )))
710 710  
711 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
712 712  
713 713  
629 +=== 2.9.4  Replace the battery ===
714 714  
715 -1.
716 -11.
717 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
718 718  
719 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
720 720  
721 721  
722 -1.
723 -11.
724 -111. ​Replace the battery
725 -
726 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
727 -
728 -
729 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
730 -
731 -
732 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
733 -
734 -
735 -
736 -
737 -
738 -
739 739  = 3. ​Using the AT Commands =
740 740  
741 741  == 3.1 Access AT Commands ==
... ... @@ -743,13 +743,13 @@
743 743  
744 744  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
745 745  
746 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
747 747  
748 748  
749 749  Or if you have below board, use below connection:
750 750  
751 751  
752 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
753 753  
754 754  
755 755  
... ... @@ -756,10 +756,10 @@
756 756  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
757 757  
758 758  
759 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
760 760  
761 761  
762 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
763 763  
764 764  
765 765  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -871,20 +871,38 @@
871 871  
872 872  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
873 873  
874 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
875 875  When downloading the images, choose the required image file for download. ​
773 +)))
876 876  
775 +(((
776 +
777 +)))
877 877  
779 +(((
878 878  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
879 879  
783 +(((
784 +
785 +)))
880 880  
787 +(((
881 881  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
882 882  
791 +(((
792 +
793 +)))
883 883  
795 +(((
884 884  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
885 885  
886 886  [[image:image-20220606154726-3.png]]
887 887  
801 +
888 888  When you use the TTN network, the US915 frequency bands use are:
889 889  
890 890  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -897,37 +897,47 @@
897 897  * 905.3 - SF7BW125 to SF10BW125
898 898  * 904.6 - SF8BW500
899 899  
814 +(((
900 900  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
901 901  
902 -(% class="box infomessage" %)
903 -(((
904 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
905 905  )))
906 906  
907 -(% class="box infomessage" %)
908 908  (((
909 -**ATZ**
910 -)))
822 +
911 911  
912 912  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
913 913  
827 +(((
828 +
829 +)))
914 914  
831 +(((
915 915  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
916 916  
917 917  [[image:image-20220606154825-4.png]]
918 918  
919 919  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
920 920  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
921 921  = 5. Trouble Shooting =
922 922  
923 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
924 924  
925 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
926 926  
927 927  
928 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
929 929  
930 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
931 931  
932 932  
933 933  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -939,7 +939,9 @@
939 939  
940 940  (% style="color:#4f81bd" %)**Cause for this issue:**
941 941  
866 +(((
942 942  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
943 943  
944 944  
945 945  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -946,7 +946,7 @@
946 946  
947 947  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
948 948  
949 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
950 950  
951 951  
952 952  = 6. ​Order Info =
... ... @@ -971,10 +971,17 @@
971 971  * (% style="color:red" %)**4**(%%): 4000mAh battery
972 972  * (% style="color:red" %)**8**(%%): 8500mAh battery
973 973  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
974 974  = 7. Packing Info =
975 975  
976 976  (((
977 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
978 978  )))
979 979  
980 980  * (((
... ... @@ -983,10 +983,8 @@
983 983  
984 984  (((
985 985  
986 -)))
987 987  
988 -(((
989 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
990 990  )))
991 991  
992 992  * (((
... ... @@ -1000,6 +1000,8 @@
1000 1000  )))
1001 1001  * (((
1002 1002  Weight / pcs : g
934 +
935 +
1003 1003  )))
1004 1004  
1005 1005  = 8. Support =
... ... @@ -1006,5 +1006,3 @@
1006 1006  
1007 1007  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1008 1008  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1009 -
1010 -
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content