Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 28 added, 0 removed)
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,734 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 41 - 42 - 43 -== 1.2 Features == 44 - 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 - 57 -== 1.3 Specification == 58 - 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 83 ((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 26 + 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 90 90 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 91 91 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 92 92 93 - ==2.2QuickguidetoconnecttoLoRaWANserver(OTAA) ==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 - 97 - 98 -[[image:1654503992078-669.png]] 99 - 100 - 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 - 103 - 104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 105 - 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 107 - 108 -[[image:image-20220606163732-6.jpeg]] 109 - 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 111 - 112 -**Add APP EUI in the application** 113 - 114 - 115 -[[image:1654504596150-405.png]] 116 - 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:165450 4881641-514.png]]39 +[[image:1654503236291-817.png]] 165 165 166 166 42 +[[image:1657245163077-232.png]] 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 171 171 172 -|((( 173 -**Size** 46 +== 1.2 Features == 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 179 179 180 -(Reserve, Ignore now) 181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 182 -MOD & Digital Interrupt 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 183 183 184 -(Optional) 185 -))) 62 +== 1.3 Specification == 186 186 187 -[[image:1654504907647-967.png]] 188 188 65 +(% style="color:#037691" %)**Common DC Characteristics:** 189 189 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 190 190 191 - ===2.3.3 BatteryInfo===70 +(% style="color:#037691" %)**NB-IoT Spec:** 192 192 193 -Check the battery voltage for LSE01. 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 194 194 195 - Ex1:0x0B45=2885mV79 +(% style="color:#037691" %)**Probe Specification:** 196 196 197 - Ex2:0x0B49=2889mV81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 198 198 83 +[[image:image-20220708101224-1.png]] 199 199 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 - Getthe moisture content of the soil.The value range of the register is 0-10000(Decimal), dividethis value by 100 toget the percentage of moisturein the soil.87 +== 1.4 Applications == 204 204 205 - Forexample, if the data you get fromtheregisters __0x05 0xDC__,the moisturecontent in the soil is89 +* Smart Agriculture 206 206 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 207 207 208 - (% style="color:#4f81bd" %)**05DC(H)= 1500(D)/100=15%.**94 +== 1.5 Pin Definitions == 209 209 210 210 97 +[[image:1657246476176-652.png]] 211 211 212 -=== 2.3.5 Soil Temperature === 213 213 214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 215 215 216 - **Example**:101 += 2. Use NSE01 to communicate with IoT Server = 217 217 218 - If payload is 0105H: ((0x0105 & 0x8000)>>15===0),temp = 0105(H)/100=2.61°C103 +== 2.1 How it works == 219 219 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 221 221 222 - 223 - 224 -=== 2.3.6 Soil Conductivity (EC) === 225 - 226 226 ((( 227 - Obtain(%style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)insoil or (% style="color:#4f81bd"%)**__soluble ionconcentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%). Thevaluerangeftheregister is0 - 20000(Decimal)(Canbegreaterthan20000).107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 228 228 ))) 229 229 230 -((( 231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 232 -))) 233 233 234 234 ((( 235 - Generally,theEC valueof irrigationwateris lessthan800uS/ cm.112 +The diagram below shows the working flow in default firmware of NSE01: 236 236 ))) 237 237 238 -((( 239 - 240 -))) 115 +[[image:image-20220708101605-2.png]] 241 241 242 242 ((( 243 243 244 244 ))) 245 245 246 -=== 2.3.7 MOD === 247 247 248 -Firmware version at least v2.1 supports changing mode. 249 249 250 - Forxample,bytes[10]=90123 +== 2.2 Configure the NSE01 == 251 251 252 -mod=(bytes[10]>>7)&0x01=1. 253 253 126 +=== 2.2.1 Test Requirement === 254 254 255 -Downlink Command: 256 256 257 - If payload=0x0A00,workmode=0129 +To use NSE01 in your city, make sure meet below requirements: 258 258 259 -If** **payload =** **0x0A01, workmode=1 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 260 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 261 261 262 262 263 - ===2.3.8 Decodepayload inThe Things Network ===140 +[[image:1657249419225-449.png]] 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 267 267 268 - [[image:1654505570700-128.png]]144 +=== 2.2.2 Insert SIM card === 269 269 270 - ThepayloaddecoderfunctionforTTNis here:146 +Insert the NB-IoT Card get from your provider. 271 271 272 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]148 +User need to take out the NB-IoT module and insert the SIM card like below: 273 273 274 274 275 -1. 276 -11. Uplink Interval 151 +[[image:1657249468462-536.png]] 277 277 278 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 279 279 280 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 281 281 282 -1. 283 -11. Downlink Payload 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 284 284 285 -By default, LSE50 prints the downlink payload to console port. 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 286 286 287 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 288 -|TDC (Transmit Time Interval)|Any|01|4 289 -|RESET|Any|04|2 290 -|AT+CFM|Any|05|4 291 -|INTMOD|Any|06|4 292 -|MOD|Any|0A|2 293 293 294 -** Examples**164 +**Connection:** 295 295 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 296 296 297 - **Set TDC**168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 298 298 299 - Ifthepayload=0100003C, it means set the END Node’s TDC to0x00003C=60(S),whiletypecodeis 01.170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 300 300 301 -Payload: 01 00 00 1E TDC=30S 302 302 303 -P ayload:0100 00 3C TDC=60S173 +In the PC, use below serial tool settings: 304 304 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 305 305 306 -**Reset** 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 307 307 308 - If payload =0x04FF, it will reset the LSE01185 +[[image:image-20220708110657-3.png]] 309 309 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 310 310 311 -**CFM** 312 312 313 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 314 314 315 -1. 316 -11. Show Data in DataCake IoT Server 191 +=== 2.2.4 Use CoAP protocol to uplink data === 317 317 318 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendlyinterfacetoshowthe sensordata, oncewehavedatainTTN,wecanuse [[DATACAKE>>url:https://datacake.co/]] to connecttoTTN and seethedatainDATACAKE.Belowrehesteps:193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 319 319 320 320 321 -** Step 1**: Besurethat yourdevice is programmedandproperly connected to the network at thistime.196 +**Use below commands:** 322 322 323 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 324 324 202 +For parameter description, please refer to AT command set 325 325 326 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]204 +[[image:1657249793983-486.png]] 327 327 328 328 329 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 330 330 209 +[[image:1657249831934-534.png]] 331 331 332 332 333 333 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 334 334 335 - Step3: CreateanaccountorloginDatacake.215 +This feature is supported since firmware version v1.0.1 336 336 337 -Step 4: Search the LSE01 and add DevEUI. 338 338 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 339 339 340 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]222 +[[image:1657249864775-321.png]] 341 341 342 342 225 +[[image:1657249930215-289.png]] 343 343 344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 345 345 346 346 347 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]229 +=== 2.2.6 Use MQTT protocol to uplink data === 348 348 231 +This feature is supported since firmware version v110 349 349 350 350 351 -1. 352 -11. Frequency Plans 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 353 353 354 - The LSE01 uses OTAAmodeand below frequency plans by default.If user want to use it with different frequencyplan, please refer the AT command sets.242 +[[image:1657249978444-674.png]] 355 355 356 -1. 357 -11. 358 -111. EU863-870 (EU868) 359 359 360 - Uplink:245 +[[image:1657249990869-686.png]] 361 361 362 -868.1 - SF7BW125 to SF12BW125 363 363 364 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 365 365 366 -868.5 - SF7BW125 to SF12BW125 367 367 368 -867.1 - SF7BW125 to SF12BW125 369 369 370 - 867.3-SF7BW125toSF12BW125254 +=== 2.2.7 Use TCP protocol to uplink data === 371 371 372 - 867.5-SF7BW125toSF12BW125256 +This feature is supported since firmware version v110 373 373 374 -867.7 - SF7BW125 to SF12BW125 375 375 376 -867.9 - SF7BW125 to SF12BW125 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 377 377 378 - 868.8-FSK262 +[[image:1657250217799-140.png]] 379 379 380 380 381 - Downlink:265 +[[image:1657250255956-604.png]] 382 382 383 -Uplink channels 1-9 (RX1) 384 384 385 -869.525 - SF9BW125 (RX2 downlink only) 386 386 269 +=== 2.2.8 Change Update Interval === 387 387 388 -1. 389 -11. 390 -111. US902-928(US915) 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 391 391 392 - UsedinUSA,Canadaand South America. Defaultuse CHE=2273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 393 393 394 -Uplink: 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 395 395 396 -903.9 - SF7BW125 to SF10BW125 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 397 397 398 -904.1 - SF7BW125 to SF10BW125 399 399 400 -904.3 - SF7BW125 to SF10BW125 401 401 402 - 904.5- SF7BW125toSF10BW125285 +== 2.3 Uplink Payload == 403 403 404 - 904.7-SF7BW125toSF10BW125287 +In this mode, uplink payload includes in total 18 bytes 405 405 406 -904.9 - SF7BW125 to SF10BW125 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 407 407 408 - 905.1-SF7BW125to SF10BW125295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 409 409 410 -905.3 - SF7BW125 to SF10BW125 411 411 298 +[[image:image-20220708111918-4.png]] 412 412 413 -Downlink: 414 414 415 - 923.3-SF7BW500toSF12BW500301 +The payload is ASCII string, representative same HEX: 416 416 417 - 923.9- SF7BW500to SF12BW500303 +0x72403155615900640c7817075e0a8c02f900 where: 418 418 419 -924.5 - SF7BW500 to SF12BW500 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 420 420 421 -925.1 - SF7BW500 to SF12BW500 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 422 422 423 - 925.7-SF7BW500to SF12BW500315 +== 2.4 Payload Explanation and Sensor Interface == 424 424 425 -926.3 - SF7BW500 to SF12BW500 426 426 427 - 926.9-SF7BW500 to SF12BW500318 +=== 2.4.1 Device ID === 428 428 429 - 927.5-SF7BW500toSF12BW500320 +By default, the Device ID equal to the last 6 bytes of IMEI. 430 430 431 - 923.3-SF12BW500(RX2downlinkonly)322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 432 432 324 +**Example:** 433 433 434 -1. 435 -11. 436 -111. CN470-510 (CN470) 326 +AT+DEUI=A84041F15612 437 437 438 - Used inChina,DefaultuseCHE=1328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 439 439 440 -Uplink: 441 441 442 -486.3 - SF7BW125 to SF12BW125 443 443 444 -4 86.5 - SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 445 445 446 - 486.7-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 447 447 448 - 486.9-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 449 449 450 -487.1 - SF7BW125 to SF12BW125 451 451 452 -487.3 - SF7BW125 to SF12BW125 453 453 454 -4 87.5- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 455 455 456 -487.7 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 457 457 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 458 458 459 -Downlink: 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 460 460 461 -506.7 - SF7BW125 to SF12BW125 462 462 463 -506.9 - SF7BW125 to SF12BW125 464 464 465 - 507.1-SF7BW125toSF12BW125356 +=== 2.4.4 Signal Strength === 466 466 467 - 507.3-SF7BW125to SF12BW125358 +NB-IoT Network signal Strength. 468 468 469 - 507.5- SF7BW125toSF12BW125360 +**Ex1: 0x1d = 29** 470 470 471 - 507.7-SF7BW125toSF12BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 472 472 473 - 507.9-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 474 474 475 - 508.1- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 476 476 477 - 505.3-SF12BW125(RX2downlinkonly)368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 478 478 370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 479 479 480 -1. 481 -11. 482 -111. AU915-928(AU915) 483 483 484 -Default use CHE=2 485 485 486 - Uplink:374 +=== 2.4.5 Soil Moisture === 487 487 488 -916.8 - SF7BW125 to SF12BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 489 489 490 -917.0 - SF7BW125 to SF12BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 491 491 492 -917.2 - SF7BW125 to SF12BW125 384 +((( 385 + 386 +))) 493 493 494 -917.4 - SF7BW125 to SF12BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 495 495 496 -917.6 - SF7BW125 to SF12BW125 497 497 498 -917.8 - SF7BW125 to SF12BW125 499 499 500 - 918.0-SF7BW125toSF12BW125394 +=== 2.4.6 Soil Temperature === 501 501 502 -918.2 - SF7BW125 to SF12BW125 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 503 503 400 +((( 401 +**Example**: 402 +))) 504 504 505 -Downlink: 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 506 506 507 -923.3 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 508 508 509 -923.9 - SF7BW500 to SF12BW500 510 510 511 -924.5 - SF7BW500 to SF12BW500 512 512 513 - 925.1-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 514 514 515 -925.7 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 516 516 517 -926.3 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 518 518 519 -926.9 - SF7BW500 to SF12BW500 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 520 520 521 -927.5 - SF7BW500 to SF12BW500 428 +((( 429 + 430 +))) 522 522 523 -923.3 - SF12BW500(RX2 downlink only) 432 +((( 433 + 434 +))) 524 524 525 -1. 526 -11. 527 -111. AS920-923 & AS923-925 (AS923) 436 +=== 2.4.8 Digital Interrupt === 528 528 529 - **DefaultUplinkchannel:**438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 530 530 531 - 923.2- SF7BW125 toSF10BW125440 +The command is: 532 532 533 - 923.4-SF7BW125to SF10BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 534 534 535 535 536 - **AdditionalUplinkChannel**:445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 537 537 538 -(OTAA mode, channel added by JoinAccept message) 539 539 540 - **AS920~~AS923 for Japan, Malaysia, Singapore**:448 +Example: 541 541 542 - 922.2-SF7BW125to SF10BW125450 +0x(00): Normal uplink packet. 543 543 544 - 922.4 - SF7BW125toSF10BW125452 +0x(01): Interrupt Uplink Packet. 545 545 546 -922.6 - SF7BW125 to SF10BW125 547 547 548 -922.8 - SF7BW125 to SF10BW125 549 549 550 - 923.0- SF7BW125 toSF10BW125456 +=== 2.4.9 +5V Output === 551 551 552 - 922.0-SF7BW125 toSF10BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 553 553 554 554 555 - **AS923~~ AS925for Brunei,Cambodia,HongKong,Indonesia,Laos,Taiwan,Thailand, Vietnam**:461 +The 5V output time can be controlled by AT Command. 556 556 557 - 923.6- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 558 558 559 - 923.8-SF7BW125 toSF10BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 560 560 561 -924.0 - SF7BW125 to SF10BW125 562 562 563 -924.2 - SF7BW125 to SF10BW125 564 564 565 - 924.4- SF7BW125toSF10BW125469 +== 2.5 Downlink Payload == 566 566 567 - 924.6-SF7BW125toSF10BW125471 +By default, NSE01 prints the downlink payload to console port. 568 568 473 +[[image:image-20220708133731-5.png]] 569 569 570 570 571 -**Downlink:** 572 572 573 -Uplink channels 1-8 (RX1) 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 574 574 575 -923.2 - SF10BW125 (RX2) 481 +((( 482 + 483 +))) 576 576 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 577 577 578 - 1.579 -11. 580 - 111. KR920-923 (KR920)489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 581 581 582 -Default channel: 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 583 583 584 -922.1 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 585 585 586 -922.3 - SF7BW125 to SF12BW125 501 +((( 502 + 503 +))) 587 587 588 -922.5 - SF7BW125 to SF12BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 589 589 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 590 590 591 -Uplink: (OTAA mode, channel added by JoinAccept message) 592 592 593 - 922.1-SF7BW125toSF12BW125514 +* (% style="color:blue" %)**INTMOD** 594 594 595 - 922.3-SF7BW125toSF12BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 596 596 597 -922.5 - SF7BW125 to SF12BW125 598 598 599 -922.7 - SF7BW125 to SF12BW125 600 600 601 - 922.9-SF7BW125toSF12BW125520 +== 2.6 LED Indicator == 602 602 603 -923.1 - SF7BW125 to SF12BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 604 604 605 -923.3 - SF7BW125 to SF12BW125 606 606 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 607 607 608 -Downlink: 609 609 610 -Uplink channels 1-7(RX1) 611 611 612 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 613 613 535 +== 2.7 Installation in Soil == 614 614 615 -1. 616 -11. 617 -111. IN865-867 (IN865) 537 +__**Measurement the soil surface**__ 618 618 619 - Uplink:539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 620 620 621 - 865.0625 - SF7BW125to SF12BW125541 +[[image:1657259653666-883.png]] 622 622 623 -865.4025 - SF7BW125 to SF12BW125 624 624 625 -865.9850 - SF7BW125 to SF12BW125 544 +((( 545 + 626 626 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 627 627 628 -Downlink: 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 629 629 630 - Uplink channels1-3 (RX1)556 +[[image:1654506665940-119.png]] 631 631 632 -866.550 - SF10BW125 (RX2) 558 +((( 559 + 560 +))) 633 633 634 634 635 -1. 636 -11. LED Indicator 563 +== 2.8 Firmware Change Log == 637 637 638 -The LSE01 has an internal LED which is to show the status of different state. 639 639 566 +Download URL & Firmware Change log 640 640 641 -* Blink once when device power on. 642 -* Solid ON for 5 seconds once device successful Join the network. 643 -* Blink once when device transmit a packet. 568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 644 644 645 -1. 646 -11. Installation in Soil 647 647 648 - **Measurement the soil surface**571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 649 649 650 650 651 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 652 652 653 - Choosethe proper measuring position.Avoid the probe to touch rocks or hardthings. Splitthesurfacesoil according to the measured deep. Keep the measured as originaldensity. Vertical insert the probeinto thesoilto be measured. Make sure not shake when inserting.575 +== 2.9 Battery Analysis == 654 654 577 +=== 2.9.1 Battery Type === 655 655 656 656 580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 657 657 658 658 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 659 659 660 660 661 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]586 +The battery related documents as below: 662 662 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 663 663 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 664 664 665 -Dig a hole with diameter > 20CM. 666 666 667 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 668 668 598 +2.9.2 669 669 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 670 670 671 671 672 -1. 673 -11. Firmware Change Log 603 +Instruction to use as below: 674 674 675 -**Firmware download link:** 676 676 677 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 678 678 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 679 679 680 -**Firmware Upgrade Method:** 681 681 682 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]611 +Step 2: Open it and choose 683 683 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 684 684 685 - **V1.0.**617 +And the Life expectation in difference case will be shown on the right. 686 686 687 -Release 688 688 689 689 621 +=== 2.9.3 Battery Note === 690 690 691 -1. 692 -11. Battery Analysis 693 -111. Battery Type 694 - 695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 - 697 - 698 -The battery is designed to last for more than 5 years for the LSN50. 699 - 700 - 701 -The battery related documents as below: 702 - 703 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 704 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 705 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 706 - 707 -|((( 708 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 709 709 ))) 710 710 711 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 712 712 713 713 629 +=== 2.9.4 Replace the battery === 714 714 715 -1. 716 -11. 717 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 718 718 719 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 720 720 721 721 722 -1. 723 -11. 724 -111. Replace the battery 725 - 726 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 727 - 728 - 729 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 730 - 731 - 732 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 733 - 734 - 735 - 736 - 737 - 738 - 739 739 = 3. Using the AT Commands = 740 740 741 741 == 3.1 Access AT Commands == ... ... @@ -743,13 +743,13 @@ 743 743 744 744 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 745 745 746 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 747 747 748 748 749 749 Or if you have below board, use below connection: 750 750 751 751 752 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 753 753 754 754 755 755 ... ... @@ -756,10 +756,10 @@ 756 756 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 757 757 758 758 759 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 760 760 761 761 762 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 763 763 764 764 765 765 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -871,20 +871,38 @@ 871 871 872 872 == 4.1 How to change the LoRa Frequency Bands/Region? == 873 873 874 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 875 875 When downloading the images, choose the required image file for download. 773 +))) 876 876 775 +((( 776 + 777 +))) 877 877 779 +((( 878 878 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 879 879 783 +((( 784 + 785 +))) 880 880 787 +((( 881 881 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 882 882 791 +((( 792 + 793 +))) 883 883 795 +((( 884 884 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 885 885 886 886 [[image:image-20220606154726-3.png]] 887 887 801 + 888 888 When you use the TTN network, the US915 frequency bands use are: 889 889 890 890 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -897,37 +897,47 @@ 897 897 * 905.3 - SF7BW125 to SF10BW125 898 898 * 904.6 - SF8BW500 899 899 814 +((( 900 900 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 901 901 902 -(% class="box infomessage" %) 903 -((( 904 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 905 905 ))) 906 906 907 -(% class="box infomessage" %) 908 908 ((( 909 -**ATZ** 910 -))) 822 + 911 911 912 912 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 913 913 827 +((( 828 + 829 +))) 914 914 831 +((( 915 915 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 916 916 917 917 [[image:image-20220606154825-4.png]] 918 918 919 919 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 920 920 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 921 921 = 5. Trouble Shooting = 922 922 923 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 924 924 925 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 926 926 927 927 928 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 929 929 930 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 931 931 932 932 933 933 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -939,7 +939,9 @@ 939 939 940 940 (% style="color:#4f81bd" %)**Cause for this issue:** 941 941 866 +((( 942 942 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 943 943 944 944 945 945 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -946,7 +946,7 @@ 946 946 947 947 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 948 948 949 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 950 950 951 951 952 952 = 6. Order Info = ... ... @@ -971,10 +971,17 @@ 971 971 * (% style="color:red" %)**4**(%%): 4000mAh battery 972 972 * (% style="color:red" %)**8**(%%): 8500mAh battery 973 973 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 974 974 = 7. Packing Info = 975 975 976 976 ((( 977 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 978 978 ))) 979 979 980 980 * ((( ... ... @@ -983,10 +983,8 @@ 983 983 984 984 ((( 985 985 986 -))) 987 987 988 -((( 989 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 990 990 ))) 991 991 992 992 * ((( ... ... @@ -1000,6 +1000,8 @@ 1000 1000 ))) 1001 1001 * ((( 1002 1002 Weight / pcs : g 934 + 935 + 1003 1003 ))) 1004 1004 1005 1005 = 8. Support = ... ... @@ -1006,5 +1006,3 @@ 1006 1006 1007 1007 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1008 1008 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1009 - 1010 -
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content