Last modified by Mengting Qiu on 2024/04/02 16:44

From version 22.3
edited by Xiaoling
on 2022/06/06 16:42
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,727 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
42 42  
43 -== 1.2 ​Features ==
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
56 56  
57 -== 1.3 Specification ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 -
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
72 -
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
75 -
76 -
77 -**LSE01 v1.0 :**  Release
78 -
79 -
80 -
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 -
83 -== 2.1 How it works ==
84 -
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
36 +
87 87  )))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
39 +[[image:1654503236291-817.png]]
92 92  
93 93  
42 +[[image:1657245163077-232.png]]
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
46 +== 1.2 ​Features ==
99 99  
100 -[[image:1654503992078-669.png]]
101 101  
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
62 +== 1.3  Specification ==
104 104  
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
65 +(% style="color:#037691" %)**Common DC Characteristics:**
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
70 +(% style="color:#037691" %)**NB-IoT Spec:**
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
113 113  
114 -**Add APP EUI in the application**
79 +(% style="color:#037691" %)**Probe Specification:**
115 115  
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
116 116  
117 -[[image:1654504596150-405.png]]
83 +[[image:image-20220708101224-1.png]]
118 118  
119 119  
120 120  
121 -**Add APP KEY and DEV EUI**
87 +== ​1.4  Applications ==
122 122  
123 -[[image:1654504683289-357.png]]
89 +* Smart Agriculture
124 124  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
125 125  
94 +== 1.5  Pin Definitions ==
126 126  
127 -**Step 2**: Power on LSE01
128 128  
97 +[[image:1657246476176-652.png]]
129 129  
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
131 131  
132 -[[image:image-20220606163915-7.png]]
133 133  
101 += 2.  Use NSE01 to communicate with IoT Server =
134 134  
135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
103 +== 2.1  How it works ==
136 136  
137 -[[image:1654504778294-788.png]]
138 138  
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
139 139  
140 140  
141 -== 2.3 Uplink Payload ==
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
113 +)))
142 142  
143 -=== 2.3.1 MOD~=0(Default Mode) ===
115 +[[image:image-20220708101605-2.png]]
144 144  
145 -LSE01 will uplink payload via LoRaWAN with below payload format: 
146 -
147 -
148 -Uplink payload includes in total 11 bytes.
117 +(((
149 149  
150 -
151 -|(((
152 -**Size**
153 -
154 -**(bytes)**
155 -)))|**2**|**2**|**2**|**2**|**2**|**1**
156 -|**Value**|[[BAT>>path:#bat]]|(((
157 -Temperature
158 -
159 -(Reserve, Ignore now)
160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
161 -MOD & Digital Interrupt
162 -
163 -(Optional)
164 164  )))
165 165  
166 -[[image:1654504881641-514.png]]
167 167  
168 168  
123 +== 2.2 ​ Configure the NSE01 ==
169 169  
170 -=== 2.3.2 MOD~=1(Original value) ===
171 171  
172 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
126 +=== 2.2.1 Test Requirement ===
173 173  
174 -|(((
175 -**Size**
176 176  
177 -**(bytes)**
178 -)))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>path:#bat]]|(((
180 -Temperature
129 +To use NSE01 in your city, make sure meet below requirements:
181 181  
182 -(Reserve, Ignore now)
183 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
184 -MOD & Digital Interrupt
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
185 185  
186 -(Optional)
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
187 187  )))
188 188  
189 -[[image:1654504907647-967.png]]
190 190  
140 +[[image:1657249419225-449.png]]
191 191  
192 192  
193 -=== 2.3.3 Battery Info ===
194 194  
195 -Check the battery voltage for LSE01.
144 +=== 2.2.2 Insert SIM card ===
196 196  
197 -Ex1: 0x0B45 = 2885mV
146 +Insert the NB-IoT Card get from your provider.
198 198  
199 -Ex2: 0x0B49 = 2889mV
148 +User need to take out the NB-IoT module and insert the SIM card like below:
200 200  
201 201  
151 +[[image:1657249468462-536.png]]
202 202  
203 -=== 2.3.4 Soil Moisture ===
204 204  
205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
206 206  
207 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
208 208  
209 -**05DC(H) = 1500(D) /100 = 15%.**
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
210 210  
211 211  
212 -1.
213 -11.
214 -111. Soil Temperature
164 +**Connection:**
215 215  
216 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
217 217  
218 -**Example**:
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
219 219  
220 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
221 221  
222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
223 223  
173 +In the PC, use below serial tool settings:
224 224  
225 -1.
226 -11.
227 -111. Soil Conductivity (EC)
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
228 228  
229 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
230 230  
231 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
185 +[[image:image-20220708110657-3.png]]
232 232  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
233 233  
234 -Generally, the EC value of irrigation water is less than 800uS / cm.
235 235  
236 -1.
237 -11.
238 -111. MOD
239 239  
240 -Firmware version at least v2.1 supports changing mode.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
241 241  
242 -For example, bytes[10]=90
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
243 243  
244 -mod=(bytes[10]>>7)&0x01=1.
245 245  
196 +**Use below commands:**
246 246  
247 -Downlink Command:
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
248 248  
249 -If payload = 0x0A00, workmode=0
202 +For parameter description, please refer to AT command set
250 250  
251 -If** **payload =** **0x0A01, workmode=1
204 +[[image:1657249793983-486.png]]
252 252  
253 253  
254 -1.
255 -11.
256 -111. ​Decode payload in The Things Network
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
257 257  
258 -While using TTN network, you can add the payload format to decode the payload.
209 +[[image:1657249831934-534.png]]
259 259  
260 260  
261 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
262 262  
263 -The payload decoder function for TTN is here:
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
264 264  
265 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
215 +This feature is supported since firmware version v1.0.1
266 266  
267 267  
268 -1.
269 -11. Uplink Interval
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
270 270  
271 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
222 +[[image:1657249864775-321.png]]
272 272  
273 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
274 274  
275 -1.
276 -11. ​Downlink Payload
225 +[[image:1657249930215-289.png]]
277 277  
278 -By default, LSE50 prints the downlink payload to console port.
279 279  
280 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
281 -|TDC (Transmit Time Interval)|Any|01|4
282 -|RESET|Any|04|2
283 -|AT+CFM|Any|05|4
284 -|INTMOD|Any|06|4
285 -|MOD|Any|0A|2
286 286  
287 -**Examples**
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
288 288  
231 +This feature is supported since firmware version v110
289 289  
290 -**Set TDC**
291 291  
292 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
293 293  
294 -Payload:    01 00 00 1E    TDC=30S
242 +[[image:1657249978444-674.png]]
295 295  
296 -Payload:    01 00 00 3C    TDC=60S
297 297  
245 +[[image:1657249990869-686.png]]
298 298  
299 -**Reset**
300 300  
301 -If payload = 0x04FF, it will reset the LSE01
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
302 302  
303 303  
304 -**CFM**
305 305  
306 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
254 +=== 2.2.7 Use TCP protocol to uplink data ===
307 307  
308 -1.
309 -11. ​Show Data in DataCake IoT Server
256 +This feature is supported since firmware version v110
310 310  
311 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
312 312  
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
313 313  
314 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
262 +[[image:1657250217799-140.png]]
315 315  
316 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
317 317  
265 +[[image:1657250255956-604.png]]
318 318  
319 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
320 320  
321 321  
322 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
269 +=== 2.2.8 Change Update Interval ===
323 323  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
324 324  
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
325 325  
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
326 326  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
327 327  
328 -Step 3: Create an account or log in Datacake.
329 329  
330 -Step 4: Search the LSE01 and add DevEUI.
331 331  
285 +== 2.3  Uplink Payload ==
332 332  
333 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
287 +In this mode, uplink payload includes in total 18 bytes
334 334  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
335 335  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
336 336  
337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
338 338  
298 +[[image:image-20220708111918-4.png]]
339 339  
340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
341 341  
301 +The payload is ASCII string, representative same HEX:
342 342  
303 +0x72403155615900640c7817075e0a8c02f900 where:
343 343  
344 -1.
345 -11. Frequency Plans
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
346 346  
347 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
348 348  
349 -1.
350 -11.
351 -111. EU863-870 (EU868)
315 +== 2.4  Payload Explanation and Sensor Interface ==
352 352  
353 -Uplink:
354 354  
355 -868.1 - SF7BW125 to SF12BW125
318 +=== 2.4.1  Device ID ===
356 356  
357 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
358 358  
359 -868.5 - SF7BW125 to SF12BW125
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
360 360  
361 -867.1 - SF7BW125 to SF12BW125
324 +**Example:**
362 362  
363 -867.3 - SF7BW125 to SF12BW125
326 +AT+DEUI=A84041F15612
364 364  
365 -867.5 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
366 366  
367 -867.7 - SF7BW125 to SF12BW125
368 368  
369 -867.9 - SF7BW125 to SF12BW125
370 370  
371 -868.8 - FSK
332 +=== 2.4.2  Version Info ===
372 372  
334 +Specify the software version: 0x64=100, means firmware version 1.00.
373 373  
374 -Downlink:
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
375 375  
376 -Uplink channels 1-9 (RX1)
377 377  
378 -869.525 - SF9BW125 (RX2 downlink only)
379 379  
340 +=== 2.4.3  Battery Info ===
380 380  
381 -1.
382 -11.
383 -111. US902-928(US915)
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
384 384  
385 -Used in USA, Canada and South America. Default use CHE=2
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
386 386  
387 -Uplink:
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
388 388  
389 -903.9 - SF7BW125 to SF10BW125
390 390  
391 -904.1 - SF7BW125 to SF10BW125
392 392  
393 -904.3 - SF7BW125 to SF10BW125
356 +=== 2.4. Signal Strength ===
394 394  
395 -904.5 - SF7BW125 to SF10BW125
358 +NB-IoT Network signal Strength.
396 396  
397 -904.7 - SF7BW125 to SF10BW125
360 +**Ex1: 0x1d = 29**
398 398  
399 -904.9 - SF7BW125 to SF10BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
400 400  
401 -905.1 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
402 402  
403 -905.3 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
404 404  
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
405 405  
406 -Downlink:
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
407 407  
408 -923.3 - SF7BW500 to SF12BW500
409 409  
410 -923.9 - SF7BW500 to SF12BW500
411 411  
412 -924.5 - SF7BW500 to SF12BW500
374 +=== 2.4.5  Soil Moisture ===
413 413  
414 -925.1 - SF7BW500 to SF12BW500
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
415 415  
416 -925.7 - SF7BW500 to SF12BW500
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
417 417  
418 -926.3 - SF7BW500 to SF12BW500
384 +(((
385 +
386 +)))
419 419  
420 -926.9 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
421 421  
422 -927.5 - SF7BW500 to SF12BW500
423 423  
424 -923.3 - SF12BW500(RX2 downlink only)
425 425  
394 +=== 2.4.6  Soil Temperature ===
426 426  
427 -1.
428 -11.
429 -111. CN470-510 (CN470)
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
430 430  
431 -Used in China, Default use CHE=1
400 +(((
401 +**Example**:
402 +)))
432 432  
433 -Uplink:
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
434 434  
435 -486.3 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
436 436  
437 -486.5 - SF7BW125 to SF12BW125
438 438  
439 -486.7 - SF7BW125 to SF12BW125
440 440  
441 -486.9 - SF7BW125 to SF12BW125
414 +=== 2.4. Soil Conductivity (EC) ===
442 442  
443 -487.1 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
444 444  
445 -487.3 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
446 446  
447 -487.5 - SF7BW125 to SF12BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
448 448  
449 -487.7 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
450 450  
432 +(((
433 +
434 +)))
451 451  
452 -Downlink:
436 +=== 2.4.8  Digital Interrupt ===
453 453  
454 -506.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
455 455  
456 -506.9 - SF7BW125 to SF12BW125
440 +The command is:
457 457  
458 -507.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
459 459  
460 -507.3 - SF7BW125 to SF12BW125
461 461  
462 -507.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
463 463  
464 -507.7 - SF7BW125 to SF12BW125
465 465  
466 -507.9 - SF7BW125 to SF12BW125
448 +Example:
467 467  
468 -508.1 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
469 469  
470 -505.3 - SF12BW125 (RX2 downlink only)
452 +0x(01): Interrupt Uplink Packet.
471 471  
472 472  
473 -1.
474 -11.
475 -111. AU915-928(AU915)
476 476  
477 -Default use CHE=2
456 +=== 2.4.9  ​+5V Output ===
478 478  
479 -Uplink:
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
480 480  
481 -916.8 - SF7BW125 to SF12BW125
482 482  
483 -917.0 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
484 484  
485 -917.2 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
486 486  
487 -917.4 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
488 488  
489 -917.6 - SF7BW125 to SF12BW125
490 490  
491 -917.8 - SF7BW125 to SF12BW125
492 492  
493 -918.0 - SF7BW125 to SF12BW125
469 +== 2.5  Downlink Payload ==
494 494  
495 -918.2 - SF7BW125 to SF12BW125
471 +By default, NSE01 prints the downlink payload to console port.
496 496  
473 +[[image:image-20220708133731-5.png]]
497 497  
498 -Downlink:
499 499  
500 -923.3 - SF7BW500 to SF12BW500
501 501  
502 -923.9 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
503 503  
504 -924.5 - SF7BW500 to SF12BW500
481 +(((
482 +
483 +)))
505 505  
506 -925.1 - SF7BW500 to SF12BW500
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
507 507  
508 -925.7 - SF7BW500 to SF12BW500
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
509 509  
510 -926.3 - SF7BW500 to SF12BW500
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
511 511  
512 -926.9 - SF7BW500 to SF12BW500
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
513 513  
514 -927.5 - SF7BW500 to SF12BW500
501 +(((
502 +
503 +)))
515 515  
516 -923.3 - SF12BW500(RX2 downlink only)
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
517 517  
518 -1.
519 -11.
520 -111. AS920-923 & AS923-925 (AS923)
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
521 521  
522 -**Default Uplink channel:**
523 523  
524 -923.2 - SF7BW125 to SF10BW125
514 +* (% style="color:blue" %)**INTMOD**
525 525  
526 -923.4 - SF7BW125 to SF10BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
527 527  
528 528  
529 -**Additional Uplink Channel**:
530 530  
531 -(OTAA mode, channel added by JoinAccept message)
520 +== 2.6  ​LED Indicator ==
532 532  
533 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
534 534  
535 -922.2 - SF7BW125 to SF10BW125
536 536  
537 -922.4 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
538 538  
539 -922.6 - SF7BW125 to SF10BW125
540 540  
541 -922.8 - SF7BW125 to SF10BW125
542 542  
543 -923.0 - SF7BW125 to SF10BW125
544 544  
545 -922.0 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
546 546  
537 +__**Measurement the soil surface**__
547 547  
548 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
549 549  
550 -923.6 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
551 551  
552 -923.8 - SF7BW125 to SF10BW125
553 553  
554 -924.0 - SF7BW125 to SF10BW125
544 +(((
545 +
555 555  
556 -924.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
557 557  
558 -924.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
559 559  
560 -924.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
561 561  
558 +(((
559 +
560 +)))
562 562  
563 563  
564 -**Downlink:**
563 +== 2.8  ​Firmware Change Log ==
565 565  
566 -Uplink channels 1-8 (RX1)
567 567  
568 -923.2 - SF10BW125 (RX2)
566 +Download URL & Firmware Change log
569 569  
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
570 570  
571 -1.
572 -11.
573 -111. KR920-923 (KR920)
574 574  
575 -Default channel:
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
576 576  
577 -922.1 - SF7BW125 to SF12BW125
578 578  
579 -922.3 - SF7BW125 to SF12BW125
580 580  
581 -922.5 - SF7BW125 to SF12BW125
575 +== 2. Battery Analysis ==
582 582  
577 +=== 2.9.1  ​Battery Type ===
583 583  
584 -Uplink: (OTAA mode, channel added by JoinAccept message)
585 585  
586 -922.1 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
587 587  
588 -922.3 - SF7BW125 to SF12BW125
589 589  
590 -922.5 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
591 591  
592 -922.7 - SF7BW125 to SF12BW125
593 593  
594 -922.9 - SF7BW125 to SF12BW125
586 +The battery related documents as below:
595 595  
596 -923.1 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 597  
598 -923.3 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
599 599  
600 600  
601 -Downlink:
602 602  
603 -Uplink channels 1-7(RX1)
598 +2.9.2 
604 604  
605 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
606 606  
607 607  
608 -1.
609 -11.
610 -111. IN865-867 (IN865)
603 +Instruction to use as below:
611 611  
612 -Uplink:
613 613  
614 -865.0625 - SF7BW125 to SF12BW125
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
615 615  
616 -865.4025 - SF7BW125 to SF12BW125
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
617 617  
618 -865.9850 - SF7BW125 to SF12BW125
619 619  
611 +Step 2: Open it and choose
620 620  
621 -Downlink:
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
622 622  
623 -Uplink channels 1-3 (RX1)
617 +And the Life expectation in difference case will be shown on the right.
624 624  
625 -866.550 - SF10BW125 (RX2)
626 626  
627 627  
628 -1.
629 -11. LED Indicator
621 +=== 2.9.3  ​Battery Note ===
630 630  
631 -The LSE01 has an internal LED which is to show the status of different state.
632 -
633 -
634 -* Blink once when device power on.
635 -* Solid ON for 5 seconds once device successful Join the network.
636 -* Blink once when device transmit a packet.
637 -
638 -1.
639 -11. Installation in Soil
640 -
641 -**Measurement the soil surface**
642 -
643 -
644 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
645 -
646 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
647 -
648 -
649 -
650 -
651 -
652 -
653 -
654 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
655 -
656 -
657 -
658 -Dig a hole with diameter > 20CM.
659 -
660 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
661 -
662 -
663 -
664 -
665 -1.
666 -11. ​Firmware Change Log
667 -
668 -**Firmware download link:**
669 -
670 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
671 -
672 -
673 -**Firmware Upgrade Method:**
674 -
675 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
676 -
677 -
678 -**V1.0.**
679 -
680 -Release
681 -
682 -
683 -
684 -1.
685 -11. ​Battery Analysis
686 -111. ​Battery Type
687 -
688 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 -
690 -
691 -The battery is designed to last for more than 5 years for the LSN50.
692 -
693 -
694 -The battery related documents as below:
695 -
696 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
697 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
698 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
699 -
700 -|(((
701 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
702 702  )))
703 703  
704 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
705 705  
706 706  
629 +=== 2.9.4  Replace the battery ===
707 707  
708 -1.
709 -11.
710 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
711 711  
712 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
713 713  
714 714  
715 -1.
716 -11.
717 -111. ​Replace the battery
718 -
719 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
720 -
721 -
722 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
723 -
724 -
725 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
726 -
727 -
728 -
729 -
730 -
731 -
732 732  = 3. ​Using the AT Commands =
733 733  
734 734  == 3.1 Access AT Commands ==
... ... @@ -736,13 +736,13 @@
736 736  
737 737  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
738 738  
739 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
740 740  
741 741  
742 742  Or if you have below board, use below connection:
743 743  
744 744  
745 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
746 746  
747 747  
748 748  
... ... @@ -749,10 +749,10 @@
749 749  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
750 750  
751 751  
752 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
753 753  
754 754  
755 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
756 756  
757 757  
758 758  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -864,20 +864,38 @@
864 864  
865 865  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
866 866  
867 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
868 868  When downloading the images, choose the required image file for download. ​
773 +)))
869 869  
775 +(((
776 +
777 +)))
870 870  
779 +(((
871 871  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
872 872  
783 +(((
784 +
785 +)))
873 873  
787 +(((
874 874  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
875 875  
791 +(((
792 +
793 +)))
876 876  
795 +(((
877 877  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
878 878  
879 879  [[image:image-20220606154726-3.png]]
880 880  
801 +
881 881  When you use the TTN network, the US915 frequency bands use are:
882 882  
883 883  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -890,37 +890,47 @@
890 890  * 905.3 - SF7BW125 to SF10BW125
891 891  * 904.6 - SF8BW500
892 892  
814 +(((
893 893  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
894 894  
895 -(% class="box infomessage" %)
896 -(((
897 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
898 898  )))
899 899  
900 -(% class="box infomessage" %)
901 901  (((
902 -**ATZ**
903 -)))
822 +
904 904  
905 905  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
906 906  
827 +(((
828 +
829 +)))
907 907  
831 +(((
908 908  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
909 909  
910 910  [[image:image-20220606154825-4.png]]
911 911  
912 912  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
913 913  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
914 914  = 5. Trouble Shooting =
915 915  
916 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
917 917  
918 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
919 919  
920 920  
921 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
922 922  
923 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
924 924  
925 925  
926 926  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -932,7 +932,9 @@
932 932  
933 933  (% style="color:#4f81bd" %)**Cause for this issue:**
934 934  
866 +(((
935 935  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
936 936  
937 937  
938 938  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -939,7 +939,7 @@
939 939  
940 940  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
941 941  
942 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
943 943  
944 944  
945 945  = 6. ​Order Info =
... ... @@ -964,10 +964,17 @@
964 964  * (% style="color:red" %)**4**(%%): 4000mAh battery
965 965  * (% style="color:red" %)**8**(%%): 8500mAh battery
966 966  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
967 967  = 7. Packing Info =
968 968  
969 969  (((
970 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
971 971  )))
972 972  
973 973  * (((
... ... @@ -976,10 +976,8 @@
976 976  
977 977  (((
978 978  
979 -)))
980 980  
981 -(((
982 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
983 983  )))
984 984  
985 985  * (((
... ... @@ -993,6 +993,8 @@
993 993  )))
994 994  * (((
995 995  Weight / pcs : g
934 +
935 +
996 996  )))
997 997  
998 998  = 8. Support =
... ... @@ -999,5 +999,3 @@
999 999  
1000 1000  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1001 1001  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1002 -
1003 -
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content