Last modified by Mengting Qiu on 2024/04/02 16:44

From version 22.4
edited by Xiaoling
on 2022/06/06 16:44
Change comment: There is no comment for this version
To version 65.7
edited by Xiaoling
on 2022/07/08 15:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,995 +8,821 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
16 +{{toc/}}
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
23 += 1.  Introduction =
40 40  
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
41 41  
27 +(((
28 +
42 42  
43 -== 1.2 Features ==
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
56 56  
57 -== 1.3 Specification ==
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
60 60  
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
71 -
72 -== 1.5 Firmware Change log ==
73 -
74 -
75 -**LSE01 v1.0 :**  Release
76 -
77 -
78 -
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
80 -
81 -== 2.1 How it works ==
82 -
83 -(((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
38 +
85 85  )))
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
41 +[[image:1654503236291-817.png]]
90 90  
91 91  
44 +[[image:1657245163077-232.png]]
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 96  
48 +== 1.2 ​ Features ==
97 97  
98 -[[image:1654503992078-669.png]]
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
99 99  
100 100  
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
64 +== 1.3  Specification ==
102 102  
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
67 +(% style="color:#037691" %)**Common DC Characteristics:**
105 105  
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
107 107  
108 -[[image:image-20220606163732-6.jpeg]]
72 +(% style="color:#037691" %)**NB-IoT Spec:**
109 109  
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
74 +* - B1 @H-FDD: 2100MHz
75 +* - B3 @H-FDD: 1800MHz
76 +* - B8 @H-FDD: 900MHz
77 +* - B5 @H-FDD: 850MHz
78 +* - B20 @H-FDD: 800MHz
79 +* - B28 @H-FDD: 700MHz
111 111  
112 -**Add APP EUI in the application**
81 +Probe(% style="color:#037691" %)** Specification:**
113 113  
83 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
114 114  
115 -[[image:1654504596150-405.png]]
85 +[[image:image-20220708101224-1.png]]
116 116  
117 117  
118 118  
119 -**Add APP KEY and DEV EUI**
89 +== ​1.4  Applications ==
120 120  
121 -[[image:1654504683289-357.png]]
91 +* Smart Agriculture
122 122  
93 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
94 +​
123 123  
96 +== 1.5  Pin Definitions ==
124 124  
125 -**Step 2**: Power on LSE01
126 126  
99 +[[image:1657246476176-652.png]]
127 127  
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 129  
130 -[[image:image-20220606163915-7.png]]
131 131  
103 += 2.  Use NSE01 to communicate with IoT Server =
132 132  
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
105 +== 2.1  How it works ==
134 134  
135 -[[image:1654504778294-788.png]]
136 136  
108 +(((
109 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +)))
137 137  
138 138  
139 -== 2.3 Uplink Payload ==
113 +(((
114 +The diagram below shows the working flow in default firmware of NSE01:
115 +)))
140 140  
141 -=== 2.3.1 MOD~=0(Default Mode) ===
117 +[[image:image-20220708101605-2.png]]
142 142  
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
119 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
125 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
128 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
131 +To use NSE01 in your city, make sure meet below requirements:
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
133 +* Your local operator has already distributed a NB-IoT Network there.
134 +* The local NB-IoT network used the band that NSE01 supports.
135 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
137 +(((
138 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
142 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
146 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
148 +Insert the NB-IoT Card get from your provider.
196 196  
197 -Ex2: 0x0B49 = 2889mV
150 +User need to take out the NB-IoT module and insert the SIM card like below:
198 198  
199 199  
153 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
157 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
159 +(((
160 +(((
161 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
162 +)))
163 +)))
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
166 +**Connection:**
210 210  
211 -1.
212 -11.
213 -111. Soil Temperature
168 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
214 214  
215 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
170 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
216 216  
217 -**Example**:
172 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
218 218  
219 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
220 220  
221 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
175 +In the PC, use below serial tool settings:
222 222  
177 +* Baud:  (% style="color:green" %)**9600**
178 +* Data bits:** (% style="color:green" %)8(%%)**
179 +* Stop bits: (% style="color:green" %)**1**
180 +* Parity:  (% style="color:green" %)**None**
181 +* Flow Control: (% style="color:green" %)**None**
223 223  
224 -1.
225 -11.
226 -111. Soil Conductivity (EC)
183 +(((
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
185 +)))
227 227  
228 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
187 +[[image:image-20220708110657-3.png]]
229 229  
230 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
189 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
231 231  
232 232  
233 -Generally, the EC value of irrigation water is less than 800uS / cm.
234 234  
235 -1.
236 -11.
237 -111. MOD
193 +=== 2.2.4 Use CoAP protocol to uplink data ===
238 238  
239 -Firmware version at least v2.1 supports changing mode.
195 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
240 240  
241 -For example, bytes[10]=90
242 242  
243 -mod=(bytes[10]>>7)&0x01=1.
198 +**Use below commands:**
244 244  
200 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
201 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
202 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
245 245  
246 -Downlink Command:
204 +For parameter description, please refer to AT command set
247 247  
248 -If payload = 0x0A00, workmode=0
206 +[[image:1657249793983-486.png]]
249 249  
250 -If** **payload =** **0x0A01, workmode=1
251 251  
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
252 252  
253 -1.
254 -11.
255 -111. ​Decode payload in The Things Network
211 +[[image:1657249831934-534.png]]
256 256  
257 -While using TTN network, you can add the payload format to decode the payload.
258 258  
259 259  
260 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
261 261  
262 -The payload decoder function for TTN is here:
217 +This feature is supported since firmware version v1.0.1
263 263  
264 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
265 265  
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
266 266  
267 -1.
268 -11. Uplink Interval
224 +[[image:1657249864775-321.png]]
269 269  
270 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
271 271  
272 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
227 +[[image:1657249930215-289.png]]
273 273  
274 -1.
275 -11. ​Downlink Payload
276 276  
277 -By default, LSE50 prints the downlink payload to console port.
278 278  
279 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
280 -|TDC (Transmit Time Interval)|Any|01|4
281 -|RESET|Any|04|2
282 -|AT+CFM|Any|05|4
283 -|INTMOD|Any|06|4
284 -|MOD|Any|0A|2
231 +=== 2.2.6 Use MQTT protocol to uplink data ===
285 285  
286 -**Examples**
233 +This feature is supported since firmware version v110
287 287  
288 288  
289 -**Set TDC**
236 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
238 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
239 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
240 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
241 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
242 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
290 290  
291 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
244 +[[image:1657249978444-674.png]]
292 292  
293 -Payload:    01 00 00 1E    TDC=30S
294 294  
295 -Payload:    01 00 00 3C    TDC=60S
247 +[[image:1657249990869-686.png]]
296 296  
297 297  
298 -**Reset**
250 +(((
251 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
252 +)))
299 299  
300 -If payload = 0x04FF, it will reset the LSE01
301 301  
302 302  
303 -**CFM**
256 +=== 2.2.7 Use TCP protocol to uplink data ===
304 304  
305 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
258 +This feature is supported since firmware version v110
306 306  
307 -1.
308 -11. ​Show Data in DataCake IoT Server
309 309  
310 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
261 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
311 311  
264 +[[image:1657250217799-140.png]]
312 312  
313 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
314 314  
315 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
267 +[[image:1657250255956-604.png]]
316 316  
317 317  
318 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
319 319  
271 +=== 2.2.8 Change Update Interval ===
320 320  
321 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
273 +User can use below command to change the (% style="color:green" %)**uplink interval**.
322 322  
275 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
323 323  
277 +(((
278 +(% style="color:red" %)**NOTE:**
279 +)))
324 324  
281 +(((
282 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
283 +)))
325 325  
326 326  
327 -Step 3: Create an account or log in Datacake.
328 328  
329 -Step 4: Search the LSE01 and add DevEUI.
287 +== 2.3  Uplink Payload ==
330 330  
289 +In this mode, uplink payload includes in total 18 bytes
331 331  
332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
291 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
292 +|=(% style="width: 50px;" %)(((
293 +**Size(bytes)**
294 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
295 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
333 333  
297 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
334 334  
335 335  
336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
300 +[[image:image-20220708111918-4.png]]
337 337  
338 338  
339 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
303 +The payload is ASCII string, representative same HEX:
340 340  
305 +0x72403155615900640c7817075e0a8c02f900 where:
341 341  
307 +* Device ID: 0x 724031556159 = 724031556159
308 +* Version: 0x0064=100=1.0.0
342 342  
343 -1.
344 -11. Frequency Plans
310 +* BAT: 0x0c78 = 3192 mV = 3.192V
311 +* Singal: 0x17 = 23
312 +* Soil Moisture: 0x075e= 1886 = 18.86  %
313 +* Soil Temperature:0x0a8c =2700=27 °C
314 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
315 +* Interrupt: 0x00 = 0
345 345  
346 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
347 347  
348 -1.
349 -11.
350 -111. EU863-870 (EU868)
318 +== 2.4  Payload Explanation and Sensor Interface ==
351 351  
352 -Uplink:
353 353  
354 -868.1 - SF7BW125 to SF12BW125
321 +=== 2.4.1  Device ID ===
355 355  
356 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
323 +By default, the Device ID equal to the last 6 bytes of IMEI.
357 357  
358 -868.5 - SF7BW125 to SF12BW125
325 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
359 359  
360 -867.1 - SF7BW125 to SF12BW125
327 +**Example:**
361 361  
362 -867.3 - SF7BW125 to SF12BW125
329 +AT+DEUI=A84041F15612
363 363  
364 -867.5 - SF7BW125 to SF12BW125
331 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
365 365  
366 -867.7 - SF7BW125 to SF12BW125
367 367  
368 -867.9 - SF7BW125 to SF12BW125
369 369  
370 -868.8 - FSK
335 +=== 2.4.2  Version Info ===
371 371  
337 +Specify the software version: 0x64=100, means firmware version 1.00.
372 372  
373 -Downlink:
339 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
374 374  
375 -Uplink channels 1-9 (RX1)
376 376  
377 -869.525 - SF9BW125 (RX2 downlink only)
378 378  
343 +=== 2.4.3  Battery Info ===
379 379  
380 -1.
381 -11.
382 -111. US902-928(US915)
345 +(((
346 +Check the battery voltage for LSE01.
347 +)))
383 383  
384 -Used in USA, Canada and South America. Default use CHE=2
349 +(((
350 +Ex1: 0x0B45 = 2885mV
351 +)))
385 385  
386 -Uplink:
353 +(((
354 +Ex2: 0x0B49 = 2889mV
355 +)))
387 387  
388 -903.9 - SF7BW125 to SF10BW125
389 389  
390 -904.1 - SF7BW125 to SF10BW125
391 391  
392 -904.3 - SF7BW125 to SF10BW125
359 +=== 2.4. Signal Strength ===
393 393  
394 -904.5 - SF7BW125 to SF10BW125
361 +NB-IoT Network signal Strength.
395 395  
396 -904.7 - SF7BW125 to SF10BW125
363 +**Ex1: 0x1d = 29**
397 397  
398 -904.9 - SF7BW125 to SF10BW125
365 +(% style="color:blue" %)**0**(%%)  -113dBm or less
399 399  
400 -905.1 - SF7BW125 to SF10BW125
367 +(% style="color:blue" %)**1**(%%)  -111dBm
401 401  
402 -905.3 - SF7BW125 to SF10BW125
369 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
403 403  
371 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
404 404  
405 -Downlink:
373 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 406  
407 -923.3 - SF7BW500 to SF12BW500
408 408  
409 -923.9 - SF7BW500 to SF12BW500
410 410  
411 -924.5 - SF7BW500 to SF12BW500
377 +=== 2.4.5  Soil Moisture ===
412 412  
413 -925.1 - SF7BW500 to SF12BW500
379 +(((
380 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
381 +)))
414 414  
415 -925.7 - SF7BW500 to SF12BW500
383 +(((
384 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
385 +)))
416 416  
417 -926.3 - SF7BW500 to SF12BW500
387 +(((
388 +
389 +)))
418 418  
419 -926.9 - SF7BW500 to SF12BW500
391 +(((
392 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
393 +)))
420 420  
421 -927.5 - SF7BW500 to SF12BW500
422 422  
423 -923.3 - SF12BW500(RX2 downlink only)
424 424  
397 +=== 2.4.6  Soil Temperature ===
425 425  
426 -1.
427 -11.
428 -111. CN470-510 (CN470)
399 +(((
400 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
401 +)))
429 429  
430 -Used in China, Default use CHE=1
403 +(((
404 +**Example**:
405 +)))
431 431  
432 -Uplink:
407 +(((
408 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
409 +)))
433 433  
434 -486.3 - SF7BW125 to SF12BW125
411 +(((
412 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
413 +)))
435 435  
436 -486.5 - SF7BW125 to SF12BW125
437 437  
438 -486.7 - SF7BW125 to SF12BW125
439 439  
440 -486.9 - SF7BW125 to SF12BW125
417 +=== 2.4. Soil Conductivity (EC) ===
441 441  
442 -487.1 - SF7BW125 to SF12BW125
419 +(((
420 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
421 +)))
443 443  
444 -487.3 - SF7BW125 to SF12BW125
423 +(((
424 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
425 +)))
445 445  
446 -487.5 - SF7BW125 to SF12BW125
427 +(((
428 +Generally, the EC value of irrigation water is less than 800uS / cm.
429 +)))
447 447  
448 -487.7 - SF7BW125 to SF12BW125
431 +(((
432 +
433 +)))
449 449  
435 +(((
436 +
437 +)))
450 450  
451 -Downlink:
439 +=== 2.4.8  Digital Interrupt ===
452 452  
453 -506.7 - SF7BW125 to SF12BW125
441 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
454 454  
455 -506.9 - SF7BW125 to SF12BW125
443 +The command is:
456 456  
457 -507.1 - SF7BW125 to SF12BW125
445 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
458 458  
459 -507.3 - SF7BW125 to SF12BW125
460 460  
461 -507.5 - SF7BW125 to SF12BW125
448 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
462 462  
463 -507.7 - SF7BW125 to SF12BW125
464 464  
465 -507.9 - SF7BW125 to SF12BW125
451 +Example:
466 466  
467 -508.1 - SF7BW125 to SF12BW125
453 +0x(00): Normal uplink packet.
468 468  
469 -505.3 - SF12BW125 (RX2 downlink only)
455 +0x(01): Interrupt Uplink Packet.
470 470  
471 471  
472 -1.
473 -11.
474 -111. AU915-928(AU915)
475 475  
476 -Default use CHE=2
459 +=== 2.4.9  ​+5V Output ===
477 477  
478 -Uplink:
461 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
479 479  
480 -916.8 - SF7BW125 to SF12BW125
481 481  
482 -917.0 - SF7BW125 to SF12BW125
464 +The 5V output time can be controlled by AT Command.
483 483  
484 -917.2 - SF7BW125 to SF12BW125
466 +(% style="color:blue" %)**AT+5VT=1000**
485 485  
486 -917.4 - SF7BW125 to SF12BW125
468 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
487 487  
488 -917.6 - SF7BW125 to SF12BW125
489 489  
490 -917.8 - SF7BW125 to SF12BW125
491 491  
492 -918.0 - SF7BW125 to SF12BW125
472 +== 2.5  Downlink Payload ==
493 493  
494 -918.2 - SF7BW125 to SF12BW125
474 +By default, NSE01 prints the downlink payload to console port.
495 495  
476 +[[image:image-20220708133731-5.png]]
496 496  
497 -Downlink:
498 498  
499 -923.3 - SF7BW500 to SF12BW500
479 +(((
480 +(% style="color:blue" %)**Examples:**
481 +)))
500 500  
501 -923.9 - SF7BW500 to SF12BW500
483 +(((
484 +
485 +)))
502 502  
503 -924.5 - SF7BW500 to SF12BW500
487 +* (((
488 +(% style="color:blue" %)**Set TDC**
489 +)))
504 504  
505 -925.1 - SF7BW500 to SF12BW500
491 +(((
492 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
493 +)))
506 506  
507 -925.7 - SF7BW500 to SF12BW500
495 +(((
496 +Payload:    01 00 00 1E    TDC=30S
497 +)))
508 508  
509 -926.3 - SF7BW500 to SF12BW500
499 +(((
500 +Payload:    01 00 00 3C    TDC=60S
501 +)))
510 510  
511 -926.9 - SF7BW500 to SF12BW500
503 +(((
504 +
505 +)))
512 512  
513 -927.5 - SF7BW500 to SF12BW500
507 +* (((
508 +(% style="color:blue" %)**Reset**
509 +)))
514 514  
515 -923.3 - SF12BW500(RX2 downlink only)
511 +(((
512 +If payload = 0x04FF, it will reset the NSE01
513 +)))
516 516  
517 -1.
518 -11.
519 -111. AS920-923 & AS923-925 (AS923)
520 520  
521 -**Default Uplink channel:**
516 +* (% style="color:blue" %)**INTMOD**
522 522  
523 -923.2 - SF7BW125 to SF10BW125
518 +Downlink Payload: 06000003, Set AT+INTMOD=3
524 524  
525 -923.4 - SF7BW125 to SF10BW125
526 526  
527 527  
528 -**Additional Uplink Channel**:
522 +== 2.6  ​LED Indicator ==
529 529  
530 -(OTAA mode, channel added by JoinAccept message)
524 +(((
525 +The NSE01 has an internal LED which is to show the status of different state.
531 531  
532 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
533 533  
534 -922.2 - SF7BW125 to SF10BW125
528 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
529 +* Then the LED will be on for 1 second means device is boot normally.
530 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
531 +* For each uplink probe, LED will be on for 500ms.
532 +)))
535 535  
536 -922.4 - SF7BW125 to SF10BW125
537 537  
538 -922.6 - SF7BW125 to SF10BW125
539 539  
540 -922.8 - SF7BW125 to SF10BW125
541 541  
542 -923.0 - SF7BW125 to SF10BW125
537 +== 2.7  Installation in Soil ==
543 543  
544 -922.0 - SF7BW125 to SF10BW125
539 +__**Measurement the soil surface**__
545 545  
541 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
546 546  
547 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
543 +[[image:1657259653666-883.png]]
548 548  
549 -923.6 - SF7BW125 to SF10BW125
550 550  
551 -923.8 - SF7BW125 to SF10BW125
546 +(((
547 +
552 552  
553 -924.0 - SF7BW125 to SF10BW125
554 -
555 -924.2 - SF7BW125 to SF10BW125
556 -
557 -924.4 - SF7BW125 to SF10BW125
558 -
559 -924.6 - SF7BW125 to SF10BW125
560 -
561 -
562 -
563 -**Downlink:**
564 -
565 -Uplink channels 1-8 (RX1)
566 -
567 -923.2 - SF10BW125 (RX2)
568 -
569 -
570 -1.
571 -11.
572 -111. KR920-923 (KR920)
573 -
574 -Default channel:
575 -
576 -922.1 - SF7BW125 to SF12BW125
577 -
578 -922.3 - SF7BW125 to SF12BW125
579 -
580 -922.5 - SF7BW125 to SF12BW125
581 -
582 -
583 -Uplink: (OTAA mode, channel added by JoinAccept message)
584 -
585 -922.1 - SF7BW125 to SF12BW125
586 -
587 -922.3 - SF7BW125 to SF12BW125
588 -
589 -922.5 - SF7BW125 to SF12BW125
590 -
591 -922.7 - SF7BW125 to SF12BW125
592 -
593 -922.9 - SF7BW125 to SF12BW125
594 -
595 -923.1 - SF7BW125 to SF12BW125
596 -
597 -923.3 - SF7BW125 to SF12BW125
598 -
599 -
600 -Downlink:
601 -
602 -Uplink channels 1-7(RX1)
603 -
604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
605 -
606 -
607 -1.
608 -11.
609 -111. IN865-867 (IN865)
610 -
611 -Uplink:
612 -
613 -865.0625 - SF7BW125 to SF12BW125
614 -
615 -865.4025 - SF7BW125 to SF12BW125
616 -
617 -865.9850 - SF7BW125 to SF12BW125
618 -
619 -
620 -Downlink:
621 -
622 -Uplink channels 1-3 (RX1)
623 -
624 -866.550 - SF10BW125 (RX2)
625 -
626 -
627 -1.
628 -11. LED Indicator
629 -
630 -The LSE01 has an internal LED which is to show the status of different state.
631 -
632 -
633 -* Blink once when device power on.
634 -* Solid ON for 5 seconds once device successful Join the network.
635 -* Blink once when device transmit a packet.
636 -
637 -1.
638 -11. Installation in Soil
639 -
640 -**Measurement the soil surface**
641 -
642 -
643 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
644 -
645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 -
647 -
648 -
649 -
650 -
651 -
652 -
653 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
654 -
655 -
656 -
549 +(((
657 657  Dig a hole with diameter > 20CM.
551 +)))
658 658  
553 +(((
659 659  Horizontal insert the probe to the soil and fill the hole for long term measurement.
555 +)))
556 +)))
660 660  
558 +[[image:1654506665940-119.png]]
661 661  
560 +(((
561 +
562 +)))
662 662  
663 663  
664 -1.
665 -11. ​Firmware Change Log
565 +== 2.8  ​Firmware Change Log ==
666 666  
667 -**Firmware download link:**
668 668  
669 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
568 +Download URL & Firmware Change log
670 670  
570 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
671 671  
672 -**Firmware Upgrade Method:**
673 673  
674 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
573 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
675 675  
676 676  
677 -**V1.0.**
678 678  
679 -Release
577 +== 2.9  ​Battery Analysis ==
680 680  
579 +=== 2.9.1  ​Battery Type ===
681 681  
682 682  
683 -1.
684 -11. ​Battery Analysis
685 -111. ​Battery Type
582 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
686 686  
687 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
688 688  
585 +The battery is designed to last for several years depends on the actually use environment and update interval. 
689 689  
690 -The battery is designed to last for more than 5 years for the LSN50.
691 691  
692 -
693 693  The battery related documents as below:
694 694  
695 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
696 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
697 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
590 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
592 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
698 698  
699 -|(((
700 -JST-XH-2P connector
594 +(((
595 +[[image:image-20220708140453-6.png]]
701 701  )))
702 702  
703 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
704 704  
705 705  
600 +=== 2.9.2  Power consumption Analyze ===
706 706  
707 -1.
708 -11.
709 -111. ​Battery Note
602 +(((
603 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
604 +)))
710 710  
711 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
712 712  
607 +(((
608 +Instruction to use as below:
609 +)))
713 713  
714 -1.
715 -11.
716 -111. ​Replace the battery
611 +(((
612 +(% style="color:blue" %)**Step 1 **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
613 +)))
717 717  
718 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
719 719  
616 +(((
617 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
618 +)))
720 720  
721 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
620 +* (((
621 +Product Model
622 +)))
623 +* (((
624 +Uplink Interval
625 +)))
626 +* (((
627 +Working Mode
628 +)))
722 722  
630 +(((
631 +And the Life expectation in difference case will be shown on the right.
632 +)))
723 723  
724 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
634 +[[image:image-20220708141352-7.jpeg]]
725 725  
726 726  
727 727  
638 +=== 2.9.3  ​Battery Note ===
728 728  
640 +(((
641 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
642 +)))
729 729  
730 730  
731 -= 3. ​Using the AT Commands =
732 732  
733 -== 3.1 Access AT Commands ==
646 +=== 2.9.4  Replace the battery ===
734 734  
648 +(((
649 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
650 +)))
735 735  
736 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
737 737  
738 -[[image:1654501986557-872.png]]
739 739  
654 += 3. ​ Access NB-IoT Module =
740 740  
741 -Or if you have below board, use below connection:
656 +(((
657 +Users can directly access the AT command set of the NB-IoT module.
658 +)))
742 742  
660 +(((
661 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
662 +)))
743 743  
744 -[[image:1654502005655-729.png]]
664 +[[image:1657261278785-153.png]]
745 745  
746 746  
747 747  
748 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
668 += 4.  Using the AT Commands =
749 749  
670 +== 4.1  Access AT Commands ==
750 750  
751 - [[image:1654502050864-459.png]]
672 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
752 752  
753 753  
754 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
675 +AT+<CMD>?  : Help on <CMD>
755 755  
677 +AT+<CMD>         : Run <CMD>
756 756  
757 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
679 +AT+<CMD>=<value> : Set the value
758 758  
759 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
681 +AT+<CMD>=?  : Get the value
760 760  
761 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
762 762  
763 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
764 -
765 -
766 766  (% style="color:#037691" %)**General Commands**(%%)      
767 767  
768 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
686 +AT  : Attention       
769 769  
770 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
688 +AT?  : Short Help     
771 771  
772 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
690 +ATZ  : MCU Reset    
773 773  
774 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
692 +AT+TDC  : Application Data Transmission Interval
775 775  
694 +AT+CFG  : Print all configurations
776 776  
777 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
696 +AT+CFGMOD           : Working mode selection
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
698 +AT+INTMOD            : Set the trigger interrupt mode
780 780  
781 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
700 +AT+5VT  : Set extend the time of 5V power  
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
702 +AT+PRO  : Choose agreement
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
704 +AT+WEIGRE  : Get weight or set weight to 0
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
706 +AT+WEIGAP  : Get or Set the GapValue of weight
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
708 +AT+RXDL  : Extend the sending and receiving time
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
710 +AT+CNTFAC  : Get or set counting parameters
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
712 +AT+SERVADDR  : Server Address
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
715 +(% style="color:#037691" %)**COAP Management**      
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
717 +AT+URI            : Resource parameters
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
720 +(% style="color:#037691" %)**UDP Management**
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
722 +AT+CFM          : Upload confirmation mode (only valid for UDP)
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
725 +(% style="color:#037691" %)**MQTT Management**
810 810  
727 +AT+CLIENT               : Get or Set MQTT client
811 811  
812 -(% style="color:#037691" %)**LoRa Network Management**
729 +AT+UNAME  : Get or Set MQTT Username
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
731 +AT+PWD                  : Get or Set MQTT password
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
733 +AT+PUBTOPI : Get or Set MQTT publish topic
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
735 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
738 +(% style="color:#037691" %)**Information**          
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
740 +AT+FDR  : Factory Data Reset
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
742 +AT+PWOR : Serial Access Password
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
746 += ​5.  FAQ =
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
748 +== 5.1 How to Upgrade Firmware ==
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
751 +(((
752 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
753 +)))
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
843 -
844 -
845 -(% style="color:#037691" %)**Information** 
846 -
847 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
848 -
849 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
850 -
851 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
852 -
853 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
858 -
859 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
860 -
861 -
862 -= ​4. FAQ =
863 -
864 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
865 -
866 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
867 -When downloading the images, choose the required image file for download. ​
868 -
869 -
870 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
871 -
872 -
873 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
874 -
875 -
876 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
877 -
878 -[[image:image-20220606154726-3.png]]
879 -
880 -When you use the TTN network, the US915 frequency bands use are:
881 -
882 -* 903.9 - SF7BW125 to SF10BW125
883 -* 904.1 - SF7BW125 to SF10BW125
884 -* 904.3 - SF7BW125 to SF10BW125
885 -* 904.5 - SF7BW125 to SF10BW125
886 -* 904.7 - SF7BW125 to SF10BW125
887 -* 904.9 - SF7BW125 to SF10BW125
888 -* 905.1 - SF7BW125 to SF10BW125
889 -* 905.3 - SF7BW125 to SF10BW125
890 -* 904.6 - SF8BW500
891 -
892 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
893 -
894 -(% class="box infomessage" %)
895 895  (((
896 -**AT+CHE=2**
756 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
897 897  )))
898 898  
899 -(% class="box infomessage" %)
900 900  (((
901 -**ATZ**
760 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
902 902  )))
903 903  
904 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
905 905  
906 906  
907 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
765 += 6.  Trouble Shooting =
908 908  
909 -[[image:image-20220606154825-4.png]]
767 +== 6.1  ​Connection problem when uploading firmware ==
910 910  
911 911  
770 +(% class="wikigeneratedid" %)
771 +(((
772 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
773 +)))
912 912  
913 -= 5. Trouble Shooting =
914 914  
915 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
916 916  
917 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
777 +== 6. AT Command input doesn't work ==
918 918  
779 +(((
780 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
781 +)))
919 919  
920 -== 5.2 AT Command input doesn’t work ==
921 921  
922 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
923 923  
785 += 7. ​ Order Info =
924 924  
925 -== 5.3 Device rejoin in at the second uplink packet ==
926 926  
927 -(% style="color:#4f81bd" %)**Issue describe as below:**
788 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
928 928  
929 -[[image:1654500909990-784.png]]
930 930  
791 +(% class="wikigeneratedid" %)
792 +(((
793 +
794 +)))
931 931  
932 -(% style="color:#4f81bd" %)**Cause for this issue:**
796 += 8 Packing Info =
933 933  
934 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
798 +(((
799 +
935 935  
801 +(% style="color:#037691" %)**Package Includes**:
936 936  
937 -(% style="color:#4f81bd" %)**Solution: **
938 938  
939 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
804 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
805 +* External antenna x 1
806 +)))
940 940  
941 -[[image:1654500929571-736.png]]
808 +(((
809 +
942 942  
811 +(% style="color:#037691" %)**Dimension and weight**:
943 943  
944 -= 6. ​Order Info =
945 945  
946 -
947 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
948 -
949 -
950 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
951 -
952 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
953 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
954 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
955 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
956 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
957 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
958 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
959 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
960 -
961 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
962 -
963 -* (% style="color:red" %)**4**(%%): 4000mAh battery
964 -* (% style="color:red" %)**8**(%%): 8500mAh battery
965 -
966 -= 7. Packing Info =
967 -
968 -(((
969 -**Package Includes**:
814 +* Size: 195 x 125 x 55 mm
815 +* Weight:   420g
970 970  )))
971 971  
972 -* (((
973 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
974 -)))
975 -
976 976  (((
977 977  
978 -)))
979 979  
980 -(((
981 -**Dimension and weight**:
982 -)))
983 983  
984 -* (((
985 -Device Size: cm
822 +
986 986  )))
987 -* (((
988 -Device Weight: g
989 -)))
990 -* (((
991 -Package Size / pcs : cm
992 -)))
993 -* (((
994 -Weight / pcs : g
995 -)))
996 996  
997 -= 8. Support =
825 += 9.  Support =
998 998  
999 999  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1000 1000  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1001 -
1002 -
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content