Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,995 +8,827 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 64 +== 1.3 Specification == 63 63 64 64 65 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 68 68 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 71 72 -== 1.5 Firmware Change log == 73 73 74 +(% style="color:#037691" %)**NB-IoT Spec:** 74 74 75 -**LSE01 v1.0 :** Release 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 76 76 77 77 78 78 79 - = 2. ConfigureLSE01to connect toLoRaWANnetwork =85 +Probe(% style="color:#037691" %)** Specification:** 80 80 81 - ==2.1Howitworks==87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 85 -))) 89 +[[image:image-20220708101224-1.png]] 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 90 90 91 91 93 +== 1.4 Applications == 92 92 93 - ==2.2Quick guideto connect to LoRaWAN server (OTAA) ==95 +* Smart Agriculture 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 96 96 100 +== 1.5 Pin Definitions == 97 97 98 -[[image:1654503992078-669.png]] 99 99 103 +[[image:1657246476176-652.png]] 100 100 101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 102 102 103 103 104 - **Step1**:Createa devicein TTNwiththe OTAAkeys fromLSE01.107 += 2. Use NSE01 to communicate with IoT Server = 105 105 106 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:109 +== 2.1 How it works == 107 107 108 -[[image:image-20220606163732-6.jpeg]] 109 109 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 111 111 112 -**Add APP EUI in the application** 113 113 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 119 +))) 114 114 115 -[[image:1 654504596150-405.png]]121 +[[image:image-20220708101605-2.png]] 116 116 117 - 118 - 119 -**Add APP KEY and DEV EUI** 120 - 121 -[[image:1654504683289-357.png]] 122 - 123 - 124 - 125 -**Step 2**: Power on LSE01 126 - 127 - 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 - 130 -[[image:image-20220606163915-7.png]] 131 - 132 - 133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 134 - 135 -[[image:1654504778294-788.png]] 136 - 137 - 138 - 139 -== 2.3 Uplink Payload == 140 - 141 -=== 2.3.1 MOD~=0(Default Mode) === 142 - 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 123 +((( 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 166 166 129 +== 2.2 Configure the NSE01 == 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).132 +=== 2.2.1 Test Requirement === 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 135 +To use NSE01 in your city, make sure meet below requirements: 179 179 180 - (Reserve,Ignorenow)181 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((182 - MOD&DigitalInterrupt137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 183 183 184 -(Optional) 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 188 146 +[[image:1657249419225-449.png]] 189 189 190 190 191 -=== 2.3.3 Battery Info === 192 192 193 - Checkthebattery voltageforLSE01.150 +=== 2.2.2 Insert SIM card === 194 194 195 - Ex1:0x0B45=2885mV152 +Insert the NB-IoT Card get from your provider. 196 196 197 - Ex2:0x0B49=2889mV154 +User need to take out the NB-IoT module and insert the SIM card like below: 198 198 199 199 157 +[[image:1657249468462-536.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 206 206 163 +((( 164 +((( 165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 166 +))) 167 +))) 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 209 170 +**Connection:** 210 210 211 -1. 212 -11. 213 -111. Soil Temperature 172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 214 214 215 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 216 216 217 - **Example**:176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 218 218 219 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 220 220 221 -I fpayload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100=-1.29°C179 +In the PC, use below serial tool settings: 222 222 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 223 223 224 - 1.225 -1 1.226 - 111. Soil Conductivity (EC)187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 227 227 228 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0-000(Decimal)( Can be greater than20000).191 +[[image:image-20220708110657-3.png]] 229 229 230 - Forexample,ifthedatayougetfromtheregisteris 0x00 0xC8, the soiluctivity is 00C8(H)=200(D) = 200 uS/cm.193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 231 231 232 232 233 -Generally, the EC value of irrigation water is less than 800uS / cm. 234 234 235 -1. 236 -11. 237 -111. MOD 197 +=== 2.2.4 Use CoAP protocol to uplink data === 238 238 239 - Firmwareversion atleastv2.1supportschangingmode.199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 240 240 241 -For example, bytes[10]=90 242 242 243 - mod=(bytes[10]>>7)&0x01=1.202 +**Use below commands:** 244 244 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 245 245 246 - DownlinkCommand:208 +For parameter description, please refer to AT command set 247 247 248 - If payload = 0x0A00, workmode=0210 +[[image:1657249793983-486.png]] 249 249 250 -If** **payload =** **0x0A01, workmode=1 251 251 213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 252 252 253 -1. 254 -11. 255 -111. Decode payload in The Things Network 215 +[[image:1657249831934-534.png]] 256 256 257 -While using TTN network, you can add the payload format to decode the payload. 258 258 259 259 260 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 261 261 262 -The p ayload decoderfunction forTTN is here:221 +This feature is supported since firmware version v1.0.1 263 263 264 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 265 265 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 266 266 267 -1. 268 -11. Uplink Interval 228 +[[image:1657249864775-321.png]] 269 269 270 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 271 271 272 -[[ http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]231 +[[image:1657249930215-289.png]] 273 273 274 -1. 275 -11. Downlink Payload 276 276 277 -By default, LSE50 prints the downlink payload to console port. 278 278 279 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 280 -|TDC (Transmit Time Interval)|Any|01|4 281 -|RESET|Any|04|2 282 -|AT+CFM|Any|05|4 283 -|INTMOD|Any|06|4 284 -|MOD|Any|0A|2 235 +=== 2.2.6 Use MQTT protocol to uplink data === 285 285 286 - **Examples**237 +This feature is supported since firmware version v110 287 287 288 288 289 -**Set TDC** 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 290 290 291 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.248 +[[image:1657249978444-674.png]] 292 292 293 -Payload: 01 00 00 1E TDC=30S 294 294 295 - Payload:0100 00 3C TDC=60S251 +[[image:1657249990869-686.png]] 296 296 297 297 298 -**Reset** 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 299 299 300 -If payload = 0x04FF, it will reset the LSE01 301 301 302 302 303 - **CFM**260 +=== 2.2.7 Use TCP protocol to uplink data === 304 304 305 - DownlinkPayload: 05000001, SetAT+CFM=1or05000000,setAT+CFM=0262 +This feature is supported since firmware version v110 306 306 307 -1. 308 -11. Show Data in DataCake IoT Server 309 309 310 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 311 311 268 +[[image:1657250217799-140.png]] 312 312 313 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 314 314 315 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:271 +[[image:1657250255956-604.png]] 316 316 317 317 318 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 319 319 275 +=== 2.2.8 Change Update Interval === 320 320 321 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 322 322 279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 323 323 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 324 324 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 325 325 326 326 327 -Step 3: Create an account or log in Datacake. 328 328 329 - Step4:Search the LSE01 andaddDevEUI.291 +== 2.3 Uplink Payload == 330 330 293 +In this mode, uplink payload includes in total 18 bytes 331 331 332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 333 333 301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 334 334 335 335 336 - Afteradded, the sensor data arrive TTN, it willalso arriveand show in Mydevices.304 +[[image:image-20220708111918-4.png]] 337 337 338 338 339 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]307 +The payload is ASCII string, representative same HEX: 340 340 309 +0x72403155615900640c7817075e0a8c02f900 where: 341 341 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 342 342 343 -1. 344 -11. Frequency Plans 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 345 345 346 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 347 347 348 -1. 349 -11. 350 -111. EU863-870 (EU868) 351 351 352 -Uplink: 353 353 354 - 868.1- SF7BW125to SF12BW125324 +== 2.4 Payload Explanation and Sensor Interface == 355 355 356 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 357 357 358 - 868.5- SF7BW125toSF12BW125327 +=== 2.4.1 Device ID === 359 359 360 - 867.1-SF7BW125toSF12BW125329 +By default, the Device ID equal to the last 6 bytes of IMEI. 361 361 362 - 867.3-SF7BW125toSF12BW125331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 363 363 364 - 867.5 - SF7BW125 to SF12BW125333 +**Example:** 365 365 366 -8 67.7 - SF7BW125to SF12BW125335 +AT+DEUI=A84041F15612 367 367 368 - 867.9-SF7BW125toSF12BW125337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 369 369 370 -868.8 - FSK 371 371 372 372 373 - Downlink:341 +=== 2.4.2 Version Info === 374 374 375 - Uplinkchannels 1-9 (RX1)343 +Specify the software version: 0x64=100, means firmware version 1.00. 376 376 377 - 869.525-SF9BW125(RX2 downlinkonly)345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 378 378 379 379 380 -1. 381 -11. 382 -111. US902-928(US915) 383 383 384 - UsedinUSA, Canada and South America.Defaultuse CHE=2349 +=== 2.4.3 Battery Info === 385 385 386 -Uplink: 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 387 387 388 -903.9 - SF7BW125 to SF10BW125 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 389 389 390 -904.1 - SF7BW125 to SF10BW125 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 391 391 392 -904.3 - SF7BW125 to SF10BW125 393 393 394 -904.5 - SF7BW125 to SF10BW125 395 395 396 - 904.7-SF7BW125toSF10BW125365 +=== 2.4.4 Signal Strength === 397 397 398 - 904.9-SF7BW125to SF10BW125367 +NB-IoT Network signal Strength. 399 399 400 - 905.1- SF7BW125toSF10BW125369 +**Ex1: 0x1d = 29** 401 401 402 - 905.3-SF7BW125toSF10BW125371 +(% style="color:blue" %)**0**(%%) -113dBm or less 403 403 373 +(% style="color:blue" %)**1**(%%) -111dBm 404 404 405 - Downlink:375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 406 406 407 - 923.3-SF7BW500toSF12BW500377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 408 408 409 -9 23.9-SF7BW500toSF12BW500379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 410 410 411 -924.5 - SF7BW500 to SF12BW500 412 412 413 -925.1 - SF7BW500 to SF12BW500 414 414 415 - 925.7-SF7BW500toSF12BW500383 +=== 2.4.5 Soil Moisture === 416 416 417 -926.3 - SF7BW500 to SF12BW500 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 418 418 419 -926.9 - SF7BW500 to SF12BW500 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 420 420 421 -927.5 - SF7BW500 to SF12BW500 393 +((( 394 + 395 +))) 422 422 423 -923.3 - SF12BW500(RX2 downlink only) 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 424 424 425 425 426 -1. 427 -11. 428 -111. CN470-510 (CN470) 429 429 430 - UsedinChina,DefaultseCHE=1403 +=== 2.4.6 Soil Temperature === 431 431 432 -Uplink: 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 433 433 434 -486.3 - SF7BW125 to SF12BW125 409 +((( 410 +**Example**: 411 +))) 435 435 436 -486.5 - SF7BW125 to SF12BW125 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 437 437 438 -486.7 - SF7BW125 to SF12BW125 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 439 439 440 -486.9 - SF7BW125 to SF12BW125 441 441 442 -487.1 - SF7BW125 to SF12BW125 443 443 444 -4 87.3-SF7BW125toSF12BW125423 +=== 2.4.7 Soil Conductivity (EC) === 445 445 446 -487.5 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 447 447 448 -487.7 - SF7BW125 to SF12BW125 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 449 449 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 450 450 451 -Downlink: 437 +((( 438 + 439 +))) 452 452 453 -506.7 - SF7BW125 to SF12BW125 441 +((( 442 + 443 +))) 454 454 455 - 506.9- SF7BW125toSF12BW125445 +=== 2.4.8 Digital Interrupt === 456 456 457 - 507.1-SF7BW125toSF12BW125447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 458 458 459 - 507.3- SF7BW125 toSF12BW125449 +The command is: 460 460 461 - 507.5-SF7BW125to SF12BW125451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 462 462 463 -507.7 - SF7BW125 to SF12BW125 464 464 465 - 507.9-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 466 466 467 -508.1 - SF7BW125 to SF12BW125 468 468 469 - 505.3 - SF12BW125 (RX2 downlink only)457 +Example: 470 470 459 +0x(00): Normal uplink packet. 471 471 472 -1. 473 -11. 474 -111. AU915-928(AU915) 461 +0x(01): Interrupt Uplink Packet. 475 475 476 -Default use CHE=2 477 477 478 -Uplink: 479 479 480 - 916.8- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 481 481 482 - 917.0-SF7BW125 toSF12BW125467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 483 483 484 -917.2 - SF7BW125 to SF12BW125 485 485 486 - 917.4- SF7BW125 toSF12BW125470 +The 5V output time can be controlled by AT Command. 487 487 488 - 917.6- SF7BW125toSF12BW125472 +(% style="color:blue" %)**AT+5VT=1000** 489 489 490 - 917.8-SF7BW125 toSF12BW125474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 491 491 492 -918.0 - SF7BW125 to SF12BW125 493 493 494 -918.2 - SF7BW125 to SF12BW125 495 495 478 +== 2.5 Downlink Payload == 496 496 497 - Downlink:480 +By default, NSE01 prints the downlink payload to console port. 498 498 499 - 923.3- SF7BW500 to SF12BW500482 +[[image:image-20220708133731-5.png]] 500 500 501 -923.9 - SF7BW500 to SF12BW500 502 502 503 -924.5 - SF7BW500 to SF12BW500 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 504 504 505 -925.1 - SF7BW500 to SF12BW500 489 +((( 490 + 491 +))) 506 506 507 -925.7 - SF7BW500 to SF12BW500 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 508 508 509 -926.3 - SF7BW500 to SF12BW500 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 510 510 511 -926.9 - SF7BW500 to SF12BW500 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 512 512 513 -927.5 - SF7BW500 to SF12BW500 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 514 514 515 -923.3 - SF12BW500(RX2 downlink only) 509 +((( 510 + 511 +))) 516 516 517 - 1.518 - 11.519 - 111. AS920-923 & AS923-925 (AS923)513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 520 520 521 -**Default Uplink channel:** 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 522 522 523 -923.2 - SF7BW125 to SF10BW125 524 524 525 - 923.4-SF7BW125toSF10BW125522 +* (% style="color:blue" %)**INTMOD** 526 526 524 +Downlink Payload: 06000003, Set AT+INTMOD=3 527 527 528 -**Additional Uplink Channel**: 529 529 530 -(OTAA mode, channel added by JoinAccept message) 531 531 532 - **AS920~~AS923forJapan, Malaysia, Singapore**:528 +== 2.6 LED Indicator == 533 533 534 -922.2 - SF7BW125 to SF10BW125 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 535 535 536 -922.4 - SF7BW125 to SF10BW125 537 537 538 -922.6 - SF7BW125 to SF10BW125 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 539 539 540 -922.8 - SF7BW125 to SF10BW125 541 541 542 -923.0 - SF7BW125 to SF10BW125 543 543 544 -922.0 - SF7BW125 to SF10BW125 545 545 543 +== 2.7 Installation in Soil == 546 546 547 -** AS923 ~~ AS925 for Brunei, Cambodia, HongKong, Indonesia,Laos, Taiwan, Thailand,Vietnam**:545 +__**Measurement the soil surface**__ 548 548 549 - 923.6-SF7BW125SF10BW125547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 550 550 551 - 923.8 - SF7BW125to SF10BW125549 +[[image:1657259653666-883.png]] 552 552 553 -924.0 - SF7BW125 to SF10BW125 554 554 555 -924.2 - SF7BW125 to SF10BW125 552 +((( 553 + 556 556 557 -924.4 - SF7BW125 to SF10BW125 558 - 559 -924.6 - SF7BW125 to SF10BW125 560 - 561 - 562 - 563 -**Downlink:** 564 - 565 -Uplink channels 1-8 (RX1) 566 - 567 -923.2 - SF10BW125 (RX2) 568 - 569 - 570 -1. 571 -11. 572 -111. KR920-923 (KR920) 573 - 574 -Default channel: 575 - 576 -922.1 - SF7BW125 to SF12BW125 577 - 578 -922.3 - SF7BW125 to SF12BW125 579 - 580 -922.5 - SF7BW125 to SF12BW125 581 - 582 - 583 -Uplink: (OTAA mode, channel added by JoinAccept message) 584 - 585 -922.1 - SF7BW125 to SF12BW125 586 - 587 -922.3 - SF7BW125 to SF12BW125 588 - 589 -922.5 - SF7BW125 to SF12BW125 590 - 591 -922.7 - SF7BW125 to SF12BW125 592 - 593 -922.9 - SF7BW125 to SF12BW125 594 - 595 -923.1 - SF7BW125 to SF12BW125 596 - 597 -923.3 - SF7BW125 to SF12BW125 598 - 599 - 600 -Downlink: 601 - 602 -Uplink channels 1-7(RX1) 603 - 604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 605 - 606 - 607 -1. 608 -11. 609 -111. IN865-867 (IN865) 610 - 611 -Uplink: 612 - 613 -865.0625 - SF7BW125 to SF12BW125 614 - 615 -865.4025 - SF7BW125 to SF12BW125 616 - 617 -865.9850 - SF7BW125 to SF12BW125 618 - 619 - 620 -Downlink: 621 - 622 -Uplink channels 1-3 (RX1) 623 - 624 -866.550 - SF10BW125 (RX2) 625 - 626 - 627 -1. 628 -11. LED Indicator 629 - 630 -The LSE01 has an internal LED which is to show the status of different state. 631 - 632 - 633 -* Blink once when device power on. 634 -* Solid ON for 5 seconds once device successful Join the network. 635 -* Blink once when device transmit a packet. 636 - 637 -1. 638 -11. Installation in Soil 639 - 640 -**Measurement the soil surface** 641 - 642 - 643 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 644 - 645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 646 - 647 - 648 - 649 - 650 - 651 - 652 - 653 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 654 - 655 - 656 - 555 +((( 657 657 Dig a hole with diameter > 20CM. 557 +))) 658 658 559 +((( 659 659 Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 660 660 564 +[[image:1654506665940-119.png]] 661 661 566 +((( 567 + 568 +))) 662 662 663 663 664 -1. 665 -11. Firmware Change Log 571 +== 2.8 Firmware Change Log == 666 666 667 -**Firmware download link:** 668 668 669 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]574 +Download URL & Firmware Change log 670 670 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 671 671 672 -**Firmware Upgrade Method:** 673 673 674 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 675 675 676 676 677 -**V1.0.** 678 678 679 - Release583 +== 2.9 Battery Analysis == 680 680 585 +=== 2.9.1 Battery Type === 681 681 682 682 683 -1. 684 -11. Battery Analysis 685 -111. Battery Type 588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 686 686 687 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 688 688 591 +The battery is designed to last for several years depends on the actually use environment and update interval. 689 689 690 -The battery is designed to last for more than 5 years for the LSN50. 691 691 692 - 693 693 The battery related documents as below: 694 694 695 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],696 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/ downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]697 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 698 698 699 - |(((700 - JST-XH-2P connector600 +((( 601 +[[image:image-20220708140453-6.png]] 701 701 ))) 702 702 703 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 704 704 705 705 606 +=== 2.9.2 Power consumption Analyze === 706 706 707 - 1.708 - 11.709 - 111. Battery Note608 +((( 609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 610 +))) 710 710 711 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 712 712 613 +((( 614 +Instruction to use as below: 615 +))) 713 713 714 - 1.715 -1 1.716 - 111. Replace the battery617 +((( 618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 619 +))) 717 717 718 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 719 719 622 +((( 623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 624 +))) 720 720 721 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 626 +* ((( 627 +Product Model 628 +))) 629 +* ((( 630 +Uplink Interval 631 +))) 632 +* ((( 633 +Working Mode 634 +))) 722 722 636 +((( 637 +And the Life expectation in difference case will be shown on the right. 638 +))) 723 723 724 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)640 +[[image:image-20220708141352-7.jpeg]] 725 725 726 726 727 727 644 +=== 2.9.3 Battery Note === 728 728 646 +((( 647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 648 +))) 729 729 730 730 731 -= 3. Using the AT Commands = 732 732 733 -== 3.1AccessATCommands==652 +=== 2.9.4 Replace the battery === 734 734 654 +((( 655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 656 +))) 735 735 736 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 737 737 738 -[[image:1654501986557-872.png]] 739 739 660 += 3. Access NB-IoT Module = 740 740 741 -Or if you have below board, use below connection: 662 +((( 663 +Users can directly access the AT command set of the NB-IoT module. 664 +))) 742 742 666 +((( 667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 668 +))) 743 743 744 -[[image:165 4502005655-729.png]]670 +[[image:1657261278785-153.png]] 745 745 746 746 747 747 748 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:674 += 4. Using the AT Commands = 749 749 676 +== 4.1 Access AT Commands == 750 750 751 - [[ima ge:1654502050864-459.png]]678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 752 752 753 753 754 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]681 +AT+<CMD>? : Help on <CMD> 755 755 683 +AT+<CMD> : Run <CMD> 756 756 757 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>685 +AT+<CMD>=<value> : Set the value 758 758 759 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>687 +AT+<CMD>=? : Get the value 760 760 761 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 762 762 763 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 764 - 765 - 766 766 (% style="color:#037691" %)**General Commands**(%%) 767 767 768 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 769 769 770 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 771 771 772 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 773 773 774 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 775 775 700 +AT+CFG : Print all configurations 776 776 777 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 778 778 779 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 780 780 781 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 782 782 783 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 784 784 785 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 786 786 787 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 794 794 795 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 796 796 797 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 800 800 801 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 802 802 803 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 806 806 807 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 808 808 809 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 810 810 733 +AT+CLIENT : Get or Set MQTT client 811 811 812 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 813 813 814 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 815 815 816 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 819 819 820 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 821 821 822 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 827 827 828 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 829 829 830 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 831 831 832 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 833 833 834 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 835 835 836 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 757 +((( 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 759 +))) 839 839 840 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 841 - 842 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 843 - 844 - 845 -(% style="color:#037691" %)**Information** 846 - 847 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 848 - 849 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 850 - 851 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 852 - 853 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 858 - 859 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 860 - 861 - 862 -= 4. FAQ = 863 - 864 -== 4.1 How to change the LoRa Frequency Bands/Region? == 865 - 866 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 867 -When downloading the images, choose the required image file for download. 868 - 869 - 870 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 871 - 872 - 873 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 874 - 875 - 876 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 877 - 878 -[[image:image-20220606154726-3.png]] 879 - 880 -When you use the TTN network, the US915 frequency bands use are: 881 - 882 -* 903.9 - SF7BW125 to SF10BW125 883 -* 904.1 - SF7BW125 to SF10BW125 884 -* 904.3 - SF7BW125 to SF10BW125 885 -* 904.5 - SF7BW125 to SF10BW125 886 -* 904.7 - SF7BW125 to SF10BW125 887 -* 904.9 - SF7BW125 to SF10BW125 888 -* 905.1 - SF7BW125 to SF10BW125 889 -* 905.3 - SF7BW125 to SF10BW125 890 -* 904.6 - SF8BW500 891 - 892 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 893 - 894 -(% class="box infomessage" %) 895 895 ((( 896 - **AT+CHE=2**762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 897 897 ))) 898 898 899 -(% class="box infomessage" %) 900 900 ((( 901 - **ATZ**766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 902 902 ))) 903 903 904 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 905 905 906 906 907 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.771 += 6. Trouble Shooting = 908 908 909 - [[image:image-20220606154825-4.png]]773 +== 6.1 Connection problem when uploading firmware == 910 910 911 911 776 +(% class="wikigeneratedid" %) 777 +((( 778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 779 +))) 912 912 913 -= 5. Trouble Shooting = 914 914 915 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 916 916 917 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.783 +== 6.2 AT Command input doesn't work == 918 918 785 +((( 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 787 +))) 919 919 920 -== 5.2 AT Command input doesn’t work == 921 921 922 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 923 923 791 += 7. Order Info = 924 924 925 -== 5.3 Device rejoin in at the second uplink packet == 926 926 927 -(% style="color:#4f81bd" %)** Issue describe as below:**794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 928 928 929 -[[image:1654500909990-784.png]] 930 930 797 +(% class="wikigeneratedid" %) 798 +((( 799 + 800 +))) 931 931 932 - (% style="color:#4f81bd"%)**Causeforthis issue:**802 += 8. Packing Info = 933 933 934 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 804 +((( 805 + 935 935 807 +(% style="color:#037691" %)**Package Includes**: 936 936 937 -(% style="color:#4f81bd" %)**Solution: ** 938 938 939 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 812 +))) 940 940 941 -[[image:1654500929571-736.png]] 814 +((( 815 + 942 942 817 +(% style="color:#037691" %)**Dimension and weight**: 943 943 944 -= 6. Order Info = 945 945 946 - 947 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 948 - 949 - 950 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 951 - 952 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 953 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 954 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 955 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 956 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 957 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 958 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 959 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 960 - 961 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 962 - 963 -* (% style="color:red" %)**4**(%%): 4000mAh battery 964 -* (% style="color:red" %)**8**(%%): 8500mAh battery 965 - 966 -= 7. Packing Info = 967 - 968 -((( 969 -**Package Includes**: 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 970 970 ))) 971 971 972 -* ((( 973 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 974 -))) 975 - 976 976 ((( 977 977 978 -))) 979 979 980 -((( 981 -**Dimension and weight**: 982 -))) 983 983 984 -* ((( 985 -Device Size: cm 828 + 986 986 ))) 987 -* ((( 988 -Device Weight: g 989 -))) 990 -* ((( 991 -Package Size / pcs : cm 992 -))) 993 -* ((( 994 -Weight / pcs : g 995 -))) 996 996 997 -= 8. Support =831 += 9. Support = 998 998 999 999 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1000 1000 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1001 - 1002 -
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content