Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,996 +8,827 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 64 +== 1.3 Specification == 63 63 64 64 65 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 68 68 69 69 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 72 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 74 +(% style="color:#037691" %)**NB-IoT Spec:** 75 75 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 76 76 77 -**LSE01 v1.0 :** Release 78 78 79 79 85 +Probe(% style="color:#037691" %)** Specification:** 80 80 81 - =2. ConfigureLSE01toconnecttoLoRaWANnetwork=87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 - ==2.1How it works ==89 +[[image:image-20220708101224-1.png]] 84 84 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 92 92 93 +== 1.4 Applications == 93 93 95 +* Smart Agriculture 94 94 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 96 96 97 - Followingisan examplefor how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.100 +== 1.5 Pin Definitions == 98 98 99 99 100 -[[image:165 4503992078-669.png]]103 +[[image:1657246476176-652.png]] 101 101 102 102 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 104 107 += 2. Use NSE01 to communicate with IoT Server = 105 105 106 - **Step1**:Createa device in TTN withthe OTAAkeysfrom LSE01.109 +== 2.1 How it works == 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 110 -[[image:image-20220606163732-6.jpeg]] 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 113 113 114 -**Add APP EUI in the application** 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 119 +))) 115 115 121 +[[image:image-20220708101605-2.png]] 116 116 117 -[[image:1654504596150-405.png]] 118 - 119 - 120 - 121 -**Add APP KEY and DEV EUI** 122 - 123 -[[image:1654504683289-357.png]] 124 - 125 - 126 - 127 -**Step 2**: Power on LSE01 128 - 129 - 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 - 132 -[[image:image-20220606163915-7.png]] 133 - 134 - 135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 - 137 -[[image:1654504778294-788.png]] 138 - 139 - 140 - 141 -== 2.3 Uplink Payload == 142 - 143 -=== 2.3.1 MOD~=0(Default Mode) === 144 - 145 -LSE01 will uplink payload via LoRaWAN with below payload format: 146 - 147 - 148 -Uplink payload includes in total 11 bytes. 123 +((( 149 149 150 - 151 -|((( 152 -**Size** 153 - 154 -**(bytes)** 155 -)))|**2**|**2**|**2**|**2**|**2**|**1** 156 -|**Value**|[[BAT>>path:#bat]]|((( 157 -Temperature 158 - 159 -(Reserve, Ignore now) 160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 161 -MOD & Digital Interrupt 162 - 163 -(Optional) 164 164 ))) 165 165 166 -[[image:1654504881641-514.png]] 167 167 168 168 129 +== 2.2 Configure the NSE01 == 169 169 170 -=== 2.3.2 MOD~=1(Original value) === 171 171 172 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).132 +=== 2.2.1 Test Requirement === 173 173 174 -|((( 175 -**Size** 176 176 177 -**(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 179 -|**Value**|[[BAT>>path:#bat]]|((( 180 -Temperature 135 +To use NSE01 in your city, make sure meet below requirements: 181 181 182 - (Reserve,Ignorenow)183 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((184 - MOD&DigitalInterrupt137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 185 185 186 -(Optional) 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 187 187 ))) 188 188 189 -[[image:1654504907647-967.png]] 190 190 146 +[[image:1657249419225-449.png]] 191 191 192 192 193 -=== 2.3.3 Battery Info === 194 194 195 - Checkthebattery voltageforLSE01.150 +=== 2.2.2 Insert SIM card === 196 196 197 - Ex1:0x0B45=2885mV152 +Insert the NB-IoT Card get from your provider. 198 198 199 - Ex2:0x0B49=2889mV154 +User need to take out the NB-IoT module and insert the SIM card like below: 200 200 201 201 157 +[[image:1657249468462-536.png]] 202 202 203 -=== 2.3.4 Soil Moisture === 204 204 205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 206 207 - Forexample,ifthedatayougetfromtheregister is0x050xDC,themoisturecontentinthesoil is161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 208 208 209 -**05DC(H) = 1500(D) /100 = 15%.** 163 +((( 164 +((( 165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 166 +))) 167 +))) 210 210 211 211 212 -1. 213 -11. 214 -111. Soil Temperature 170 +**Connection:** 215 215 216 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 217 217 218 - **Example**:174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 219 219 220 - Ifpayloadis 0105H:((0x0105 & 0x8000)>>15 === 0),temp= 0105(H)/100=2.61°C176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 221 221 222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 223 179 +In the PC, use below serial tool settings: 224 224 225 -1. 226 -11. 227 -111. Soil Conductivity (EC) 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 228 228 229 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 230 230 231 - For example,if the data youget fromthe register is 0x00 0xC8, the soil conductivity is 00C8(H) =200(D) =200uS/cm.191 +[[image:image-20220708110657-3.png]] 232 232 193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 233 233 234 -Generally, the EC value of irrigation water is less than 800uS / cm. 235 235 236 -1. 237 -11. 238 -111. MOD 239 239 240 - Firmwareversionatleastv2.1supportschangingmode.197 +=== 2.2.4 Use CoAP protocol to uplink data === 241 241 242 - For example,bytes[10]=90199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 243 243 244 -mod=(bytes[10]>>7)&0x01=1. 245 245 202 +**Use below commands:** 246 246 247 -Downlink Command: 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 248 248 249 - Ifpayload=0x0A00,workmode=0208 +For parameter description, please refer to AT command set 250 250 251 - If** **payload =** **0x0A01, workmode=1210 +[[image:1657249793983-486.png]] 252 252 253 253 254 -1. 255 -11. 256 -111. Decode payload in The Things Network 213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 257 257 258 - While using TTN network, you can add the payload format to decode the payload.215 +[[image:1657249831934-534.png]] 259 259 260 260 261 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 262 262 263 - The payload decoderfunctionfor TTNishere:219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 264 264 265 - LSE01TTNPayload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]221 +This feature is supported since firmware version v1.0.1 266 266 267 267 268 -1. 269 -11. Uplink Interval 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 270 270 271 - The LSE01 by default uplink the sensor data every 20minutes. User can changethis interval by AT Command or LoRaWAN Downlink Command.See this link:228 +[[image:1657249864775-321.png]] 272 272 273 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 274 274 275 -1. 276 -11. Downlink Payload 231 +[[image:1657249930215-289.png]] 277 277 278 -By default, LSE50 prints the downlink payload to console port. 279 279 280 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 281 -|TDC (Transmit Time Interval)|Any|01|4 282 -|RESET|Any|04|2 283 -|AT+CFM|Any|05|4 284 -|INTMOD|Any|06|4 285 -|MOD|Any|0A|2 286 286 287 - **Examples**235 +=== 2.2.6 Use MQTT protocol to uplink data === 288 288 237 +This feature is supported since firmware version v110 289 289 290 -**Set TDC** 291 291 292 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 293 293 294 - Payload:0100 00 1E TDC=30S248 +[[image:1657249978444-674.png]] 295 295 296 -Payload: 01 00 00 3C TDC=60S 297 297 251 +[[image:1657249990869-686.png]] 298 298 299 -**Reset** 300 300 301 -If payload = 0x04FF, it will reset the LSE01 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 302 302 303 303 304 -**CFM** 305 305 306 - DownlinkPayload:05000001,SetAT+CFM=1or05000000,setAT+CFM=0260 +=== 2.2.7 Use TCP protocol to uplink data === 307 307 308 -1. 309 -11. Show Data in DataCake IoT Server 262 +This feature is supported since firmware version v110 310 310 311 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 312 312 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 313 313 314 - **Step 1**: Be sure that your device is programmedand properly connected to the network at this time.268 +[[image:1657250217799-140.png]] 315 315 316 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 317 317 271 +[[image:1657250255956-604.png]] 318 318 319 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 320 320 321 321 322 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]275 +=== 2.2.8 Change Update Interval === 323 323 277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 324 324 279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 325 325 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 326 326 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 327 327 328 -Step 3: Create an account or log in Datacake. 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 331 331 291 +== 2.3 Uplink Payload == 332 332 333 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]293 +In this mode, uplink payload includes in total 18 bytes 334 334 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 335 335 301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 336 336 337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 338 338 304 +[[image:image-20220708111918-4.png]] 339 339 340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 341 341 307 +The payload is ASCII string, representative same HEX: 342 342 309 +0x72403155615900640c7817075e0a8c02f900 where: 343 343 344 -1 .345 - 11.FrequencyPlans311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 346 346 347 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 348 348 349 -1. 350 -11. 351 -111. EU863-870 (EU868) 352 352 353 -Uplink: 354 354 355 -868.1 - SF7BW125 to SF12BW125 356 356 357 - 868.3- SF7BW125toSF12BW125and SF7BW250324 +== 2.4 Payload Explanation and Sensor Interface == 358 358 359 -868.5 - SF7BW125 to SF12BW125 360 360 361 - 867.1-SF7BW125 to SF12BW125327 +=== 2.4.1 Device ID === 362 362 363 - 867.3-SF7BW125toSF12BW125329 +By default, the Device ID equal to the last 6 bytes of IMEI. 364 364 365 - 867.5-SF7BW125toSF12BW125331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 366 366 367 - 867.7 - SF7BW125 to SF12BW125333 +**Example:** 368 368 369 -8 67.9 - SF7BW125to SF12BW125335 +AT+DEUI=A84041F15612 370 370 371 - 868.8- FSK337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 372 372 373 373 374 -Downlink: 375 375 376 - Uplinkchannels1-9 (RX1)341 +=== 2.4.2 Version Info === 377 377 378 - 869.525 -SF9BW125(RX2downlinkonly)343 +Specify the software version: 0x64=100, means firmware version 1.00. 379 379 345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 380 380 381 -1. 382 -11. 383 -111. US902-928(US915) 384 384 385 -Used in USA, Canada and South America. Default use CHE=2 386 386 387 - Uplink:349 +=== 2.4.3 Battery Info === 388 388 389 -903.9 - SF7BW125 to SF10BW125 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 390 390 391 -904.1 - SF7BW125 to SF10BW125 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 392 392 393 -904.3 - SF7BW125 to SF10BW125 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 394 394 395 -904.5 - SF7BW125 to SF10BW125 396 396 397 -904.7 - SF7BW125 to SF10BW125 398 398 399 - 904.9-SF7BW125toSF10BW125365 +=== 2.4.4 Signal Strength === 400 400 401 - 905.1-SF7BW125to SF10BW125367 +NB-IoT Network signal Strength. 402 402 403 - 905.3 - SF7BW125to SF10BW125369 +**Ex1: 0x1d = 29** 404 404 371 +(% style="color:blue" %)**0**(%%) -113dBm or less 405 405 406 - Downlink:373 +(% style="color:blue" %)**1**(%%) -111dBm 407 407 408 - 923.3- SF7BW500to SF12BW500375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 409 410 - 923.9-SF7BW500toSF12BW500377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 411 411 412 -9 24.5-SF7BW500toSF12BW500379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 413 413 414 -925.1 - SF7BW500 to SF12BW500 415 415 416 -925.7 - SF7BW500 to SF12BW500 417 417 418 - 926.3-SF7BW500toSF12BW500383 +=== 2.4.5 Soil Moisture === 419 419 420 -926.9 - SF7BW500 to SF12BW500 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 421 421 422 -927.5 - SF7BW500 to SF12BW500 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 423 423 424 -923.3 - SF12BW500(RX2 downlink only) 393 +((( 394 + 395 +))) 425 425 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 426 426 427 -1. 428 -11. 429 -111. CN470-510 (CN470) 430 430 431 -Used in China, Default use CHE=1 432 432 433 - Uplink:403 +=== 2.4.6 Soil Temperature === 434 434 435 -486.3 - SF7BW125 to SF12BW125 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 436 436 437 -486.5 - SF7BW125 to SF12BW125 409 +((( 410 +**Example**: 411 +))) 438 438 439 -486.7 - SF7BW125 to SF12BW125 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 440 440 441 -486.9 - SF7BW125 to SF12BW125 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 442 442 443 -487.1 - SF7BW125 to SF12BW125 444 444 445 -487.3 - SF7BW125 to SF12BW125 446 446 447 -4 87.5-SF7BW125toSF12BW125423 +=== 2.4.7 Soil Conductivity (EC) === 448 448 449 -487.7 - SF7BW125 to SF12BW125 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 450 450 429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 451 451 452 -Downlink: 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 453 453 454 -506.7 - SF7BW125 to SF12BW125 437 +((( 438 + 439 +))) 455 455 456 -506.9 - SF7BW125 to SF12BW125 441 +((( 442 + 443 +))) 457 457 458 - 507.1- SF7BW125toSF12BW125445 +=== 2.4.8 Digital Interrupt === 459 459 460 - 507.3-SF7BW125toSF12BW125447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 461 461 462 - 507.5- SF7BW125 toSF12BW125449 +The command is: 463 463 464 - 507.7-SF7BW125to SF12BW125451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 465 465 466 -507.9 - SF7BW125 to SF12BW125 467 467 468 - 508.1-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 469 469 470 -505.3 - SF12BW125 (RX2 downlink only) 471 471 457 +Example: 472 472 473 -1. 474 -11. 475 -111. AU915-928(AU915) 459 +0x(00): Normal uplink packet. 476 476 477 - DefaultuseCHE=2461 +0x(01): Interrupt Uplink Packet. 478 478 479 -Uplink: 480 480 481 -916.8 - SF7BW125 to SF12BW125 482 482 483 - 917.0- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 484 484 485 - 917.2-SF7BW125 toSF12BW125467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 486 486 487 -917.4 - SF7BW125 to SF12BW125 488 488 489 - 917.6- SF7BW125 toSF12BW125470 +The 5V output time can be controlled by AT Command. 490 490 491 - 917.8- SF7BW125toSF12BW125472 +(% style="color:blue" %)**AT+5VT=1000** 492 492 493 - 918.0-SF7BW125 toSF12BW125474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 494 494 495 -918.2 - SF7BW125 to SF12BW125 496 496 497 497 498 -Downlink :478 +== 2.5 Downlink Payload == 499 499 500 - 923.3-SF7BW500toSF12BW500480 +By default, NSE01 prints the downlink payload to console port. 501 501 502 - 923.9-SF7BW500 to SF12BW500482 +[[image:image-20220708133731-5.png]] 503 503 504 -924.5 - SF7BW500 to SF12BW500 505 505 506 -925.1 - SF7BW500 to SF12BW500 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 507 507 508 -925.7 - SF7BW500 to SF12BW500 489 +((( 490 + 491 +))) 509 509 510 -926.3 - SF7BW500 to SF12BW500 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 511 511 512 -926.9 - SF7BW500 to SF12BW500 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 513 513 514 -927.5 - SF7BW500 to SF12BW500 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 515 515 516 -923.3 - SF12BW500(RX2 downlink only) 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 517 517 518 - 1.519 - 11.520 - 111. AS920-923 & AS923-925 (AS923)509 +((( 510 + 511 +))) 521 521 522 -**Default Uplink channel:** 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 523 523 524 -923.2 - SF7BW125 to SF10BW125 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 525 525 526 -923.4 - SF7BW125 to SF10BW125 527 527 522 +* (% style="color:blue" %)**INTMOD** 528 528 529 - **AdditionalUplinkChannel**:524 +Downlink Payload: 06000003, Set AT+INTMOD=3 530 530 531 -(OTAA mode, channel added by JoinAccept message) 532 532 533 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 534 534 535 - 922.2-SF7BW125toSF10BW125528 +== 2.6 LED Indicator == 536 536 537 -922.4 - SF7BW125 to SF10BW125 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 538 538 539 -922.6 - SF7BW125 to SF10BW125 540 540 541 -922.8 - SF7BW125 to SF10BW125 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 542 542 543 -923.0 - SF7BW125 to SF10BW125 544 544 545 -922.0 - SF7BW125 to SF10BW125 546 546 547 547 548 - **AS923~~ AS925for Brunei, Cambodia, Hong Kong,Indonesia, Laos,Taiwan,Thailand,Vietnam**:543 +== 2.7 Installation in Soil == 549 549 550 - 923.6- SF7BW125toSF10BW125545 +__**Measurement the soil surface**__ 551 551 552 - 923.8-SF7BW125SF10BW125547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 553 553 554 - 924.0 - SF7BW125to SF10BW125549 +[[image:1657259653666-883.png]] 555 555 556 -924.2 - SF7BW125 to SF10BW125 557 557 558 -924.4 - SF7BW125 to SF10BW125 552 +((( 553 + 559 559 560 -924.6 - SF7BW125 to SF10BW125 561 - 562 - 563 - 564 -**Downlink:** 565 - 566 -Uplink channels 1-8 (RX1) 567 - 568 -923.2 - SF10BW125 (RX2) 569 - 570 - 571 -1. 572 -11. 573 -111. KR920-923 (KR920) 574 - 575 -Default channel: 576 - 577 -922.1 - SF7BW125 to SF12BW125 578 - 579 -922.3 - SF7BW125 to SF12BW125 580 - 581 -922.5 - SF7BW125 to SF12BW125 582 - 583 - 584 -Uplink: (OTAA mode, channel added by JoinAccept message) 585 - 586 -922.1 - SF7BW125 to SF12BW125 587 - 588 -922.3 - SF7BW125 to SF12BW125 589 - 590 -922.5 - SF7BW125 to SF12BW125 591 - 592 -922.7 - SF7BW125 to SF12BW125 593 - 594 -922.9 - SF7BW125 to SF12BW125 595 - 596 -923.1 - SF7BW125 to SF12BW125 597 - 598 -923.3 - SF7BW125 to SF12BW125 599 - 600 - 601 -Downlink: 602 - 603 -Uplink channels 1-7(RX1) 604 - 605 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 606 - 607 - 608 -1. 609 -11. 610 -111. IN865-867 (IN865) 611 - 612 -Uplink: 613 - 614 -865.0625 - SF7BW125 to SF12BW125 615 - 616 -865.4025 - SF7BW125 to SF12BW125 617 - 618 -865.9850 - SF7BW125 to SF12BW125 619 - 620 - 621 -Downlink: 622 - 623 -Uplink channels 1-3 (RX1) 624 - 625 -866.550 - SF10BW125 (RX2) 626 - 627 - 628 -1. 629 -11. LED Indicator 630 - 631 -The LSE01 has an internal LED which is to show the status of different state. 632 - 633 - 634 -* Blink once when device power on. 635 -* Solid ON for 5 seconds once device successful Join the network. 636 -* Blink once when device transmit a packet. 637 - 638 -1. 639 -11. Installation in Soil 640 - 641 -**Measurement the soil surface** 642 - 643 - 644 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 645 - 646 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 647 - 648 - 649 - 650 - 651 - 652 - 653 - 654 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 655 - 656 - 657 - 555 +((( 658 658 Dig a hole with diameter > 20CM. 557 +))) 659 659 559 +((( 660 660 Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 661 661 564 +[[image:1654506665940-119.png]] 662 662 566 +((( 567 + 568 +))) 663 663 664 664 665 -1. 666 -11. Firmware Change Log 571 +== 2.8 Firmware Change Log == 667 667 668 -**Firmware download link:** 669 669 670 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]574 +Download URL & Firmware Change log 671 671 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 672 672 673 -**Firmware Upgrade Method:** 674 674 675 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 676 676 677 677 678 -**V1.0.** 679 679 680 - Release583 +== 2.9 Battery Analysis == 681 681 585 +=== 2.9.1 Battery Type === 682 682 683 683 684 -1. 685 -11. Battery Analysis 686 -111. Battery Type 588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 687 687 688 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 689 591 +The battery is designed to last for several years depends on the actually use environment and update interval. 690 690 691 -The battery is designed to last for more than 5 years for the LSN50. 692 692 693 - 694 694 The battery related documents as below: 695 695 696 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],697 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/ downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]698 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 699 699 700 - |(((701 - JST-XH-2P connector600 +((( 601 +[[image:image-20220708140453-6.png]] 702 702 ))) 703 703 704 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 705 705 706 706 606 +=== 2.9.2 Power consumption Analyze === 707 707 708 - 1.709 - 11.710 - 111. Battery Note608 +((( 609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 610 +))) 711 711 712 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 713 713 613 +((( 614 +Instruction to use as below: 615 +))) 714 714 715 - 1.716 -1 1.717 - 111. Replace the battery617 +((( 618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 619 +))) 718 718 719 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 720 720 622 +((( 623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 624 +))) 721 721 722 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 626 +* ((( 627 +Product Model 628 +))) 629 +* ((( 630 +Uplink Interval 631 +))) 632 +* ((( 633 +Working Mode 634 +))) 723 723 636 +((( 637 +And the Life expectation in difference case will be shown on the right. 638 +))) 724 724 725 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)640 +[[image:image-20220708141352-7.jpeg]] 726 726 727 727 728 728 644 +=== 2.9.3 Battery Note === 729 729 646 +((( 647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 648 +))) 730 730 731 731 732 -= 3. Using the AT Commands = 733 733 734 -== 3.1AccessATCommands==652 +=== 2.9.4 Replace the battery === 735 735 654 +((( 655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 656 +))) 736 736 737 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 738 738 739 -[[image:1654501986557-872.png]] 740 740 660 += 3. Access NB-IoT Module = 741 741 742 -Or if you have below board, use below connection: 662 +((( 663 +Users can directly access the AT command set of the NB-IoT module. 664 +))) 743 743 666 +((( 667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 668 +))) 744 744 745 -[[image:165 4502005655-729.png]]670 +[[image:1657261278785-153.png]] 746 746 747 747 748 748 749 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:674 += 4. Using the AT Commands = 750 750 676 +== 4.1 Access AT Commands == 751 751 752 - [[ima ge:1654502050864-459.png]]678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 753 753 754 754 755 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]681 +AT+<CMD>? : Help on <CMD> 756 756 683 +AT+<CMD> : Run <CMD> 757 757 758 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>685 +AT+<CMD>=<value> : Set the value 759 759 760 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>687 +AT+<CMD>=? : Get the value 761 761 762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 763 763 764 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 765 - 766 - 767 767 (% style="color:#037691" %)**General Commands**(%%) 768 768 769 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 770 770 771 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 772 772 773 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 774 774 775 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 776 776 700 +AT+CFG : Print all configurations 777 777 778 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 779 779 780 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 781 781 782 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 795 795 796 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 797 797 798 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 801 801 802 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 803 803 804 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 807 807 808 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 809 809 810 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 811 811 733 +AT+CLIENT : Get or Set MQTT client 812 812 813 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 820 820 821 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 822 822 823 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 824 824 825 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 828 828 829 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 830 830 831 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 832 832 833 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 834 834 835 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 757 +((( 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 759 +))) 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 842 - 843 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 844 - 845 - 846 -(% style="color:#037691" %)**Information** 847 - 848 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 849 - 850 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 851 - 852 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 853 - 854 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 855 - 856 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 857 - 858 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 859 - 860 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 861 - 862 - 863 -= 4. FAQ = 864 - 865 -== 4.1 How to change the LoRa Frequency Bands/Region? == 866 - 867 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 868 -When downloading the images, choose the required image file for download. 869 - 870 - 871 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 872 - 873 - 874 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 875 - 876 - 877 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 878 - 879 -[[image:image-20220606154726-3.png]] 880 - 881 -When you use the TTN network, the US915 frequency bands use are: 882 - 883 -* 903.9 - SF7BW125 to SF10BW125 884 -* 904.1 - SF7BW125 to SF10BW125 885 -* 904.3 - SF7BW125 to SF10BW125 886 -* 904.5 - SF7BW125 to SF10BW125 887 -* 904.7 - SF7BW125 to SF10BW125 888 -* 904.9 - SF7BW125 to SF10BW125 889 -* 905.1 - SF7BW125 to SF10BW125 890 -* 905.3 - SF7BW125 to SF10BW125 891 -* 904.6 - SF8BW500 892 - 893 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 894 - 895 -(% class="box infomessage" %) 896 896 ((( 897 - **AT+CHE=2**762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 898 898 ))) 899 899 900 -(% class="box infomessage" %) 901 901 ((( 902 - **ATZ**766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 903 903 ))) 904 904 905 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 906 906 907 907 908 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.771 += 6. Trouble Shooting = 909 909 910 - [[image:image-20220606154825-4.png]]773 +== 6.1 Connection problem when uploading firmware == 911 911 912 912 776 +(% class="wikigeneratedid" %) 777 +((( 778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 779 +))) 913 913 914 -= 5. Trouble Shooting = 915 915 916 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 917 917 918 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.783 +== 6.2 AT Command input doesn't work == 919 919 785 +((( 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 787 +))) 920 920 921 -== 5.2 AT Command input doesn’t work == 922 922 923 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 924 924 791 += 7. Order Info = 925 925 926 -== 5.3 Device rejoin in at the second uplink packet == 927 927 928 -(% style="color:#4f81bd" %)** Issue describe as below:**794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 929 929 930 -[[image:1654500909990-784.png]] 931 931 797 +(% class="wikigeneratedid" %) 798 +((( 799 + 800 +))) 932 932 933 - (% style="color:#4f81bd"%)**Causeforthis issue:**802 += 8. Packing Info = 934 934 935 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 804 +((( 805 + 936 936 807 +(% style="color:#037691" %)**Package Includes**: 937 937 938 -(% style="color:#4f81bd" %)**Solution: ** 939 939 940 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 812 +))) 941 941 942 -[[image:1654500929571-736.png]] 814 +((( 815 + 943 943 817 +(% style="color:#037691" %)**Dimension and weight**: 944 944 945 -= 6. Order Info = 946 946 947 - 948 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 949 - 950 - 951 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 952 - 953 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 954 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 955 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 956 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 957 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 958 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 959 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 960 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 961 - 962 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 963 - 964 -* (% style="color:red" %)**4**(%%): 4000mAh battery 965 -* (% style="color:red" %)**8**(%%): 8500mAh battery 966 - 967 -= 7. Packing Info = 968 - 969 -((( 970 -**Package Includes**: 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 971 971 ))) 972 972 973 -* ((( 974 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 975 -))) 976 - 977 977 ((( 978 978 979 -))) 980 980 981 -((( 982 -**Dimension and weight**: 983 -))) 984 984 985 -* ((( 986 -Device Size: cm 828 + 987 987 ))) 988 -* ((( 989 -Device Weight: g 990 -))) 991 -* ((( 992 -Package Size / pcs : cm 993 -))) 994 -* ((( 995 -Weight / pcs : g 996 -))) 997 997 998 -= 8. Support =831 += 9. Support = 999 999 1000 1000 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1001 1001 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1002 - 1003 -
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content