Last modified by Mengting Qiu on 2024/04/02 16:44

From version 22.5
edited by Xiaoling
on 2022/06/06 16:45
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,725 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
42 42  
43 -== 1.2 ​Features ==
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
56 56  
57 -== 1.3 Specification ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 -
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
71 -
72 -== 1.5 Firmware Change log ==
73 -
74 -
75 -**LSE01 v1.0 :**  Release
76 -
77 -
78 -
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
80 -
81 -== 2.1 How it works ==
82 -
83 -(((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
36 +
85 85  )))
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
39 +[[image:1654503236291-817.png]]
90 90  
91 91  
42 +[[image:1657245163077-232.png]]
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 96  
46 +== 1.2 ​Features ==
97 97  
98 -[[image:1654503992078-669.png]]
99 99  
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
100 100  
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
62 +== 1.3  Specification ==
102 102  
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
65 +(% style="color:#037691" %)**Common DC Characteristics:**
105 105  
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
107 107  
108 -[[image:image-20220606163732-6.jpeg]]
70 +(% style="color:#037691" %)**NB-IoT Spec:**
109 109  
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
111 111  
112 -**Add APP EUI in the application**
79 +(% style="color:#037691" %)**Probe Specification:**
113 113  
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
114 114  
115 -[[image:1654504596150-405.png]]
83 +[[image:image-20220708101224-1.png]]
116 116  
117 117  
118 118  
119 -**Add APP KEY and DEV EUI**
87 +== ​1.4  Applications ==
120 120  
121 -[[image:1654504683289-357.png]]
89 +* Smart Agriculture
122 122  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
123 123  
94 +== 1.5  Pin Definitions ==
124 124  
125 -**Step 2**: Power on LSE01
126 126  
97 +[[image:1657246476176-652.png]]
127 127  
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 129  
130 -[[image:image-20220606163915-7.png]]
131 131  
101 += 2.  Use NSE01 to communicate with IoT Server =
132 132  
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
103 +== 2.1  How it works ==
134 134  
135 -[[image:1654504778294-788.png]]
136 136  
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
137 137  
138 138  
139 -== 2.3 Uplink Payload ==
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
113 +)))
140 140  
141 -=== 2.3.1 MOD~=0(Default Mode) ===
115 +[[image:image-20220708101605-2.png]]
142 142  
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
117 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
123 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
126 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
129 +To use NSE01 in your city, make sure meet below requirements:
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
140 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
144 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
146 +Insert the NB-IoT Card get from your provider.
196 196  
197 -Ex2: 0x0B49 = 2889mV
148 +User need to take out the NB-IoT module and insert the SIM card like below:
198 198  
199 199  
151 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
164 +**Connection:**
210 210  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
211 211  
212 -=== 2.3.5 Soil Temperature ===
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
213 213  
214 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
215 215  
216 -**Example**:
217 217  
218 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
173 +In the PC, use below serial tool settings:
219 219  
220 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
221 221  
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
222 222  
223 -1.
224 -11.
225 -111. Soil Conductivity (EC)
185 +[[image:image-20220708110657-3.png]]
226 226  
227 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
228 228  
229 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
230 230  
231 231  
232 -Generally, the EC value of irrigation water is less than 800uS / cm.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
233 233  
234 -1.
235 -11.
236 -111. MOD
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
237 237  
238 -Firmware version at least v2.1 supports changing mode.
239 239  
240 -For example, bytes[10]=90
196 +**Use below commands:**
241 241  
242 -mod=(bytes[10]>>7)&0x01=1.
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
243 243  
202 +For parameter description, please refer to AT command set
244 244  
245 -Downlink Command:
204 +[[image:1657249793983-486.png]]
246 246  
247 -If payload = 0x0A00, workmode=0
248 248  
249 -If** **payload =** **0x0A01, workmode=1
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
250 250  
209 +[[image:1657249831934-534.png]]
251 251  
252 -1.
253 -11.
254 -111. ​Decode payload in The Things Network
255 255  
256 -While using TTN network, you can add the payload format to decode the payload.
257 257  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
258 258  
259 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
215 +This feature is supported since firmware version v1.0.1
260 260  
261 -The payload decoder function for TTN is here:
262 262  
263 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
264 264  
222 +[[image:1657249864775-321.png]]
265 265  
266 -1.
267 -11. Uplink Interval
268 268  
269 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
225 +[[image:1657249930215-289.png]]
270 270  
271 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
272 272  
273 -1.
274 -11. ​Downlink Payload
275 275  
276 -By default, LSE50 prints the downlink payload to console port.
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
277 277  
278 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
279 -|TDC (Transmit Time Interval)|Any|01|4
280 -|RESET|Any|04|2
281 -|AT+CFM|Any|05|4
282 -|INTMOD|Any|06|4
283 -|MOD|Any|0A|2
231 +This feature is supported since firmware version v110
284 284  
285 -**Examples**
286 286  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
287 287  
288 -**Set TDC**
242 +[[image:1657249978444-674.png]]
289 289  
290 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
291 291  
292 -Payload:    01 00 00 1E    TDC=30S
245 +[[image:1657249990869-686.png]]
293 293  
294 -Payload:    01 00 00 3C    TDC=60S
295 295  
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
296 296  
297 -**Reset**
298 298  
299 -If payload = 0x04FF, it will reset the LSE01
300 300  
254 +=== 2.2.7 Use TCP protocol to uplink data ===
301 301  
302 -**CFM**
256 +This feature is supported since firmware version v110
303 303  
304 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
305 305  
306 -1.
307 -11. ​Show Data in DataCake IoT Server
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
308 308  
309 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
262 +[[image:1657250217799-140.png]]
310 310  
311 311  
312 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
265 +[[image:1657250255956-604.png]]
313 313  
314 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
315 315  
316 316  
317 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
269 +=== 2.2.8 Change Update Interval ===
318 318  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
319 319  
320 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
321 321  
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
322 322  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
323 323  
324 324  
325 325  
326 -Step 3: Create an account or log in Datacake.
285 +== 2.3  Uplink Payload ==
327 327  
328 -Step 4: Search the LSE01 and add DevEUI.
287 +In this mode, uplink payload includes in total 18 bytes
329 329  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
330 330  
331 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
332 332  
333 333  
298 +[[image:image-20220708111918-4.png]]
334 334  
335 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
336 336  
301 +The payload is ASCII string, representative same HEX:
337 337  
338 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
339 339  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
340 340  
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
341 341  
342 -1.
343 -11. Frequency Plans
315 +== 2.4  Payload Explanation and Sensor Interface ==
344 344  
345 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
346 346  
347 -1.
348 -11.
349 -111. EU863-870 (EU868)
318 +=== 2.4.1  Device ID ===
350 350  
351 -Uplink:
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
352 352  
353 -868.1 - SF7BW125 to SF12BW125
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 354  
355 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
324 +**Example:**
356 356  
357 -868.5 - SF7BW125 to SF12BW125
326 +AT+DEUI=A84041F15612
358 358  
359 -867.1 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
360 360  
361 -867.3 - SF7BW125 to SF12BW125
362 362  
363 -867.5 - SF7BW125 to SF12BW125
364 364  
365 -867.7 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
366 366  
367 -867.9 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
368 368  
369 -868.8 - FSK
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
370 370  
371 371  
372 -Downlink:
373 373  
374 -Uplink channels 1-9 (RX1)
340 +=== 2.4.3  Battery Info ===
375 375  
376 -869.525 - SF9BW125 (RX2 downlink only)
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
377 377  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
378 378  
379 -1.
380 -11.
381 -111. US902-928(US915)
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
382 382  
383 -Used in USA, Canada and South America. Default use CHE=2
384 384  
385 -Uplink:
386 386  
387 -903.9 - SF7BW125 to SF10BW125
356 +=== 2.4.4  Signal Strength ===
388 388  
389 -904.1 - SF7BW125 to SF10BW125
358 +NB-IoT Network signal Strength.
390 390  
391 -904.3 - SF7BW125 to SF10BW125
360 +**Ex1: 0x1d = 29**
392 392  
393 -904.5 - SF7BW125 to SF10BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
394 394  
395 -904.7 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
396 396  
397 -904.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
398 398  
399 -905.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
400 400  
401 -905.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
402 402  
403 403  
404 -Downlink:
405 405  
406 -923.3 - SF7BW500 to SF12BW500
374 +=== 2.4.5  Soil Moisture ===
407 407  
408 -923.9 - SF7BW500 to SF12BW500
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
409 409  
410 -924.5 - SF7BW500 to SF12BW500
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
411 411  
412 -925.1 - SF7BW500 to SF12BW500
384 +(((
385 +
386 +)))
413 413  
414 -925.7 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
415 415  
416 -926.3 - SF7BW500 to SF12BW500
417 417  
418 -926.9 - SF7BW500 to SF12BW500
419 419  
420 -927.5 - SF7BW500 to SF12BW500
394 +=== 2.4.6  Soil Temperature ===
421 421  
422 -923.3 - SF12BW500(RX2 downlink only)
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
423 423  
400 +(((
401 +**Example**:
402 +)))
424 424  
425 -1.
426 -11.
427 -111. CN470-510 (CN470)
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
428 428  
429 -Used in China, Default use CHE=1
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
430 430  
431 -Uplink:
432 432  
433 -486.3 - SF7BW125 to SF12BW125
434 434  
435 -486.5 - SF7BW125 to SF12BW125
414 +=== 2.4. Soil Conductivity (EC) ===
436 436  
437 -486.7 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
438 438  
439 -486.9 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
440 440  
441 -487.1 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
442 442  
443 -487.3 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
444 444  
445 -487.5 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
446 446  
447 -487.7 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
448 448  
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
449 449  
450 -Downlink:
440 +The command is:
451 451  
452 -506.7 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
453 453  
454 -506.9 - SF7BW125 to SF12BW125
455 455  
456 -507.1 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
457 457  
458 -507.3 - SF7BW125 to SF12BW125
459 459  
460 -507.5 - SF7BW125 to SF12BW125
448 +Example:
461 461  
462 -507.7 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
463 463  
464 -507.9 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
465 465  
466 -508.1 - SF7BW125 to SF12BW125
467 467  
468 -505.3 - SF12BW125 (RX2 downlink only)
469 469  
456 +=== 2.4.9  ​+5V Output ===
470 470  
471 -1.
472 -11.
473 -111. AU915-928(AU915)
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
474 474  
475 -Default use CHE=2
476 476  
477 -Uplink:
461 +The 5V output time can be controlled by AT Command.
478 478  
479 -916.8 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
480 480  
481 -917.0 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
482 482  
483 -917.2 - SF7BW125 to SF12BW125
484 484  
485 -917.4 - SF7BW125 to SF12BW125
486 486  
487 -917.6 - SF7BW125 to SF12BW125
469 +== 2.5  Downlink Payload ==
488 488  
489 -917.8 - SF7BW125 to SF12BW125
471 +By default, NSE01 prints the downlink payload to console port.
490 490  
491 -918.0 - SF7BW125 to SF12BW125
473 +[[image:image-20220708133731-5.png]]
492 492  
493 -918.2 - SF7BW125 to SF12BW125
494 494  
495 495  
496 -Downlink:
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
497 497  
498 -923.3 - SF7BW500 to SF12BW500
481 +(((
482 +
483 +)))
499 499  
500 -923.9 - SF7BW500 to SF12BW500
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
501 501  
502 -924.5 - SF7BW500 to SF12BW500
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
503 503  
504 -925.1 - SF7BW500 to SF12BW500
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
505 505  
506 -925.7 - SF7BW500 to SF12BW500
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
507 507  
508 -926.3 - SF7BW500 to SF12BW500
501 +(((
502 +
503 +)))
509 509  
510 -926.9 - SF7BW500 to SF12BW500
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
511 511  
512 -927.5 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
513 513  
514 -923.3 - SF12BW500(RX2 downlink only)
515 515  
516 -1.
517 -11.
518 -111. AS920-923 & AS923-925 (AS923)
514 +* (% style="color:blue" %)**INTMOD**
519 519  
520 -**Default Uplink channel:**
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
521 521  
522 -923.2 - SF7BW125 to SF10BW125
523 523  
524 -923.4 - SF7BW125 to SF10BW125
525 525  
520 +== 2.6  ​LED Indicator ==
526 526  
527 -**Additional Uplink Channel**:
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
528 528  
529 -(OTAA mode, channel added by JoinAccept message)
530 530  
531 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
532 532  
533 -922.2 - SF7BW125 to SF10BW125
534 534  
535 -922.4 - SF7BW125 to SF10BW125
536 536  
537 -922.6 - SF7BW125 to SF10BW125
538 538  
539 -922.8 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
540 540  
541 -923.0 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
542 542  
543 -922.0 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
544 544  
541 +[[image:1657259653666-883.png]] ​
545 545  
546 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
547 547  
548 -923.6 - SF7BW125 to SF10BW125
544 +(((
545 +
549 549  
550 -923.8 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
551 551  
552 -924.0 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
553 553  
554 -924.2 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
555 555  
556 -924.4 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
557 557  
558 -924.6 - SF7BW125 to SF10BW125
559 559  
563 +== 2.8  ​Firmware Change Log ==
560 560  
561 561  
562 -**Downlink:**
566 +Download URL & Firmware Change log
563 563  
564 -Uplink channels 1-8 (RX1)
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
565 565  
566 -923.2 - SF10BW125 (RX2)
567 567  
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
568 568  
569 -1.
570 -11.
571 -111. KR920-923 (KR920)
572 572  
573 -Default channel:
574 574  
575 -922.1 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
576 576  
577 -922.3 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
578 578  
579 -922.5 - SF7BW125 to SF12BW125
580 580  
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
581 581  
582 -Uplink: (OTAA mode, channel added by JoinAccept message)
583 583  
584 -922.1 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
585 585  
586 -922.3 - SF7BW125 to SF12BW125
587 587  
588 -922.5 - SF7BW125 to SF12BW125
586 +The battery related documents as below:
589 589  
590 -922.7 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591 591  
592 -922.9 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
593 593  
594 -923.1 - SF7BW125 to SF12BW125
595 595  
596 -923.3 - SF7BW125 to SF12BW125
597 597  
598 +2.9.2 
598 598  
599 -Downlink:
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
600 600  
601 -Uplink channels 1-7(RX1)
602 602  
603 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
603 +Instruction to use as below:
604 604  
605 605  
606 -1.
607 -11.
608 -111. IN865-867 (IN865)
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
609 609  
610 -Uplink:
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
611 611  
612 -865.0625 - SF7BW125 to SF12BW125
613 613  
614 -865.4025 - SF7BW125 to SF12BW125
611 +Step 2: Open it and choose
615 615  
616 -865.9850 - SF7BW125 to SF12BW125
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
617 617  
617 +And the Life expectation in difference case will be shown on the right.
618 618  
619 -Downlink:
620 620  
621 -Uplink channels 1-3 (RX1)
622 622  
623 -866.550 - SF10BW125 (RX2)
621 +=== 2.9.3  Battery Note ===
624 624  
625 -
626 -1.
627 -11. LED Indicator
628 -
629 -The LSE01 has an internal LED which is to show the status of different state.
630 -
631 -
632 -* Blink once when device power on.
633 -* Solid ON for 5 seconds once device successful Join the network.
634 -* Blink once when device transmit a packet.
635 -
636 -1.
637 -11. Installation in Soil
638 -
639 -**Measurement the soil surface**
640 -
641 -
642 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
643 -
644 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
645 -
646 -
647 -
648 -
649 -
650 -
651 -
652 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
653 -
654 -
655 -
656 -Dig a hole with diameter > 20CM.
657 -
658 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
659 -
660 -
661 -
662 -
663 -1.
664 -11. ​Firmware Change Log
665 -
666 -**Firmware download link:**
667 -
668 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
669 -
670 -
671 -**Firmware Upgrade Method:**
672 -
673 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
674 -
675 -
676 -**V1.0.**
677 -
678 -Release
679 -
680 -
681 -
682 -1.
683 -11. ​Battery Analysis
684 -111. ​Battery Type
685 -
686 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
687 -
688 -
689 -The battery is designed to last for more than 5 years for the LSN50.
690 -
691 -
692 -The battery related documents as below:
693 -
694 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
695 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
696 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
697 -
698 -|(((
699 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
700 700  )))
701 701  
702 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
703 703  
704 704  
629 +=== 2.9.4  Replace the battery ===
705 705  
706 -1.
707 -11.
708 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
709 709  
710 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
711 711  
712 712  
713 -1.
714 -11.
715 -111. ​Replace the battery
716 -
717 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 -
719 -
720 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
721 -
722 -
723 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
724 -
725 -
726 -
727 -
728 -
729 -
730 730  = 3. ​Using the AT Commands =
731 731  
732 732  == 3.1 Access AT Commands ==
... ... @@ -734,13 +734,13 @@
734 734  
735 735  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
736 736  
737 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
738 738  
739 739  
740 740  Or if you have below board, use below connection:
741 741  
742 742  
743 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
744 744  
745 745  
746 746  
... ... @@ -747,10 +747,10 @@
747 747  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
748 748  
749 749  
750 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
751 751  
752 752  
753 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
754 754  
755 755  
756 756  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -862,20 +862,38 @@
862 862  
863 863  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
864 864  
865 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
866 866  When downloading the images, choose the required image file for download. ​
773 +)))
867 867  
775 +(((
776 +
777 +)))
868 868  
779 +(((
869 869  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
870 870  
783 +(((
784 +
785 +)))
871 871  
787 +(((
872 872  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
873 873  
791 +(((
792 +
793 +)))
874 874  
795 +(((
875 875  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
876 876  
877 877  [[image:image-20220606154726-3.png]]
878 878  
801 +
879 879  When you use the TTN network, the US915 frequency bands use are:
880 880  
881 881  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -888,37 +888,47 @@
888 888  * 905.3 - SF7BW125 to SF10BW125
889 889  * 904.6 - SF8BW500
890 890  
814 +(((
891 891  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
892 892  
893 -(% class="box infomessage" %)
894 -(((
895 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
896 896  )))
897 897  
898 -(% class="box infomessage" %)
899 899  (((
900 -**ATZ**
901 -)))
822 +
902 902  
903 903  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
904 904  
827 +(((
828 +
829 +)))
905 905  
831 +(((
906 906  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
907 907  
908 908  [[image:image-20220606154825-4.png]]
909 909  
910 910  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
911 911  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
912 912  = 5. Trouble Shooting =
913 913  
914 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
915 915  
916 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
917 917  
918 918  
919 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
920 920  
921 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
922 922  
923 923  
924 924  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -930,7 +930,9 @@
930 930  
931 931  (% style="color:#4f81bd" %)**Cause for this issue:**
932 932  
866 +(((
933 933  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
934 934  
935 935  
936 936  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -937,7 +937,7 @@
937 937  
938 938  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
939 939  
940 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
941 941  
942 942  
943 943  = 6. ​Order Info =
... ... @@ -962,10 +962,17 @@
962 962  * (% style="color:red" %)**4**(%%): 4000mAh battery
963 963  * (% style="color:red" %)**8**(%%): 8500mAh battery
964 964  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
965 965  = 7. Packing Info =
966 966  
967 967  (((
968 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
969 969  )))
970 970  
971 971  * (((
... ... @@ -974,10 +974,8 @@
974 974  
975 975  (((
976 976  
977 -)))
978 978  
979 -(((
980 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
981 981  )))
982 982  
983 983  * (((
... ... @@ -991,6 +991,8 @@
991 991  )))
992 992  * (((
993 993  Weight / pcs : g
934 +
935 +
994 994  )))
995 995  
996 996  = 8. Support =
... ... @@ -997,5 +997,3 @@
997 997  
998 998  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
999 999  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1000 -
1001 -
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content