<
From version < 22.4 >
edited by Xiaoling
on 2022/06/06 16:44
To version < 11.4 >
edited by Xiaoling
on 2022/06/06 16:02
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,7 @@
1 1  (% style="text-align:center" %)
2 2  [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3 3  
4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
4 4  
5 5  
6 6  
... ... @@ -8,40 +8,44 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
23 -(((
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +1. Introduction
24 +11. ​What is LoRaWAN Soil Moisture & EC Sensor
25 +
26 +The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
27 +
28 +
29 +It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server.
30 +
31 +
24 24  The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
35 +LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years.
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
41 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
40 40  
41 41  
44 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
42 42  
43 -== 1.2 ​Features ==
44 44  
47 +
48 +*
49 +*1. ​Features
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 47  * Monitor Soil Moisture
... ... @@ -54,48 +54,63 @@
54 54  * IP66 Waterproof Enclosure
55 55  * 4000mAh or 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
62 +1.
63 +11. Specification
58 58  
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
67 +|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
68 +|**Range**|**0-100.00%**|(((
69 +**0-20000uS/cm**
62 62  
71 +**(25℃)(0-20.0EC)**
72 +)))|**-40.00℃~85.00℃**
73 +|**Unit**|**V/V %,**|**uS/cm,**|**℃**
74 +|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
75 +|**Accuracy**|(((
76 +**±3% (0-53%)**
63 63  
78 +**±5% (>53%)**
79 +)))|**2%FS,**|(((
80 +**-10℃~50℃:<0.3℃**
64 64  
65 -== ​1.4 Applications ==
82 +**All other: <0.6℃**
83 +)))
84 +|(((
85 +**Measure**
66 66  
87 +**Method**
88 +)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
89 +
90 +*
91 +*1. ​Applications
67 67  * Smart Agriculture
68 68  
69 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
70 -​
94 +1.
95 +11. Firmware Change log
71 71  
72 -== 1.5 Firmware Change log ==
97 +**LSE01 v1.0:**
73 73  
99 +* Release
74 74  
75 -**LSE01 v1.0 :**  Release
101 +1. Configure LSE01 to connect to LoRaWAN network
102 +11. How it works
76 76  
104 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
77 77  
78 78  
79 -= 2. Configure LSE01 to connect to LoRaWAN network =
107 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
80 80  
81 -== 2.1 How it works ==
82 82  
83 -(((
84 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
85 -)))
86 86  
87 -(((
88 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
89 -)))
90 90  
112 +1.
113 +11. ​Quick guide to connect to LoRaWAN server (OTAA)
91 91  
92 -
93 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
94 -
95 95  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
96 96  
97 97  
98 -[[image:1654503992078-669.png]]
118 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
99 99  
100 100  
101 101  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
... ... @@ -105,22 +105,27 @@
105 105  
106 106  Each LSE01 is shipped with a sticker with the default device EUI as below:
107 107  
108 -[[image:image-20220606163732-6.jpeg]]
109 109  
129 +
130 +
110 110  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
111 111  
133 +
112 112  **Add APP EUI in the application**
113 113  
114 114  
115 -[[image:1654504596150-405.png]]
137 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
116 116  
117 117  
118 118  
119 119  **Add APP KEY and DEV EUI**
120 120  
121 -[[image:1654504683289-357.png]]
122 122  
144 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
123 123  
146 +|(((
147 +
148 +)))
124 124  
125 125  **Step 2**: Power on LSE01
126 126  
... ... @@ -127,18 +127,28 @@
127 127  
128 128  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129 129  
130 -[[image:image-20220606163915-7.png]]
131 131  
132 132  
157 +|(((
158 +
159 +)))
160 +
161 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
162 +
163 +
164 +
165 +
166 +
133 133  **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
134 134  
135 -[[image:1654504778294-788.png]]
169 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
136 136  
137 137  
138 138  
139 -== 2.3 Uplink Payload ==
140 140  
141 -=== 2.3.1 MOD~=0(Default Mode) ===
174 +1.
175 +11. ​Uplink Payload
176 +111. MOD=0(Default Mode)
142 142  
143 143  LSE01 will uplink payload via LoRaWAN with below payload format: 
144 144  
... ... @@ -161,12 +161,13 @@
161 161  (Optional)
162 162  )))
163 163  
164 -[[image:1654504881641-514.png]]
199 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
165 165  
166 166  
202 +1.
203 +11.
204 +111. MOD=1(Original value)
167 167  
168 -=== 2.3.2 MOD~=1(Original value) ===
169 -
170 170  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
171 171  
172 172  |(((
... ... @@ -184,12 +184,12 @@
184 184  (Optional)
185 185  )))
186 186  
187 -[[image:1654504907647-967.png]]
223 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
188 188  
225 +1.
226 +11.
227 +111. Battery Info
189 189  
190 -
191 -=== 2.3.3 Battery Info ===
192 -
193 193  Check the battery voltage for LSE01.
194 194  
195 195  Ex1: 0x0B45 = 2885mV
... ... @@ -198,18 +198,19 @@
198 198  
199 199  
200 200  
201 -=== 2.3.4 Soil Moisture ===
237 +1.
238 +11.
239 +111. Soil Moisture
202 202  
203 203  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
204 204  
205 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
243 +For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
206 206  
245 +**05DC(H) = 1500(D) /100 = 15%.**
207 207  
208 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
209 209  
210 -
211 -1.
212 -11.
248 +1.
249 +11.
213 213  111. Soil Temperature
214 214  
215 215   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
... ... @@ -221,8 +221,8 @@
221 221  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
222 222  
223 223  
224 -1.
225 -11.
261 +1.
262 +11.
226 226  111. Soil Conductivity (EC)
227 227  
228 228  Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -232,8 +232,8 @@
232 232  
233 233  Generally, the EC value of irrigation water is less than 800uS / cm.
234 234  
235 -1.
236 -11.
272 +1.
273 +11.
237 237  111. MOD
238 238  
239 239  Firmware version at least v2.1 supports changing mode.
... ... @@ -250,8 +250,8 @@
250 250  If** **payload =** **0x0A01, workmode=1
251 251  
252 252  
253 -1.
254 -11.
290 +1.
291 +11.
255 255  111. ​Decode payload in The Things Network
256 256  
257 257  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -264,7 +264,7 @@
264 264  LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
265 265  
266 266  
267 -1.
304 +1.
268 268  11. Uplink Interval
269 269  
270 270  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
... ... @@ -271,7 +271,7 @@
271 271  
272 272  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
273 273  
274 -1.
311 +1.
275 275  11. ​Downlink Payload
276 276  
277 277  By default, LSE50 prints the downlink payload to console port.
... ... @@ -304,7 +304,7 @@
304 304  
305 305  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
306 306  
307 -1.
344 +1.
308 308  11. ​Show Data in DataCake IoT Server
309 309  
310 310  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
... ... @@ -345,8 +345,8 @@
345 345  
346 346  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
347 347  
348 -1.
349 -11.
385 +1.
386 +11.
350 350  111. EU863-870 (EU868)
351 351  
352 352  Uplink:
... ... @@ -377,8 +377,8 @@
377 377  869.525 - SF9BW125 (RX2 downlink only)
378 378  
379 379  
380 -1.
381 -11.
417 +1.
418 +11.
382 382  111. US902-928(US915)
383 383  
384 384  Used in USA, Canada and South America. Default use CHE=2
... ... @@ -423,8 +423,8 @@
423 423  923.3 - SF12BW500(RX2 downlink only)
424 424  
425 425  
426 -1.
427 -11.
463 +1.
464 +11.
428 428  111. CN470-510 (CN470)
429 429  
430 430  Used in China, Default use CHE=1
... ... @@ -469,8 +469,8 @@
469 469  505.3 - SF12BW125 (RX2 downlink only)
470 470  
471 471  
472 -1.
473 -11.
509 +1.
510 +11.
474 474  111. AU915-928(AU915)
475 475  
476 476  Default use CHE=2
... ... @@ -514,8 +514,8 @@
514 514  
515 515  923.3 - SF12BW500(RX2 downlink only)
516 516  
517 -1.
518 -11.
554 +1.
555 +11.
519 519  111. AS920-923 & AS923-925 (AS923)
520 520  
521 521  **Default Uplink channel:**
... ... @@ -567,8 +567,8 @@
567 567  923.2 - SF10BW125 (RX2)
568 568  
569 569  
570 -1.
571 -11.
607 +1.
608 +11.
572 572  111. KR920-923 (KR920)
573 573  
574 574  Default channel:
... ... @@ -604,8 +604,8 @@
604 604  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
605 605  
606 606  
607 -1.
608 -11.
644 +1.
645 +11.
609 609  111. IN865-867 (IN865)
610 610  
611 611  Uplink:
... ... @@ -624,7 +624,7 @@
624 624  866.550 - SF10BW125 (RX2)
625 625  
626 626  
627 -1.
664 +1.
628 628  11. LED Indicator
629 629  
630 630  The LSE01 has an internal LED which is to show the status of different state.
... ... @@ -634,7 +634,7 @@
634 634  * Solid ON for 5 seconds once device successful Join the network.
635 635  * Blink once when device transmit a packet.
636 636  
637 -1.
674 +1.
638 638  11. Installation in Soil
639 639  
640 640  **Measurement the soil surface**
... ... @@ -661,7 +661,7 @@
661 661  
662 662  
663 663  
664 -1.
701 +1.
665 665  11. ​Firmware Change Log
666 666  
667 667  **Firmware download link:**
... ... @@ -680,7 +680,7 @@
680 680  
681 681  
682 682  
683 -1.
720 +1.
684 684  11. ​Battery Analysis
685 685  111. ​Battery Type
686 686  
... ... @@ -704,15 +704,15 @@
704 704  
705 705  
706 706  
707 -1.
708 -11.
744 +1.
745 +11.
709 709  111. ​Battery Note
710 710  
711 711  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
712 712  
713 713  
714 -1.
715 -11.
751 +1.
752 +11.
716 716  111. ​Replace the battery
717 717  
718 718  If Battery is lower than 2.7v, user should replace the battery of LSE01.
... ... @@ -763,100 +763,100 @@
763 763  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
764 764  
765 765  
766 -(% style="color:#037691" %)**General Commands**(%%)      
803 +(% style="color:#037691" %)**General Commands**      
767 767  
768 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
805 +AT  : Attention       
769 769  
770 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
807 +AT?  : Short Help     
771 771  
772 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
809 +ATZ  : MCU Reset    
773 773  
774 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
811 +AT+TDC  : Application Data Transmission Interval 
775 775  
776 776  
777 777  (% style="color:#037691" %)**Keys, IDs and EUIs management**
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
816 +AT+APPEUI              : Application EUI      
780 780  
781 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
818 +AT+APPKEY              : Application Key     
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
820 +AT+APPSKEY            : Application Session Key
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
822 +AT+DADDR              : Device Address     
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
824 +AT+DEUI                   : Device EUI     
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
826 +AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
828 +AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
830 +AT+CFM  : Confirm Mode       
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
832 +AT+CFS                     : Confirm Status       
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
834 +AT+JOIN  : Join LoRa? Network       
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
836 +AT+NJM  : LoRa? Network Join Mode    
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
838 +AT+NJS                     : LoRa? Network Join Status    
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
840 +AT+RECV                  : Print Last Received Data in Raw Format
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
842 +AT+RECVB                : Print Last Received Data in Binary Format      
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
844 +AT+SEND                  : Send Text Data      
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
846 +AT+SENB                  : Send Hexadecimal Data
810 810  
811 811  
812 812  (% style="color:#037691" %)**LoRa Network Management**
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
851 +AT+ADR          : Adaptive Rate
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
853 +AT+CLASS  : LoRa Class(Currently only support class A
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
855 +AT+DCS  : Duty Cycle Setting 
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
857 +AT+DR  : Data Rate (Can Only be Modified after ADR=0)     
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
859 +AT+FCD  : Frame Counter Downlink       
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
861 +AT+FCU  : Frame Counter Uplink   
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
863 +AT+JN1DL  : Join Accept Delay1
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
865 +AT+JN2DL  : Join Accept Delay2
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
867 +AT+PNM  : Public Network Mode   
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
869 +AT+RX1DL  : Receive Delay1      
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
871 +AT+RX2DL  : Receive Delay2      
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
873 +AT+RX2DR  : Rx2 Window Data Rate 
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
875 +AT+RX2FQ  : Rx2 Window Frequency
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
877 +AT+TXP  : Transmit Power
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
879 +AT+ MOD  : Set work mode
843 843  
844 844  
845 845  (% style="color:#037691" %)**Information** 
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
884 +AT+RSSI           : RSSI of the Last Received Packet   
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
886 +AT+SNR           : SNR of the Last Received Packet   
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
888 +AT+VER           : Image Version and Frequency Band       
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
890 +AT+FDR           : Factory Data Reset
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
892 +AT+PORT  : Application Port    
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
894 +AT+CHS  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
858 858  
859 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
896 + AT+CHE  : Get or Set eight channels mode, Only for US915, AU915, CN470
860 860  
861 861  
862 862  = ​4. FAQ =
1654503236291-817.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -685.6 KB
Content
1654503265560-120.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1654503992078-669.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.7 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.8 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0