Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 29 added, 0 removed)
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,726 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 25 +((( 26 + 41 41 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 42 42 43 -= =1.2Features==30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 56 56 57 - ==1.3Specification==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 70 - 71 - 72 -== 1.5 Firmware Change log == 73 - 74 - 75 -**LSE01 v1.0 :** Release 76 - 77 - 78 - 79 -= 2. Configure LSE01 to connect to LoRaWAN network = 80 - 81 -== 2.1 How it works == 82 - 83 -((( 84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 36 + 85 85 ))) 86 86 87 -((( 88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 89 -))) 39 +[[image:1654503236291-817.png]] 90 90 91 91 42 +[[image:1657245163077-232.png]] 92 92 93 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 94 94 95 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 96 96 46 +== 1.2 Features == 97 97 98 -[[image:1654503992078-669.png]] 99 99 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 100 100 101 - TheLG308is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so whatwe need to nowis configurethe TTN server.62 +== 1.3 Specification == 102 102 103 103 104 - **Step1**:Createa device in TTN with the OTAA keysfrom LSE01.65 +(% style="color:#037691" %)**Common DC Characteristics:** 105 105 106 -Each LSE01 is shipped with a sticker with the default device EUI as below: 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 107 107 108 - [[image:image-20220606163732-6.jpeg]]70 +(% style="color:#037691" %)**NB-IoT Spec:** 109 109 110 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 111 111 112 -** Add APP EUI in theapplication**79 +(% style="color:#037691" %)**Probe Specification:** 113 113 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 114 114 115 -[[image: 1654504596150-405.png]]83 +[[image:image-20220708101224-1.png]] 116 116 117 117 118 118 119 - **AddAPPKEYandDEV EUI**87 +== 1.4 Applications == 120 120 121 - [[image:1654504683289-357.png]]89 +* Smart Agriculture 122 122 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 123 123 94 +== 1.5 Pin Definitions == 124 124 125 -**Step 2**: Power on LSE01 126 126 97 +[[image:1657246476176-652.png]] 127 127 128 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 129 129 130 -[[image:image-20220606163915-7.png]] 131 131 101 += 2. Use NSE01 to communicate with IoT Server = 132 132 133 - **Step3:** The LSE01 willauto jointothe TTN network. After joinsuccess,it will start to upload messages to TTN and you can see the messages in the panel.103 +== 2.1 How it works == 134 134 135 -[[image:1654504778294-788.png]] 136 136 106 +((( 107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 108 +))) 137 137 138 138 139 -== 2.3 Uplink Payload == 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 113 +))) 140 140 141 - === 2.3.1 MOD~=0(Default Mode) ===115 +[[image:image-20220708101605-2.png]] 142 142 143 -LSE01 will uplink payload via LoRaWAN with below payload format: 144 - 145 - 146 -Uplink payload includes in total 11 bytes. 117 +((( 147 147 148 - 149 -|((( 150 -**Size** 151 - 152 -**(bytes)** 153 -)))|**2**|**2**|**2**|**2**|**2**|**1** 154 -|**Value**|[[BAT>>path:#bat]]|((( 155 -Temperature 156 - 157 -(Reserve, Ignore now) 158 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 159 -MOD & Digital Interrupt 160 - 161 -(Optional) 162 162 ))) 163 163 164 -[[image:1654504881641-514.png]] 165 165 166 166 123 +== 2.2 Configure the NSE01 == 167 167 168 -=== 2.3.2 MOD~=1(Original value) === 169 169 170 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 171 171 172 -|((( 173 -**Size** 174 174 175 -**(bytes)** 176 -)))|**2**|**2**|**2**|**2**|**2**|**1** 177 -|**Value**|[[BAT>>path:#bat]]|((( 178 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 179 179 180 - (Reserve,Ignorenow)181 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((182 - MOD&DigitalInterrupt131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 183 183 184 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 185 185 ))) 186 186 187 -[[image:1654504907647-967.png]] 188 188 140 +[[image:1657249419225-449.png]] 189 189 190 190 191 -=== 2.3.3 Battery Info === 192 192 193 - Checkthebattery voltageforLSE01.144 +=== 2.2.2 Insert SIM card === 194 194 195 - Ex1:0x0B45=2885mV146 +Insert the NB-IoT Card get from your provider. 196 196 197 - Ex2:0x0B49=2889mV148 +User need to take out the NB-IoT module and insert the SIM card like below: 198 198 199 199 151 +[[image:1657249468462-536.png]] 200 200 201 -=== 2.3.4 Soil Moisture === 202 202 203 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 204 204 205 - Forexample,ifthedatayougetfromtheregister is __0x050xDC__,themoisturecontentinthesoil is155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 206 206 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 207 207 208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 209 209 164 +**Connection:** 210 210 211 -1. 212 -11. 213 -111. Soil Temperature 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 214 214 215 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 216 216 217 - **Example**:170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 218 218 219 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 220 220 221 -I fpayload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100=-1.29°C173 +In the PC, use below serial tool settings: 222 222 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 223 223 224 - 1.225 -1 1.226 - 111. Soil Conductivity (EC)181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 227 227 228 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0-000(Decimal)( Can be greater than20000).185 +[[image:image-20220708110657-3.png]] 229 229 230 - Forexample,ifthedatayougetfromtheregisteris 0x00 0xC8, the soiluctivity is 00C8(H)=200(D) = 200 uS/cm.187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 231 231 232 232 233 -Generally, the EC value of irrigation water is less than 800uS / cm. 234 234 235 -1. 236 -11. 237 -111. MOD 191 +=== 2.2.4 Use CoAP protocol to uplink data === 238 238 239 - Firmwareversion atleastv2.1supportschangingmode.193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 240 240 241 -For example, bytes[10]=90 242 242 243 - mod=(bytes[10]>>7)&0x01=1.196 +**Use below commands:** 244 244 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 245 245 246 - DownlinkCommand:202 +For parameter description, please refer to AT command set 247 247 248 - If payload = 0x0A00, workmode=0204 +[[image:1657249793983-486.png]] 249 249 250 -If** **payload =** **0x0A01, workmode=1 251 251 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 252 252 253 -1. 254 -11. 255 -111. Decode payload in The Things Network 209 +[[image:1657249831934-534.png]] 256 256 257 -While using TTN network, you can add the payload format to decode the payload. 258 258 259 259 260 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 261 261 262 -The p ayload decoderfunction forTTN is here:215 +This feature is supported since firmware version v1.0.1 263 263 264 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 265 265 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 266 266 267 -1. 268 -11. Uplink Interval 222 +[[image:1657249864775-321.png]] 269 269 270 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 271 271 272 -[[ http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]225 +[[image:1657249930215-289.png]] 273 273 274 -1. 275 -11. Downlink Payload 276 276 277 -By default, LSE50 prints the downlink payload to console port. 278 278 279 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 280 -|TDC (Transmit Time Interval)|Any|01|4 281 -|RESET|Any|04|2 282 -|AT+CFM|Any|05|4 283 -|INTMOD|Any|06|4 284 -|MOD|Any|0A|2 229 +=== 2.2.6 Use MQTT protocol to uplink data === 285 285 286 - **Examples**231 +This feature is supported since firmware version v110 287 287 288 288 289 -**Set TDC** 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 290 290 291 - If the payload=0100003C,itmeans set the END Node’s TDC to 0x00003C=60(S), while type code is 01.242 +[[image:1657249978444-674.png]] 292 292 293 -Payload: 01 00 00 1E TDC=30S 294 294 295 - Payload:0100 00 3C TDC=60S245 +[[image:1657249990869-686.png]] 296 296 297 297 298 -**Reset** 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 299 299 300 -If payload = 0x04FF, it will reset the LSE01 301 301 302 302 303 - **CFM**254 +=== 2.2.7 Use TCP protocol to uplink data === 304 304 305 - DownlinkPayload: 05000001, SetAT+CFM=1or05000000,setAT+CFM=0256 +This feature is supported since firmware version v110 306 306 307 -1. 308 -11. Show Data in DataCake IoT Server 309 309 310 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 311 311 262 +[[image:1657250217799-140.png]] 312 312 313 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 314 314 315 - **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add theDATACAKE integration,perform the followingsteps:265 +[[image:1657250255956-604.png]] 316 316 317 317 318 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 319 319 269 +=== 2.2.8 Change Update Interval === 320 320 321 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 322 322 273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 323 323 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 324 324 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 325 325 326 326 327 -Step 3: Create an account or log in Datacake. 328 328 329 - Step4:Search the LSE01 andaddDevEUI.285 +== 2.3 Uplink Payload == 330 330 287 +In this mode, uplink payload includes in total 18 bytes 331 331 332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 333 333 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 334 334 335 335 336 - Afteradded, the sensor data arrive TTN, it willalso arriveand show in Mydevices.298 +[[image:image-20220708111918-4.png]] 337 337 338 338 339 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]301 +The payload is ASCII string, representative same HEX: 340 340 303 +0x72403155615900640c7817075e0a8c02f900 where: 341 341 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 342 342 343 -1. 344 -11. Frequency Plans 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 345 345 346 - TheLSE01uses OTAA modeandbelow frequencyplans by default. If user want to useit with differentfrequency plan,pleaserefertheAT command sets.315 +== 2.4 Payload Explanation and Sensor Interface == 347 347 348 -1. 349 -11. 350 -111. EU863-870 (EU868) 351 351 352 - Uplink:318 +=== 2.4.1 Device ID === 353 353 354 - 868.1-SF7BW125toSF12BW125320 +By default, the Device ID equal to the last 6 bytes of IMEI. 355 355 356 - 868.3-SF7BW125toSF12BW125andSF7BW250322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 357 357 358 - 868.5 - SF7BW125 to SF12BW125324 +**Example:** 359 359 360 -8 67.1- SF7BW125to SF12BW125326 +AT+DEUI=A84041F15612 361 361 362 - 867.3-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 363 364 -867.5 - SF7BW125 to SF12BW125 365 365 366 -867.7 - SF7BW125 to SF12BW125 367 367 368 - 867.9- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 369 369 370 - 868.8 -FSK334 +Specify the software version: 0x64=100, means firmware version 1.00. 371 371 336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 372 372 373 -Downlink: 374 374 375 -Uplink channels 1-9 (RX1) 376 376 377 - 869.525- SF9BW125(RX2 downlinkonly)340 +=== 2.4.3 Battery Info === 378 378 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 379 379 380 - 1.381 -1 1.382 - 111. US902-928(US915)346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 383 383 384 -Used in USA, Canada and South America. Default use CHE=2 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 385 385 386 -Uplink: 387 387 388 -903.9 - SF7BW125 to SF10BW125 389 389 390 - 904.1-SF7BW125toSF10BW125356 +=== 2.4.4 Signal Strength === 391 391 392 - 904.3-SF7BW125to SF10BW125358 +NB-IoT Network signal Strength. 393 393 394 - 904.5 - SF7BW125to SF10BW125360 +**Ex1: 0x1d = 29** 395 395 396 - 904.7-SF7BW125toSF10BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 397 397 398 - 904.9-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 399 399 400 - 905.1- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 401 401 402 - 905.3-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 403 403 370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 404 404 405 -Downlink: 406 406 407 -923.3 - SF7BW500 to SF12BW500 408 408 409 - 923.9-SF7BW500toSF12BW500374 +=== 2.4.5 Soil Moisture === 410 410 411 -924.5 - SF7BW500 to SF12BW500 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 412 412 413 -925.1 - SF7BW500 to SF12BW500 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 414 414 415 -925.7 - SF7BW500 to SF12BW500 384 +((( 385 + 386 +))) 416 416 417 -926.3 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 418 418 419 -926.9 - SF7BW500 to SF12BW500 420 420 421 -927.5 - SF7BW500 to SF12BW500 422 422 423 - 923.3-SF12BW500(RX2 downlink only)394 +=== 2.4.6 Soil Temperature === 424 424 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 425 425 426 - 1.427 - 11.428 - 111. CN470-510 (CN470)400 +((( 401 +**Example**: 402 +))) 429 429 430 -Used in China, Default use CHE=1 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 431 431 432 -Uplink: 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 433 433 434 -486.3 - SF7BW125 to SF12BW125 435 435 436 -486.5 - SF7BW125 to SF12BW125 437 437 438 -4 86.7-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 439 439 440 -486.9 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 441 441 442 -487.1 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 443 443 444 -487.3 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 445 445 446 -487.5 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 447 447 448 -487.7 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 449 449 436 +=== 2.4.8 Digital Interrupt === 450 450 451 -Do wnlink:438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 452 452 453 - 506.7- SF7BW125 toSF12BW125440 +The command is: 454 454 455 - 506.9-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 456 456 457 -507.1 - SF7BW125 to SF12BW125 458 458 459 - 507.3-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 460 460 461 -507.5 - SF7BW125 to SF12BW125 462 462 463 - 507.7 - SF7BW125 to SF12BW125448 +Example: 464 464 465 - 507.9-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 466 466 467 - 508.1-SF7BW125to SF12BW125452 +0x(01): Interrupt Uplink Packet. 468 468 469 -505.3 - SF12BW125 (RX2 downlink only) 470 470 471 471 472 -1. 473 -11. 474 -111. AU915-928(AU915) 456 +=== 2.4.9 +5V Output === 475 475 476 - DefaultuseCHE=2458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 477 477 478 -Uplink: 479 479 480 - 916.8- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 481 481 482 - 917.0- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 483 483 484 - 917.2-SF7BW125 toSF12BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 485 485 486 -917.4 - SF7BW125 to SF12BW125 487 487 488 -917.6 - SF7BW125 to SF12BW125 489 489 490 - 917.8- SF7BW125toSF12BW125469 +== 2.5 Downlink Payload == 491 491 492 - 918.0-SF7BW125toSF12BW125471 +By default, NSE01 prints the downlink payload to console port. 493 493 494 - 918.2-SF7BW125 to SF12BW125473 +[[image:image-20220708133731-5.png]] 495 495 496 496 497 -Downlink: 498 498 499 -923.3 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 500 500 501 -923.9 - SF7BW500 to SF12BW500 481 +((( 482 + 483 +))) 502 502 503 -924.5 - SF7BW500 to SF12BW500 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 504 504 505 -925.1 - SF7BW500 to SF12BW500 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 506 506 507 -925.7 - SF7BW500 to SF12BW500 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 508 508 509 -926.3 - SF7BW500 to SF12BW500 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 510 510 511 -926.9 - SF7BW500 to SF12BW500 501 +((( 502 + 503 +))) 512 512 513 -927.5 - SF7BW500 to SF12BW500 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 514 514 515 -923.3 - SF12BW500(RX2 downlink only) 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 516 516 517 -1. 518 -11. 519 -111. AS920-923 & AS923-925 (AS923) 520 520 521 -* *DefaultUplinkchannel:**514 +* (% style="color:blue" %)**INTMOD** 522 522 523 - 923.2-SF7BW125toSF10BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 524 524 525 -923.4 - SF7BW125 to SF10BW125 526 526 527 527 528 - **AdditionalUplink Channel**:520 +== 2.6 LED Indicator == 529 529 530 -(OTAA mode, channel added by JoinAccept message) 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 531 531 532 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 533 533 534 -922.2 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 535 535 536 -922.4 - SF7BW125 to SF10BW125 537 537 538 -922.6 - SF7BW125 to SF10BW125 539 539 540 -922.8 - SF7BW125 to SF10BW125 541 541 542 - 923.0 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 543 543 544 - 922.0- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 545 545 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 546 546 547 - **AS923 ~~ AS925 for Brunei, Cambodia, HongKong,Indonesia, Laos, Taiwan, Thailand, Vietnam**:541 +[[image:1657259653666-883.png]] 548 548 549 -923.6 - SF7BW125 to SF10BW125 550 550 551 -923.8 - SF7BW125 to SF10BW125 544 +((( 545 + 552 552 553 -924.0 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 554 554 555 -924.2 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 556 556 557 -9 24.4-SF7BW125 to SF10BW125556 +[[image:1654506665940-119.png]] 558 558 559 -924.6 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 560 560 561 561 563 +== 2.8 Firmware Change Log == 562 562 563 -**Downlink:** 564 564 565 - Uplinkchannels1-8 (RX1)566 +Download URL & Firmware Change log 566 566 567 - 923.2-F10BW125(RX2)568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 568 568 569 569 570 -1. 571 -11. 572 -111. KR920-923 (KR920) 571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 573 573 574 -Default channel: 575 575 576 -922.1 - SF7BW125 to SF12BW125 577 577 578 - 922.3- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 579 579 580 - 922.5 - SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 581 581 582 582 583 - Uplink:(OTAAmode,channel addedbyJoinAccept message)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 584 584 585 -922.1 - SF7BW125 to SF12BW125 586 586 587 - 922.3-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 588 588 589 -922.5 - SF7BW125 to SF12BW125 590 590 591 - 922.7-SF7BW125toSF12BW125586 +The battery related documents as below: 592 592 593 -922.9 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 594 594 595 -923.1 - SF7BW125 to SF12BW125 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 596 596 597 -923.3 - SF7BW125 to SF12BW125 598 598 599 599 600 - Downlink:598 +2.9.2 601 601 602 - Uplinkchannels1-7(RX1)600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 603 603 604 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 605 605 603 +Instruction to use as below: 606 606 607 -1. 608 -11. 609 -111. IN865-867 (IN865) 610 610 611 - Uplink:606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 612 612 613 - 865.0625 - SF7BW125toSF12BW125608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 614 614 615 -865.4025 - SF7BW125 to SF12BW125 616 616 617 - 865.9850 -SF7BW125toSF12BW125611 +Step 2: Open it and choose 618 618 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 619 619 620 - Downlink:617 +And the Life expectation in difference case will be shown on the right. 621 621 622 -Uplink channels 1-3 (RX1) 623 623 624 -866.550 - SF10BW125 (RX2) 625 625 621 +=== 2.9.3 Battery Note === 626 626 627 -1. 628 -11. LED Indicator 629 - 630 -The LSE01 has an internal LED which is to show the status of different state. 631 - 632 - 633 -* Blink once when device power on. 634 -* Solid ON for 5 seconds once device successful Join the network. 635 -* Blink once when device transmit a packet. 636 - 637 -1. 638 -11. Installation in Soil 639 - 640 -**Measurement the soil surface** 641 - 642 - 643 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 644 - 645 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 646 - 647 - 648 - 649 - 650 - 651 - 652 - 653 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 654 - 655 - 656 - 657 -Dig a hole with diameter > 20CM. 658 - 659 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 660 - 661 - 662 - 663 - 664 -1. 665 -11. Firmware Change Log 666 - 667 -**Firmware download link:** 668 - 669 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 670 - 671 - 672 -**Firmware Upgrade Method:** 673 - 674 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 675 - 676 - 677 -**V1.0.** 678 - 679 -Release 680 - 681 - 682 - 683 -1. 684 -11. Battery Analysis 685 -111. Battery Type 686 - 687 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 688 - 689 - 690 -The battery is designed to last for more than 5 years for the LSN50. 691 - 692 - 693 -The battery related documents as below: 694 - 695 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 696 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 697 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 698 - 699 -|((( 700 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 701 701 ))) 702 702 703 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 704 704 705 705 629 +=== 2.9.4 Replace the battery === 706 706 707 -1. 708 -11. 709 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 710 710 711 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 712 712 713 713 714 -1. 715 -11. 716 -111. Replace the battery 717 - 718 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 719 - 720 - 721 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 722 - 723 - 724 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 725 - 726 - 727 - 728 - 729 - 730 - 731 731 = 3. Using the AT Commands = 732 732 733 733 == 3.1 Access AT Commands == ... ... @@ -735,13 +735,13 @@ 735 735 736 736 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 737 737 738 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 739 739 740 740 741 741 Or if you have below board, use below connection: 742 742 743 743 744 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 745 745 746 746 747 747 ... ... @@ -748,10 +748,10 @@ 748 748 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 749 749 750 750 751 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 752 752 753 753 754 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 755 755 756 756 757 757 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -863,20 +863,38 @@ 863 863 864 864 == 4.1 How to change the LoRa Frequency Bands/Region? == 865 865 866 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 867 867 When downloading the images, choose the required image file for download. 773 +))) 868 868 775 +((( 776 + 777 +))) 869 869 779 +((( 870 870 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 871 871 783 +((( 784 + 785 +))) 872 872 787 +((( 873 873 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 874 874 791 +((( 792 + 793 +))) 875 875 795 +((( 876 876 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 877 877 878 878 [[image:image-20220606154726-3.png]] 879 879 801 + 880 880 When you use the TTN network, the US915 frequency bands use are: 881 881 882 882 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -889,37 +889,47 @@ 889 889 * 905.3 - SF7BW125 to SF10BW125 890 890 * 904.6 - SF8BW500 891 891 814 +((( 892 892 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 893 893 894 -(% class="box infomessage" %) 895 -((( 896 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 897 897 ))) 898 898 899 -(% class="box infomessage" %) 900 900 ((( 901 -**ATZ** 902 -))) 822 + 903 903 904 904 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 905 905 827 +((( 828 + 829 +))) 906 906 831 +((( 907 907 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 908 908 909 909 [[image:image-20220606154825-4.png]] 910 910 911 911 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 912 912 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 913 913 = 5. Trouble Shooting = 914 914 915 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 916 916 917 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 918 918 919 919 920 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 921 921 922 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 923 923 924 924 925 925 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -931,7 +931,9 @@ 931 931 932 932 (% style="color:#4f81bd" %)**Cause for this issue:** 933 933 866 +((( 934 934 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 935 935 936 936 937 937 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -938,7 +938,7 @@ 938 938 939 939 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 940 940 941 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 942 942 943 943 944 944 = 6. Order Info = ... ... @@ -963,10 +963,17 @@ 963 963 * (% style="color:red" %)**4**(%%): 4000mAh battery 964 964 * (% style="color:red" %)**8**(%%): 8500mAh battery 965 965 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 966 966 = 7. Packing Info = 967 967 968 968 ((( 969 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 970 970 ))) 971 971 972 972 * ((( ... ... @@ -975,10 +975,8 @@ 975 975 976 976 ((( 977 977 978 -))) 979 979 980 -((( 981 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 982 982 ))) 983 983 984 984 * ((( ... ... @@ -992,6 +992,8 @@ 992 992 ))) 993 993 * ((( 994 994 Weight / pcs : g 934 + 935 + 995 995 ))) 996 996 997 997 = 8. Support = ... ... @@ -998,5 +998,3 @@ 998 998 999 999 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1000 1000 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1001 - 1002 -
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content