Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 31 added, 0 removed)
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,724 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 25 +((( 26 + 41 41 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 42 42 43 -= =1.2Features==30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 56 56 57 - ==1.3Specification==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 36 + 85 85 ))) 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 39 +[[image:1654503236291-817.png]] 90 90 91 91 42 +[[image:1657245163077-232.png]] 92 92 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 96 46 +== 1.2 Features == 97 97 98 -[[image:1654503992078-669.png]] 99 99 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 100 100 101 - TheLG308is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so whatwe need to nowis configurethe TTN server.62 +== 1.3 Specification == 102 102 103 103 104 - **Step1**:Createa device in TTN with the OTAA keysfrom LSE01.65 +(% style="color:#037691" %)**Common DC Characteristics:** 105 105 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 107 107 108 - [[image:image-20220606163732-6.jpeg]]70 +(% style="color:#037691" %)**NB-IoT Spec:** 109 109 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 111 111 112 -** Add APP EUI in theapplication**79 +(% style="color:#037691" %)**Probe Specification:** 113 113 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 114 114 115 -[[image: 1654504596150-405.png]]83 +[[image:image-20220708101224-1.png]] 116 116 117 117 118 118 119 - **AddAPPKEYandDEV EUI**87 +== 1.4 Applications == 120 120 121 - [[image:1654504683289-357.png]]89 +* Smart Agriculture 122 122 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 123 123 94 +== 1.5 Pin Definitions == 124 124 125 -**Step 2**: Power on LSE01 126 126 97 +[[image:1657246476176-652.png]] 127 127 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 129 130 -[[image:image-20220606163915-7.png]] 131 131 101 += 2. Use NSE01 to communicate with IoT Server = 132 132 133 - **Step3:** The LSE01 willauto jointothe TTN network. After joinsuccess,it will start to upload messages to TTN and you can see the messages in the panel.103 +== 2.1 How it works == 134 134 135 -[[image:1654504778294-788.png]] 136 136 106 +((( 107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 108 +))) 137 137 138 138 139 -== 2.3 Uplink Payload == 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 113 +))) 140 140 141 - === 2.3.1 MOD~=0(Default Mode) ===115 +[[image:image-20220708101605-2.png]] 142 142 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 117 +((( 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 166 166 123 +== 2.2 Configure the NSE01 == 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 179 179 180 - (Reserve,Ignorenow)181 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((182 - MOD&DigitalInterrupt131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 183 183 184 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 188 140 +[[image:1657249419225-449.png]] 189 189 190 190 191 -=== 2.3.3 Battery Info === 192 192 193 - Checkthebattery voltageforLSE01.144 +=== 2.2.2 Insert SIM card === 194 194 195 - Ex1:0x0B45=2885mV146 +Insert the NB-IoT Card get from your provider. 196 196 197 - Ex2:0x0B49=2889mV148 +User need to take out the NB-IoT module and insert the SIM card like below: 198 198 199 199 151 +[[image:1657249468462-536.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 206 206 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 209 164 +**Connection:** 210 210 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 211 211 212 - ===2.3.5SoilTemperature===168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 213 213 214 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 215 215 216 -**Example**: 217 217 218 -I fpayload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100=2.61°C173 +In the PC, use below serial tool settings: 219 219 220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 221 221 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 222 222 185 +[[image:image-20220708110657-3.png]] 223 223 224 -= ==2.3.6 Soil Conductivity(EC)=187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 225 225 226 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 227 227 228 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 229 229 191 +=== 2.2.4 Use CoAP protocol to uplink data === 230 230 231 - Generally,theEC value ofirrigationwater is lessthan800uS.193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 232 232 233 -1. 234 -11. 235 -111. MOD 236 236 237 - Firmwareversion atleast v2.1 supportschanging mode.196 +**Use below commands:** 238 238 239 -For example, bytes[10]=90 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 240 240 241 - mod=(bytes[10]>>7)&0x01=1.202 +For parameter description, please refer to AT command set 242 242 204 +[[image:1657249793983-486.png]] 243 243 244 -Downlink Command: 245 245 246 - Ifpayload=0x0A00, workmode=0207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 247 247 248 - If** **payload =** **0x0A01, workmode=1209 +[[image:1657249831934-534.png]] 249 249 250 250 251 -1. 252 -11. 253 -111. Decode payload in The Things Network 254 254 255 - WhileusingTTNnetwork,youcanaddthepayloadformattodecode the payload.213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 256 256 215 +This feature is supported since firmware version v1.0.1 257 257 258 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 259 259 260 -The payload decoder function for TTN is here: 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 261 261 262 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]222 +[[image:1657249864775-321.png]] 263 263 264 264 265 -1. 266 -11. Uplink Interval 225 +[[image:1657249930215-289.png]] 267 267 268 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 269 269 270 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 271 271 272 -1. 273 -11. Downlink Payload 229 +=== 2.2.6 Use MQTT protocol to uplink data === 274 274 275 - Bydefault,LSE50prints theownlinkpayloadto consoleport.231 +This feature is supported since firmware version v110 276 276 277 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 278 -|TDC (Transmit Time Interval)|Any|01|4 279 -|RESET|Any|04|2 280 -|AT+CFM|Any|05|4 281 -|INTMOD|Any|06|4 282 -|MOD|Any|0A|2 283 283 284 -**Examples** 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 285 285 242 +[[image:1657249978444-674.png]] 286 286 287 -**Set TDC** 288 288 289 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.245 +[[image:1657249990869-686.png]] 290 290 291 -Payload: 01 00 00 1E TDC=30S 292 292 293 -Payload: 01 00 00 3C TDC=60S 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 294 294 295 295 296 -**Reset** 297 297 298 - Ifpayload=0x04FF,itwillreset theLSE01254 +=== 2.2.7 Use TCP protocol to uplink data === 299 299 256 +This feature is supported since firmware version v110 300 300 301 -**CFM** 302 302 303 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 304 304 305 -1. 306 -11. Show Data in DataCake IoT Server 262 +[[image:1657250217799-140.png]] 307 307 308 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 309 309 265 +[[image:1657250255956-604.png]] 310 310 311 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 312 312 313 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 314 314 269 +=== 2.2.8 Change Update Interval === 315 315 316 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 317 317 273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 318 318 319 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 320 320 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 321 321 322 322 323 323 285 +== 2.3 Uplink Payload == 324 324 325 - Step3: Createan accountorloginDatacake.287 +In this mode, uplink payload includes in total 18 bytes 326 326 327 -Step 4: Search the LSE01 and add DevEUI. 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 328 328 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 329 329 330 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 331 331 298 +[[image:image-20220708111918-4.png]] 332 332 333 333 334 - Afteradded,thesensordataarrive TTN,it will also arriveandshow in Mydevices.301 +The payload is ASCII string, representative same HEX: 335 335 303 +0x72403155615900640c7817075e0a8c02f900 where: 336 336 337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 338 338 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 339 339 315 +== 2.4 Payload Explanation and Sensor Interface == 340 340 341 -1. 342 -11. Frequency Plans 343 343 344 - TheLSE01uses OTAA mode and below frequency plans by default.Ifuser want to use it with different frequency plan, please refer the AT command sets.318 +=== 2.4.1 Device ID === 345 345 346 -1. 347 -11. 348 -111. EU863-870 (EU868) 320 +By default, the Device ID equal to the last 6 bytes of IMEI. 349 349 350 -U plink:322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 351 352 - 868.1 - SF7BW125 to SF12BW125324 +**Example:** 353 353 354 -8 68.3 - SF7BW125to SF12BW125 and SF7BW250326 +AT+DEUI=A84041F15612 355 355 356 - 868.5-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 357 358 -867.1 - SF7BW125 to SF12BW125 359 359 360 -867.3 - SF7BW125 to SF12BW125 361 361 362 - 867.5- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 363 363 364 - 867.7-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 365 365 366 - 867.9-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 367 367 368 -868.8 - FSK 369 369 370 370 371 - Downlink:340 +=== 2.4.3 Battery Info === 372 372 373 -Uplink channels 1-9 (RX1) 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 374 374 375 -869.525 - SF9BW125 (RX2 downlink only) 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 376 376 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 377 377 378 -1. 379 -11. 380 -111. US902-928(US915) 381 381 382 -Used in USA, Canada and South America. Default use CHE=2 383 383 384 - Uplink:356 +=== 2.4.4 Signal Strength === 385 385 386 - 903.9-SF7BW125to SF10BW125358 +NB-IoT Network signal Strength. 387 387 388 - 904.1- SF7BW125toSF10BW125360 +**Ex1: 0x1d = 29** 389 389 390 - 904.3-SF7BW125toSF10BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 391 391 392 - 904.5-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 393 393 394 - 904.7- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 395 395 396 - 904.9-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 397 397 398 -9 05.1-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 399 399 400 -905.3 - SF7BW125 to SF10BW125 401 401 402 402 403 - Downlink:374 +=== 2.4.5 Soil Moisture === 404 404 405 -923.3 - SF7BW500 to SF12BW500 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 406 406 407 -923.9 - SF7BW500 to SF12BW500 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 408 408 409 -924.5 - SF7BW500 to SF12BW500 384 +((( 385 + 386 +))) 410 410 411 -925.1 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 412 412 413 -925.7 - SF7BW500 to SF12BW500 414 414 415 -926.3 - SF7BW500 to SF12BW500 416 416 417 - 926.9-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 418 418 419 -927.5 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 420 420 421 -923.3 - SF12BW500(RX2 downlink only) 400 +((( 401 +**Example**: 402 +))) 422 422 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 423 423 424 - 1.425 -11 .426 - 111. CN470-510 (CN470)408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 427 427 428 -Used in China, Default use CHE=1 429 429 430 -Uplink: 431 431 432 -4 86.3-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 433 433 434 -486.5 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 435 435 436 -486.7 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 437 437 438 -486.9 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 439 439 440 -487.1 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 441 441 442 -487.3 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 443 443 444 -4 87.5-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 445 445 446 - 487.7-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 447 447 440 +The command is: 448 448 449 -Do wnlink:442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 450 450 451 -506.7 - SF7BW125 to SF12BW125 452 452 453 - 506.9-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 454 454 455 -507.1 - SF7BW125 to SF12BW125 456 456 457 - 507.3 - SF7BW125 to SF12BW125448 +Example: 458 458 459 - 507.5-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 460 460 461 - 507.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 462 462 463 -507.9 - SF7BW125 to SF12BW125 464 464 465 -508.1 - SF7BW125 to SF12BW125 466 466 467 - 505.3- SF12BW125(RX2downlink only)456 +=== 2.4.9 +5V Output === 468 468 458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 469 469 470 -1. 471 -11. 472 -111. AU915-928(AU915) 473 473 474 - Defaultse CHE=2461 +The 5V output time can be controlled by AT Command. 475 475 476 - Uplink:463 +(% style="color:blue" %)**AT+5VT=1000** 477 477 478 - 916.8-SF7BW125 toSF12BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 479 479 480 -917.0 - SF7BW125 to SF12BW125 481 481 482 -917.2 - SF7BW125 to SF12BW125 483 483 484 - 917.4- SF7BW125toSF12BW125469 +== 2.5 Downlink Payload == 485 485 486 - 917.6-SF7BW125toSF12BW125471 +By default, NSE01 prints the downlink payload to console port. 487 487 488 - 917.8- SF7BW125to SF12BW125473 +[[image:image-20220708133731-5.png]] 489 489 490 -918.0 - SF7BW125 to SF12BW125 491 491 492 -918.2 - SF7BW125 to SF12BW125 493 493 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 494 494 495 -Downlink: 481 +((( 482 + 483 +))) 496 496 497 -923.3 - SF7BW500 to SF12BW500 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 498 498 499 -923.9 - SF7BW500 to SF12BW500 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 500 500 501 -924.5 - SF7BW500 to SF12BW500 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 502 502 503 -925.1 - SF7BW500 to SF12BW500 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 504 504 505 -925.7 - SF7BW500 to SF12BW500 501 +((( 502 + 503 +))) 506 506 507 -926.3 - SF7BW500 to SF12BW500 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 508 508 509 -926.9 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 510 510 511 -927.5 - SF7BW500 to SF12BW500 512 512 513 - 923.3- SF12BW500(RX2downlinkonly)514 +* (% style="color:blue" %)**INTMOD** 514 514 515 -1. 516 -11. 517 -111. AS920-923 & AS923-925 (AS923) 516 +Downlink Payload: 06000003, Set AT+INTMOD=3 518 518 519 -**Default Uplink channel:** 520 520 521 -923.2 - SF7BW125 to SF10BW125 522 522 523 - 923.4-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 524 524 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 525 525 526 -**Additional Uplink Channel**: 527 527 528 -(OTAA mode, channel added by JoinAccept message) 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 529 529 530 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 531 531 532 -922.2 - SF7BW125 to SF10BW125 533 533 534 -922.4 - SF7BW125 to SF10BW125 535 535 536 - 922.6 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 537 537 538 - 922.8- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 539 539 540 - 923.0-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 541 541 542 - 922.0 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 543 543 544 544 545 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 544 +((( 545 + 546 546 547 -923.6 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 548 548 549 -923.8 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 550 550 551 -9 24.0SF7BW125 to SF10BW125556 +[[image:1654506665940-119.png]] 552 552 553 -924.2 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 554 554 555 -924.4 - SF7BW125 to SF10BW125 556 556 557 - 924.6- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 558 558 559 559 566 +Download URL & Firmware Change log 560 560 561 - **Downlink:**568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 562 562 563 -Uplink channels 1-8 (RX1) 564 564 565 - 923.2-SF10BW125 (RX2)571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 566 566 567 567 568 -1. 569 -11. 570 -111. KR920-923 (KR920) 571 571 572 - Defaultchannel:575 +== 2.9 Battery Analysis == 573 573 574 - 922.1- SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 575 575 576 -922.3 - SF7BW125 to SF12BW125 577 577 578 - 922.5-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 579 579 580 580 581 - Uplink: (OTAAmode,channel addedbyJoinAcceptmessage)583 +The battery is designed to last for several years depends on the actually use environment and update interval. 582 582 583 -922.1 - SF7BW125 to SF12BW125 584 584 585 - 922.3-SF7BW125toSF12BW125586 +The battery related documents as below: 586 586 587 -922.5 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 588 588 589 -922.7 - SF7BW125 to SF12BW125 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 590 590 591 -922.9 - SF7BW125 to SF12BW125 592 592 593 -923.1 - SF7BW125 to SF12BW125 594 594 595 - 923.3 - SF7BW125to SF12BW125598 +2.9.2 596 596 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 597 597 598 -Downlink: 599 599 600 - Uplinkchannels1-7(RX1)603 +Instruction to use as below: 601 601 602 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 603 603 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 604 604 605 -1. 606 -11. 607 -111. IN865-867 (IN865) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 608 608 609 -Uplink: 610 610 611 - 865.0625 -SF7BW125toSF12BW125611 +Step 2: Open it and choose 612 612 613 -865.4025 - SF7BW125 to SF12BW125 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 614 614 615 - 865.9850-SF7BW125toSF12BW125617 +And the Life expectation in difference case will be shown on the right. 616 616 617 617 618 -Downlink: 619 619 620 - Uplinkchannels1-3(RX1)621 +=== 2.9.3 Battery Note === 621 621 622 -866.550 - SF10BW125 (RX2) 623 - 624 - 625 -1. 626 -11. LED Indicator 627 - 628 -The LSE01 has an internal LED which is to show the status of different state. 629 - 630 - 631 -* Blink once when device power on. 632 -* Solid ON for 5 seconds once device successful Join the network. 633 -* Blink once when device transmit a packet. 634 - 635 -1. 636 -11. Installation in Soil 637 - 638 -**Measurement the soil surface** 639 - 640 - 641 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 642 - 643 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 644 - 645 - 646 - 647 - 648 - 649 - 650 - 651 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 652 - 653 - 654 - 655 -Dig a hole with diameter > 20CM. 656 - 657 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 658 - 659 - 660 - 661 - 662 -1. 663 -11. Firmware Change Log 664 - 665 -**Firmware download link:** 666 - 667 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 668 - 669 - 670 -**Firmware Upgrade Method:** 671 - 672 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 673 - 674 - 675 -**V1.0.** 676 - 677 -Release 678 - 679 - 680 - 681 -1. 682 -11. Battery Analysis 683 -111. Battery Type 684 - 685 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 686 - 687 - 688 -The battery is designed to last for more than 5 years for the LSN50. 689 - 690 - 691 -The battery related documents as below: 692 - 693 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 694 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 695 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 696 - 697 -|((( 698 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 699 699 ))) 700 700 701 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 702 702 703 703 629 +=== 2.9.4 Replace the battery === 704 704 705 -1. 706 -11. 707 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 708 708 709 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 710 710 711 711 712 -1. 713 -11. 714 -111. Replace the battery 715 - 716 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 717 - 718 - 719 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 720 - 721 - 722 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 723 - 724 - 725 - 726 - 727 - 728 - 729 729 = 3. Using the AT Commands = 730 730 731 731 == 3.1 Access AT Commands == ... ... @@ -733,13 +733,13 @@ 733 733 734 734 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 735 735 736 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 737 737 738 738 739 739 Or if you have below board, use below connection: 740 740 741 741 742 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 743 743 744 744 745 745 ... ... @@ -746,10 +746,10 @@ 746 746 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 747 747 748 748 749 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 750 750 751 751 752 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 753 753 754 754 755 755 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -861,20 +861,38 @@ 861 861 862 862 == 4.1 How to change the LoRa Frequency Bands/Region? == 863 863 864 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 865 865 When downloading the images, choose the required image file for download. 773 +))) 866 866 775 +((( 776 + 777 +))) 867 867 779 +((( 868 868 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 869 869 783 +((( 784 + 785 +))) 870 870 787 +((( 871 871 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 872 872 791 +((( 792 + 793 +))) 873 873 795 +((( 874 874 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 875 875 876 876 [[image:image-20220606154726-3.png]] 877 877 801 + 878 878 When you use the TTN network, the US915 frequency bands use are: 879 879 880 880 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -887,37 +887,47 @@ 887 887 * 905.3 - SF7BW125 to SF10BW125 888 888 * 904.6 - SF8BW500 889 889 814 +((( 890 890 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 891 891 892 -(% class="box infomessage" %) 893 -((( 894 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 895 895 ))) 896 896 897 -(% class="box infomessage" %) 898 898 ((( 899 -**ATZ** 900 -))) 822 + 901 901 902 902 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 903 903 827 +((( 828 + 829 +))) 904 904 831 +((( 905 905 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 906 906 907 907 [[image:image-20220606154825-4.png]] 908 908 909 909 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 910 910 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 911 911 = 5. Trouble Shooting = 912 912 913 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 914 914 915 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 916 916 917 917 918 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 919 919 920 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 921 921 922 922 923 923 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -929,7 +929,9 @@ 929 929 930 930 (% style="color:#4f81bd" %)**Cause for this issue:** 931 931 866 +((( 932 932 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 933 933 934 934 935 935 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -936,7 +936,7 @@ 936 936 937 937 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 938 938 939 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 940 940 941 941 942 942 = 6. Order Info = ... ... @@ -961,10 +961,17 @@ 961 961 * (% style="color:red" %)**4**(%%): 4000mAh battery 962 962 * (% style="color:red" %)**8**(%%): 8500mAh battery 963 963 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 964 964 = 7. Packing Info = 965 965 966 966 ((( 967 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 968 968 ))) 969 969 970 970 * ((( ... ... @@ -973,10 +973,8 @@ 973 973 974 974 ((( 975 975 976 -))) 977 977 978 -((( 979 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 980 980 ))) 981 981 982 982 * ((( ... ... @@ -990,6 +990,8 @@ 990 990 ))) 991 991 * ((( 992 992 Weight / pcs : g 934 + 935 + 993 993 ))) 994 994 995 995 = 8. Support = ... ... @@ -996,5 +996,3 @@ 996 996 997 997 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 998 998 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 999 - 1000 -
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content