Last modified by Mengting Qiu on 2024/04/02 16:44

From version 22.4
edited by Xiaoling
on 2022/06/06 16:44
Change comment: There is no comment for this version
To version 62.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "image-20220708141352-7.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,726 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
42 42  
43 -== 1.2 ​Features ==
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
56 56  
57 -== 1.3 Specification ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 -
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
71 -
72 -== 1.5 Firmware Change log ==
73 -
74 -
75 -**LSE01 v1.0 :**  Release
76 -
77 -
78 -
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
80 -
81 -== 2.1 How it works ==
82 -
83 -(((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
36 +
85 85  )))
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
39 +[[image:1654503236291-817.png]]
90 90  
91 91  
42 +[[image:1657245163077-232.png]]
92 92  
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 94  
95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 96  
46 +== 1.2 ​Features ==
97 97  
98 -[[image:1654503992078-669.png]]
99 99  
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
100 100  
101 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
62 +== 1.3  Specification ==
102 102  
103 103  
104 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
65 +(% style="color:#037691" %)**Common DC Characteristics:**
105 105  
106 -Each LSE01 is shipped with a sticker with the default device EUI as below:
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
107 107  
108 -[[image:image-20220606163732-6.jpeg]]
70 +(% style="color:#037691" %)**NB-IoT Spec:**
109 109  
110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
111 111  
112 -**Add APP EUI in the application**
79 +(% style="color:#037691" %)**Probe Specification:**
113 113  
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
114 114  
115 -[[image:1654504596150-405.png]]
83 +[[image:image-20220708101224-1.png]]
116 116  
117 117  
118 118  
119 -**Add APP KEY and DEV EUI**
87 +== ​1.4  Applications ==
120 120  
121 -[[image:1654504683289-357.png]]
89 +* Smart Agriculture
122 122  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
123 123  
94 +== 1.5  Pin Definitions ==
124 124  
125 -**Step 2**: Power on LSE01
126 126  
97 +[[image:1657246476176-652.png]]
127 127  
128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 129  
130 -[[image:image-20220606163915-7.png]]
131 131  
101 += 2.  Use NSE01 to communicate with IoT Server =
132 132  
133 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
103 +== 2.1  How it works ==
134 134  
135 -[[image:1654504778294-788.png]]
136 136  
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
137 137  
138 138  
139 -== 2.3 Uplink Payload ==
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
113 +)))
140 140  
141 -=== 2.3.1 MOD~=0(Default Mode) ===
115 +[[image:image-20220708101605-2.png]]
142 142  
143 -LSE01 will uplink payload via LoRaWAN with below payload format: 
144 -
145 -
146 -Uplink payload includes in total 11 bytes.
117 +(((
147 147  
148 -
149 -|(((
150 -**Size**
151 -
152 -**(bytes)**
153 -)))|**2**|**2**|**2**|**2**|**2**|**1**
154 -|**Value**|[[BAT>>path:#bat]]|(((
155 -Temperature
156 -
157 -(Reserve, Ignore now)
158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
159 -MOD & Digital Interrupt
160 -
161 -(Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
165 165  
166 166  
123 +== 2.2 ​ Configure the NSE01 ==
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 169  
170 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
126 +=== 2.2.1 Test Requirement ===
171 171  
172 -|(((
173 -**Size**
174 174  
175 -**(bytes)**
176 -)))|**2**|**2**|**2**|**2**|**2**|**1**
177 -|**Value**|[[BAT>>path:#bat]]|(((
178 -Temperature
129 +To use NSE01 in your city, make sure meet below requirements:
179 179  
180 -(Reserve, Ignore now)
181 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
182 -MOD & Digital Interrupt
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
183 183  
184 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
188 188  
140 +[[image:1657249419225-449.png]]
189 189  
190 190  
191 -=== 2.3.3 Battery Info ===
192 192  
193 -Check the battery voltage for LSE01.
144 +=== 2.2.2 Insert SIM card ===
194 194  
195 -Ex1: 0x0B45 = 2885mV
146 +Insert the NB-IoT Card get from your provider.
196 196  
197 -Ex2: 0x0B49 = 2889mV
148 +User need to take out the NB-IoT module and insert the SIM card like below:
198 198  
199 199  
151 +[[image:1657249468462-536.png]]
200 200  
201 -=== 2.3.4 Soil Moisture ===
202 202  
203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
206 206  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
164 +**Connection:**
210 210  
211 -1.
212 -11.
213 -111. Soil Temperature
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
214 214  
215 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
216 216  
217 -**Example**:
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
218 218  
219 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
220 220  
221 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
173 +In the PC, use below serial tool settings:
222 222  
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
223 223  
224 -1.
225 -11.
226 -111. Soil Conductivity (EC)
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
227 227  
228 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
185 +[[image:image-20220708110657-3.png]]
229 229  
230 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
231 231  
232 232  
233 -Generally, the EC value of irrigation water is less than 800uS / cm.
234 234  
235 -1.
236 -11.
237 -111. MOD
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
238 238  
239 -Firmware version at least v2.1 supports changing mode.
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
240 240  
241 -For example, bytes[10]=90
242 242  
243 -mod=(bytes[10]>>7)&0x01=1.
196 +**Use below commands:**
244 244  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
245 245  
246 -Downlink Command:
202 +For parameter description, please refer to AT command set
247 247  
248 -If payload = 0x0A00, workmode=0
204 +[[image:1657249793983-486.png]]
249 249  
250 -If** **payload =** **0x0A01, workmode=1
251 251  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
252 252  
253 -1.
254 -11.
255 -111. ​Decode payload in The Things Network
209 +[[image:1657249831934-534.png]]
256 256  
257 -While using TTN network, you can add the payload format to decode the payload.
258 258  
259 259  
260 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
261 261  
262 -The payload decoder function for TTN is here:
215 +This feature is supported since firmware version v1.0.1
263 263  
264 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
265 265  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
266 266  
267 -1.
268 -11. Uplink Interval
222 +[[image:1657249864775-321.png]]
269 269  
270 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
271 271  
272 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
225 +[[image:1657249930215-289.png]]
273 273  
274 -1.
275 -11. ​Downlink Payload
276 276  
277 -By default, LSE50 prints the downlink payload to console port.
278 278  
279 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
280 -|TDC (Transmit Time Interval)|Any|01|4
281 -|RESET|Any|04|2
282 -|AT+CFM|Any|05|4
283 -|INTMOD|Any|06|4
284 -|MOD|Any|0A|2
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
285 285  
286 -**Examples**
231 +This feature is supported since firmware version v110
287 287  
288 288  
289 -**Set TDC**
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
290 290  
291 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
242 +[[image:1657249978444-674.png]]
292 292  
293 -Payload:    01 00 00 1E    TDC=30S
294 294  
295 -Payload:    01 00 00 3C    TDC=60S
245 +[[image:1657249990869-686.png]]
296 296  
297 297  
298 -**Reset**
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
299 299  
300 -If payload = 0x04FF, it will reset the LSE01
301 301  
302 302  
303 -**CFM**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
304 304  
305 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
256 +This feature is supported since firmware version v110
306 306  
307 -1.
308 -11. ​Show Data in DataCake IoT Server
309 309  
310 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
311 311  
262 +[[image:1657250217799-140.png]]
312 312  
313 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
314 314  
315 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
265 +[[image:1657250255956-604.png]]
316 316  
317 317  
318 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
319 319  
269 +=== 2.2.8 Change Update Interval ===
320 320  
321 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
322 322  
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
323 323  
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
324 324  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
325 325  
326 326  
327 -Step 3: Create an account or log in Datacake.
328 328  
329 -Step 4: Search the LSE01 and add DevEUI.
285 +== 2.3  Uplink Payload ==
330 330  
287 +In this mode, uplink payload includes in total 18 bytes
331 331  
332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
333 333  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
334 334  
335 335  
336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
298 +[[image:image-20220708111918-4.png]]
337 337  
338 338  
339 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
301 +The payload is ASCII string, representative same HEX:
340 340  
303 +0x72403155615900640c7817075e0a8c02f900 where:
341 341  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
342 342  
343 -1.
344 -11. Frequency Plans
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
345 345  
346 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
315 +== 2.4  Payload Explanation and Sensor Interface ==
347 347  
348 -1.
349 -11.
350 -111. EU863-870 (EU868)
351 351  
352 -Uplink:
318 +=== 2.4.1  Device ID ===
353 353  
354 -868.1 - SF7BW125 to SF12BW125
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
355 355  
356 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
357 357  
358 -868.5 - SF7BW125 to SF12BW125
324 +**Example:**
359 359  
360 -867.1 - SF7BW125 to SF12BW125
326 +AT+DEUI=A84041F15612
361 361  
362 -867.3 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
363 363  
364 -867.5 - SF7BW125 to SF12BW125
365 365  
366 -867.7 - SF7BW125 to SF12BW125
367 367  
368 -867.9 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
369 369  
370 -868.8 - FSK
334 +Specify the software version: 0x64=100, means firmware version 1.00.
371 371  
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
372 372  
373 -Downlink:
374 374  
375 -Uplink channels 1-9 (RX1)
376 376  
377 -869.525 - SF9BW125 (RX2 downlink only)
340 +=== 2.4.3  Battery Info ===
378 378  
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
379 379  
380 -1.
381 -11.
382 -111. US902-928(US915)
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
383 383  
384 -Used in USA, Canada and South America. Default use CHE=2
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
385 385  
386 -Uplink:
387 387  
388 -903.9 - SF7BW125 to SF10BW125
389 389  
390 -904.1 - SF7BW125 to SF10BW125
356 +=== 2.4. Signal Strength ===
391 391  
392 -904.3 - SF7BW125 to SF10BW125
358 +NB-IoT Network signal Strength.
393 393  
394 -904.5 - SF7BW125 to SF10BW125
360 +**Ex1: 0x1d = 29**
395 395  
396 -904.7 - SF7BW125 to SF10BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
397 397  
398 -904.9 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
399 399  
400 -905.1 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
401 401  
402 -905.3 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
403 403  
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
404 404  
405 -Downlink:
406 406  
407 -923.3 - SF7BW500 to SF12BW500
408 408  
409 -923.9 - SF7BW500 to SF12BW500
374 +=== 2.4.5  Soil Moisture ===
410 410  
411 -924.5 - SF7BW500 to SF12BW500
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
412 412  
413 -925.1 - SF7BW500 to SF12BW500
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
414 414  
415 -925.7 - SF7BW500 to SF12BW500
384 +(((
385 +
386 +)))
416 416  
417 -926.3 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
418 418  
419 -926.9 - SF7BW500 to SF12BW500
420 420  
421 -927.5 - SF7BW500 to SF12BW500
422 422  
423 -923.3 - SF12BW500(RX2 downlink only)
394 +=== 2.4.6  Soil Temperature ===
424 424  
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
425 425  
426 -1.
427 -11.
428 -111. CN470-510 (CN470)
400 +(((
401 +**Example**:
402 +)))
429 429  
430 -Used in China, Default use CHE=1
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
431 431  
432 -Uplink:
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
433 433  
434 -486.3 - SF7BW125 to SF12BW125
435 435  
436 -486.5 - SF7BW125 to SF12BW125
437 437  
438 -486.7 - SF7BW125 to SF12BW125
414 +=== 2.4.7  Soil Conductivity (EC) ===
439 439  
440 -486.9 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
441 441  
442 -487.1 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
443 443  
444 -487.3 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
445 445  
446 -487.5 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
447 447  
448 -487.7 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
449 449  
436 +=== 2.4.8  Digital Interrupt ===
450 450  
451 -Downlink:
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
452 452  
453 -506.7 - SF7BW125 to SF12BW125
440 +The command is:
454 454  
455 -506.9 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
456 456  
457 -507.1 - SF7BW125 to SF12BW125
458 458  
459 -507.3 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
460 460  
461 -507.5 - SF7BW125 to SF12BW125
462 462  
463 -507.7 - SF7BW125 to SF12BW125
448 +Example:
464 464  
465 -507.9 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
466 466  
467 -508.1 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
468 468  
469 -505.3 - SF12BW125 (RX2 downlink only)
470 470  
471 471  
472 -1.
473 -11.
474 -111. AU915-928(AU915)
456 +=== 2.4.9  ​+5V Output ===
475 475  
476 -Default use CHE=2
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
477 477  
478 -Uplink:
479 479  
480 -916.8 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
481 481  
482 -917.0 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
483 483  
484 -917.2 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
485 485  
486 -917.4 - SF7BW125 to SF12BW125
487 487  
488 -917.6 - SF7BW125 to SF12BW125
489 489  
490 -917.8 - SF7BW125 to SF12BW125
469 +== 2.5  Downlink Payload ==
491 491  
492 -918.0 - SF7BW125 to SF12BW125
471 +By default, NSE01 prints the downlink payload to console port.
493 493  
494 -918.2 - SF7BW125 to SF12BW125
473 +[[image:image-20220708133731-5.png]]
495 495  
496 496  
497 -Downlink:
498 498  
499 -923.3 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
500 500  
501 -923.9 - SF7BW500 to SF12BW500
481 +(((
482 +
483 +)))
502 502  
503 -924.5 - SF7BW500 to SF12BW500
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
504 504  
505 -925.1 - SF7BW500 to SF12BW500
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
506 506  
507 -925.7 - SF7BW500 to SF12BW500
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
508 508  
509 -926.3 - SF7BW500 to SF12BW500
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
510 510  
511 -926.9 - SF7BW500 to SF12BW500
501 +(((
502 +
503 +)))
512 512  
513 -927.5 - SF7BW500 to SF12BW500
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
514 514  
515 -923.3 - SF12BW500(RX2 downlink only)
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
516 516  
517 -1.
518 -11.
519 -111. AS920-923 & AS923-925 (AS923)
520 520  
521 -**Default Uplink channel:**
514 +* (% style="color:blue" %)**INTMOD**
522 522  
523 -923.2 - SF7BW125 to SF10BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
524 524  
525 -923.4 - SF7BW125 to SF10BW125
526 526  
527 527  
528 -**Additional Uplink Channel**:
520 +== 2.6  ​LED Indicator ==
529 529  
530 -(OTAA mode, channel added by JoinAccept message)
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
531 531  
532 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
533 533  
534 -922.2 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
535 535  
536 -922.4 - SF7BW125 to SF10BW125
537 537  
538 -922.6 - SF7BW125 to SF10BW125
539 539  
540 -922.8 - SF7BW125 to SF10BW125
541 541  
542 -923.0 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
543 543  
544 -922.0 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
545 545  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
546 546  
547 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
541 +[[image:1657259653666-883.png]]
548 548  
549 -923.6 - SF7BW125 to SF10BW125
550 550  
551 -923.8 - SF7BW125 to SF10BW125
544 +(((
545 +
552 552  
553 -924.0 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
554 554  
555 -924.2 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
556 556  
557 -924.4 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
558 558  
559 -924.6 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
560 560  
561 561  
563 +== 2.8  ​Firmware Change Log ==
562 562  
563 -**Downlink:**
564 564  
565 -Uplink channels 1-8 (RX1)
566 +Download URL & Firmware Change log
566 566  
567 -923.2 - SF10BW125 (RX2)
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
568 568  
569 569  
570 -1.
571 -11.
572 -111. KR920-923 (KR920)
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
573 573  
574 -Default channel:
575 575  
576 -922.1 - SF7BW125 to SF12BW125
577 577  
578 -922.3 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
579 579  
580 -922.5 - SF7BW125 to SF12BW125
577 +=== 2.9.1  ​Battery Type ===
581 581  
582 582  
583 -Uplink: (OTAA mode, channel added by JoinAccept message)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
584 584  
585 -922.1 - SF7BW125 to SF12BW125
586 586  
587 -922.3 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
588 588  
589 -922.5 - SF7BW125 to SF12BW125
590 590  
591 -922.7 - SF7BW125 to SF12BW125
586 +The battery related documents as below:
592 592  
593 -922.9 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
594 594  
595 -923.1 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
596 596  
597 -923.3 - SF7BW125 to SF12BW125
598 598  
599 599  
600 -Downlink:
598 +2.9.2 
601 601  
602 -Uplink channels 1-7(RX1)
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
603 603  
604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
605 605  
603 +Instruction to use as below:
606 606  
607 -1.
608 -11.
609 -111. IN865-867 (IN865)
610 610  
611 -Uplink:
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
612 612  
613 -865.0625 - SF7BW125 to SF12BW125
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
614 614  
615 -865.4025 - SF7BW125 to SF12BW125
616 616  
617 -865.9850 - SF7BW125 to SF12BW125
611 +Step 2: Open it and choose
618 618  
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
619 619  
620 -Downlink:
617 +And the Life expectation in difference case will be shown on the right.
621 621  
622 -Uplink channels 1-3 (RX1)
623 623  
624 -866.550 - SF10BW125 (RX2)
625 625  
621 +=== 2.9.3  ​Battery Note ===
626 626  
627 -1.
628 -11. LED Indicator
629 -
630 -The LSE01 has an internal LED which is to show the status of different state.
631 -
632 -
633 -* Blink once when device power on.
634 -* Solid ON for 5 seconds once device successful Join the network.
635 -* Blink once when device transmit a packet.
636 -
637 -1.
638 -11. Installation in Soil
639 -
640 -**Measurement the soil surface**
641 -
642 -
643 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
644 -
645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 -
647 -
648 -
649 -
650 -
651 -
652 -
653 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
654 -
655 -
656 -
657 -Dig a hole with diameter > 20CM.
658 -
659 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
660 -
661 -
662 -
663 -
664 -1.
665 -11. ​Firmware Change Log
666 -
667 -**Firmware download link:**
668 -
669 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
670 -
671 -
672 -**Firmware Upgrade Method:**
673 -
674 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
675 -
676 -
677 -**V1.0.**
678 -
679 -Release
680 -
681 -
682 -
683 -1.
684 -11. ​Battery Analysis
685 -111. ​Battery Type
686 -
687 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
688 -
689 -
690 -The battery is designed to last for more than 5 years for the LSN50.
691 -
692 -
693 -The battery related documents as below:
694 -
695 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
696 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
697 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
698 -
699 -|(((
700 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
701 701  )))
702 702  
703 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
704 704  
705 705  
629 +=== 2.9.4  Replace the battery ===
706 706  
707 -1.
708 -11.
709 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
710 710  
711 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
712 712  
713 713  
714 -1.
715 -11.
716 -111. ​Replace the battery
717 -
718 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
719 -
720 -
721 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
722 -
723 -
724 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
725 -
726 -
727 -
728 -
729 -
730 -
731 731  = 3. ​Using the AT Commands =
732 732  
733 733  == 3.1 Access AT Commands ==
... ... @@ -735,13 +735,13 @@
735 735  
736 736  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
737 737  
738 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
739 739  
740 740  
741 741  Or if you have below board, use below connection:
742 742  
743 743  
744 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
745 745  
746 746  
747 747  
... ... @@ -748,10 +748,10 @@
748 748  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
749 749  
750 750  
751 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
752 752  
753 753  
754 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
755 755  
756 756  
757 757  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -863,20 +863,38 @@
863 863  
864 864  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
865 865  
866 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
867 867  When downloading the images, choose the required image file for download. ​
773 +)))
868 868  
775 +(((
776 +
777 +)))
869 869  
779 +(((
870 870  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
871 871  
783 +(((
784 +
785 +)))
872 872  
787 +(((
873 873  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
874 874  
791 +(((
792 +
793 +)))
875 875  
795 +(((
876 876  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
877 877  
878 878  [[image:image-20220606154726-3.png]]
879 879  
801 +
880 880  When you use the TTN network, the US915 frequency bands use are:
881 881  
882 882  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -889,37 +889,47 @@
889 889  * 905.3 - SF7BW125 to SF10BW125
890 890  * 904.6 - SF8BW500
891 891  
814 +(((
892 892  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
893 893  
894 -(% class="box infomessage" %)
895 -(((
896 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
897 897  )))
898 898  
899 -(% class="box infomessage" %)
900 900  (((
901 -**ATZ**
902 -)))
822 +
903 903  
904 904  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
905 905  
827 +(((
828 +
829 +)))
906 906  
831 +(((
907 907  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
908 908  
909 909  [[image:image-20220606154825-4.png]]
910 910  
911 911  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
912 912  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
913 913  = 5. Trouble Shooting =
914 914  
915 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
916 916  
917 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
918 918  
919 919  
920 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
921 921  
922 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
923 923  
924 924  
925 925  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -931,7 +931,9 @@
931 931  
932 932  (% style="color:#4f81bd" %)**Cause for this issue:**
933 933  
866 +(((
934 934  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
935 935  
936 936  
937 937  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -938,7 +938,7 @@
938 938  
939 939  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
940 940  
941 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
942 942  
943 943  
944 944  = 6. ​Order Info =
... ... @@ -963,10 +963,17 @@
963 963  * (% style="color:red" %)**4**(%%): 4000mAh battery
964 964  * (% style="color:red" %)**8**(%%): 8500mAh battery
965 965  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
966 966  = 7. Packing Info =
967 967  
968 968  (((
969 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
970 970  )))
971 971  
972 972  * (((
... ... @@ -975,10 +975,8 @@
975 975  
976 976  (((
977 977  
978 -)))
979 979  
980 -(((
981 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
982 982  )))
983 983  
984 984  * (((
... ... @@ -992,6 +992,8 @@
992 992  )))
993 993  * (((
994 994  Weight / pcs : g
934 +
935 +
995 995  )))
996 996  
997 997  = 8. Support =
... ... @@ -998,5 +998,3 @@
998 998  
999 999  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1000 1000  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1001 -
1002 -
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content