Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 29 added, 0 removed)
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,727 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 25 +((( 26 + 41 41 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 42 42 43 -= =1.2Features==30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 56 56 57 - ==1.3Specification==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 - 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 - 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 75 - 76 - 77 -**LSE01 v1.0 :** Release 78 - 79 - 80 - 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 - 83 -== 2.1 How it works == 84 - 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 36 + 87 87 ))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 39 +[[image:1654503236291-817.png]] 92 92 93 93 42 +[[image:1657245163077-232.png]] 94 94 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 46 +== 1.2 Features == 99 99 100 -[[image:1654503992078-669.png]] 101 101 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 102 102 103 - TheLG308is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so whatwe need to nowis configurethe TTN server.62 +== 1.3 Specification == 104 104 105 105 106 - **Step1**:Createa device in TTN with the OTAA keysfrom LSE01.65 +(% style="color:#037691" %)**Common DC Characteristics:** 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 109 109 110 - [[image:image-20220606163732-6.jpeg]]70 +(% style="color:#037691" %)**NB-IoT Spec:** 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 113 113 114 -** Add APP EUI in theapplication**79 +(% style="color:#037691" %)**Probe Specification:** 115 115 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 116 116 117 -[[image: 1654504596150-405.png]]83 +[[image:image-20220708101224-1.png]] 118 118 119 119 120 120 121 - **AddAPPKEYandDEV EUI**87 +== 1.4 Applications == 122 122 123 - [[image:1654504683289-357.png]]89 +* Smart Agriculture 124 124 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 125 125 94 +== 1.5 Pin Definitions == 126 126 127 -**Step 2**: Power on LSE01 128 128 97 +[[image:1657246476176-652.png]] 129 129 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 131 132 -[[image:image-20220606163915-7.png]] 133 133 101 += 2. Use NSE01 to communicate with IoT Server = 134 134 135 - **Step3:** The LSE01 willauto jointothe TTN network. After joinsuccess,it will start to upload messages to TTN and you can see the messages in the panel.103 +== 2.1 How it works == 136 136 137 -[[image:1654504778294-788.png]] 138 138 106 +((( 107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 108 +))) 139 139 140 140 141 -== 2.3 Uplink Payload == 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 113 +))) 142 142 143 - === 2.3.1 MOD~=0(Default Mode) ===115 +[[image:image-20220708101605-2.png]] 144 144 145 -LSE01 will uplink payload via LoRaWAN with below payload format: 146 - 147 - 148 -Uplink payload includes in total 11 bytes. 117 +((( 149 149 150 - 151 -|((( 152 -**Size** 153 - 154 -**(bytes)** 155 -)))|**2**|**2**|**2**|**2**|**2**|**1** 156 -|**Value**|[[BAT>>path:#bat]]|((( 157 -Temperature 158 - 159 -(Reserve, Ignore now) 160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 161 -MOD & Digital Interrupt 162 - 163 -(Optional) 164 164 ))) 165 165 166 -[[image:1654504881641-514.png]] 167 167 168 168 123 +== 2.2 Configure the NSE01 == 169 169 170 -=== 2.3.2 MOD~=1(Original value) === 171 171 172 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).126 +=== 2.2.1 Test Requirement === 173 173 174 -|((( 175 -**Size** 176 176 177 -**(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 179 -|**Value**|[[BAT>>path:#bat]]|((( 180 -Temperature 129 +To use NSE01 in your city, make sure meet below requirements: 181 181 182 - (Reserve,Ignorenow)183 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((184 - MOD&DigitalInterrupt131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 185 185 186 -(Optional) 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 187 187 ))) 188 188 189 -[[image:1654504907647-967.png]] 190 190 140 +[[image:1657249419225-449.png]] 191 191 192 192 193 -=== 2.3.3 Battery Info === 194 194 195 - Checkthebattery voltageforLSE01.144 +=== 2.2.2 Insert SIM card === 196 196 197 - Ex1:0x0B45=2885mV146 +Insert the NB-IoT Card get from your provider. 198 198 199 - Ex2:0x0B49=2889mV148 +User need to take out the NB-IoT module and insert the SIM card like below: 200 200 201 201 151 +[[image:1657249468462-536.png]] 202 202 203 -=== 2.3.4 Soil Moisture === 204 204 205 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 206 207 - Forexample,ifthedatayougetfromtheregister is0x050xDC,themoisturecontentinthesoil is155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 208 208 209 -**05DC(H) = 1500(D) /100 = 15%.** 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 210 210 211 211 212 -1. 213 -11. 214 -111. Soil Temperature 164 +**Connection:** 215 215 216 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 217 217 218 - **Example**:168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 219 219 220 - Ifpayloadis 0105H:((0x0105 & 0x8000)>>15 === 0),temp= 0105(H)/100=2.61°C170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 221 221 222 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 223 173 +In the PC, use below serial tool settings: 224 224 225 -1. 226 -11. 227 -111. Soil Conductivity (EC) 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 228 228 229 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 230 230 231 - For example,if the data youget fromthe register is 0x00 0xC8, the soil conductivity is 00C8(H) =200(D) =200uS/cm.185 +[[image:image-20220708110657-3.png]] 232 232 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 233 233 234 -Generally, the EC value of irrigation water is less than 800uS / cm. 235 235 236 -1. 237 -11. 238 -111. MOD 239 239 240 - Firmwareversionatleastv2.1supportschangingmode.191 +=== 2.2.4 Use CoAP protocol to uplink data === 241 241 242 - For example,bytes[10]=90193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 243 243 244 -mod=(bytes[10]>>7)&0x01=1. 245 245 196 +**Use below commands:** 246 246 247 -Downlink Command: 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 248 248 249 - Ifpayload=0x0A00,workmode=0202 +For parameter description, please refer to AT command set 250 250 251 - If** **payload =** **0x0A01, workmode=1204 +[[image:1657249793983-486.png]] 252 252 253 253 254 -1. 255 -11. 256 -111. Decode payload in The Things Network 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 257 257 258 - While using TTN network, you can add the payload format to decode the payload.209 +[[image:1657249831934-534.png]] 259 259 260 260 261 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 262 262 263 - The payload decoderfunctionfor TTNishere:213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 264 264 265 - LSE01TTNPayload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]215 +This feature is supported since firmware version v1.0.1 266 266 267 267 268 -1. 269 -11. Uplink Interval 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 270 270 271 - The LSE01 by default uplink the sensor data every 20minutes. User can changethis interval by AT Command or LoRaWAN Downlink Command.See this link:222 +[[image:1657249864775-321.png]] 272 272 273 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 274 274 275 -1. 276 -11. Downlink Payload 225 +[[image:1657249930215-289.png]] 277 277 278 -By default, LSE50 prints the downlink payload to console port. 279 279 280 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 281 -|TDC (Transmit Time Interval)|Any|01|4 282 -|RESET|Any|04|2 283 -|AT+CFM|Any|05|4 284 -|INTMOD|Any|06|4 285 -|MOD|Any|0A|2 286 286 287 - **Examples**229 +=== 2.2.6 Use MQTT protocol to uplink data === 288 288 231 +This feature is supported since firmware version v110 289 289 290 -**Set TDC** 291 291 292 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 293 293 294 - Payload:0100 00 1E TDC=30S242 +[[image:1657249978444-674.png]] 295 295 296 -Payload: 01 00 00 3C TDC=60S 297 297 245 +[[image:1657249990869-686.png]] 298 298 299 -**Reset** 300 300 301 -If payload = 0x04FF, it will reset the LSE01 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 302 302 303 303 304 -**CFM** 305 305 306 - DownlinkPayload:05000001,SetAT+CFM=1or05000000,setAT+CFM=0254 +=== 2.2.7 Use TCP protocol to uplink data === 307 307 308 -1. 309 -11. Show Data in DataCake IoT Server 256 +This feature is supported since firmware version v110 310 310 311 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 312 312 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 313 313 314 - **Step 1**: Be sure that your device is programmedand properly connected to the network at this time.262 +[[image:1657250217799-140.png]] 315 315 316 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 317 317 265 +[[image:1657250255956-604.png]] 318 318 319 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 320 320 321 321 322 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]269 +=== 2.2.8 Change Update Interval === 323 323 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 324 324 273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 325 325 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 326 326 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 327 327 328 -Step 3: Create an account or log in Datacake. 329 329 330 -Step 4: Search the LSE01 and add DevEUI. 331 331 285 +== 2.3 Uplink Payload == 332 332 333 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]287 +In this mode, uplink payload includes in total 18 bytes 334 334 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 335 335 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 336 336 337 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 338 338 298 +[[image:image-20220708111918-4.png]] 339 339 340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 341 341 301 +The payload is ASCII string, representative same HEX: 342 342 303 +0x72403155615900640c7817075e0a8c02f900 where: 343 343 344 -1 .345 - 11.FrequencyPlans305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 346 346 347 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 348 348 349 -1. 350 -11. 351 -111. EU863-870 (EU868) 315 +== 2.4 Payload Explanation and Sensor Interface == 352 352 353 -Uplink: 354 354 355 - 868.1-SF7BW125 to SF12BW125318 +=== 2.4.1 Device ID === 356 356 357 - 868.3-SF7BW125toSF12BW125andSF7BW250320 +By default, the Device ID equal to the last 6 bytes of IMEI. 358 358 359 - 868.5-SF7BW125toSF12BW125322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 360 360 361 - 867.1 - SF7BW125 to SF12BW125324 +**Example:** 362 362 363 -8 67.3 - SF7BW125to SF12BW125326 +AT+DEUI=A84041F15612 364 364 365 - 867.5-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 366 366 367 -867.7 - SF7BW125 to SF12BW125 368 368 369 -867.9 - SF7BW125 to SF12BW125 370 370 371 - 868.8-FSK332 +=== 2.4.2 Version Info === 372 372 334 +Specify the software version: 0x64=100, means firmware version 1.00. 373 373 374 - Downlink:336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 375 376 -Uplink channels 1-9 (RX1) 377 377 378 -869.525 - SF9BW125 (RX2 downlink only) 379 379 340 +=== 2.4.3 Battery Info === 380 380 381 - 1.382 -1 1.383 - 111. US902-928(US915)342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 384 384 385 -Used in USA, Canada and South America. Default use CHE=2 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 386 386 387 -Uplink: 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 388 388 389 -903.9 - SF7BW125 to SF10BW125 390 390 391 -904.1 - SF7BW125 to SF10BW125 392 392 393 - 904.3-SF7BW125toSF10BW125356 +=== 2.4.4 Signal Strength === 394 394 395 - 904.5-SF7BW125to SF10BW125358 +NB-IoT Network signal Strength. 396 396 397 - 904.7 - SF7BW125to SF10BW125360 +**Ex1: 0x1d = 29** 398 398 399 - 904.9-SF7BW125toSF10BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 400 400 401 - 905.1-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 402 402 403 - 905.3 -SF7BW125 to SF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 404 404 368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 405 405 406 - Downlink:370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 407 407 408 -923.3 - SF7BW500 to SF12BW500 409 409 410 -923.9 - SF7BW500 to SF12BW500 411 411 412 - 924.5-SF7BW500toSF12BW500374 +=== 2.4.5 Soil Moisture === 413 413 414 -925.1 - SF7BW500 to SF12BW500 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 415 415 416 -925.7 - SF7BW500 to SF12BW500 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 417 417 418 -926.3 - SF7BW500 to SF12BW500 384 +((( 385 + 386 +))) 419 419 420 -926.9 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 421 421 422 -927.5 - SF7BW500 to SF12BW500 423 423 424 -923.3 - SF12BW500(RX2 downlink only) 425 425 394 +=== 2.4.6 Soil Temperature === 426 426 427 - 1.428 -1 1.429 - 111. CN470-510 (CN470)396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 430 430 431 -Used in China, Default use CHE=1 400 +((( 401 +**Example**: 402 +))) 432 432 433 -Uplink: 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 434 434 435 -486.3 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 436 436 437 -486.5 - SF7BW125 to SF12BW125 438 438 439 -486.7 - SF7BW125 to SF12BW125 440 440 441 -4 86.9-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 442 442 443 -487.1 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 444 444 445 -487.3 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 446 446 447 -487.5 - SF7BW125 to SF12BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 448 448 449 -487.7 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 450 450 432 +((( 433 + 434 +))) 451 451 452 -D ownlink:436 +=== 2.4.8 Digital Interrupt === 453 453 454 - 506.7-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 455 455 456 - 506.9- SF7BW125 toSF12BW125440 +The command is: 457 457 458 - 507.1-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 459 459 460 -507.3 - SF7BW125 to SF12BW125 461 461 462 - 507.5-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 463 463 464 -507.7 - SF7BW125 to SF12BW125 465 465 466 - 507.9 - SF7BW125 to SF12BW125448 +Example: 467 467 468 - 508.1-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 469 469 470 - 505.3 - SF12BW125(RX2 downlinkonly)452 +0x(01): Interrupt Uplink Packet. 471 471 472 472 473 -1. 474 -11. 475 -111. AU915-928(AU915) 476 476 477 - DefaultseCHE=2456 +=== 2.4.9 +5V Output === 478 478 479 - Uplink:458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 480 480 481 -916.8 - SF7BW125 to SF12BW125 482 482 483 - 917.0- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 484 484 485 - 917.2- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 486 486 487 - 917.4-SF7BW125 toSF12BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 488 488 489 -917.6 - SF7BW125 to SF12BW125 490 490 491 -917.8 - SF7BW125 to SF12BW125 492 492 493 - 918.0- SF7BW125toSF12BW125469 +== 2.5 Downlink Payload == 494 494 495 - 918.2-SF7BW125toSF12BW125471 +By default, NSE01 prints the downlink payload to console port. 496 496 473 +[[image:image-20220708133731-5.png]] 497 497 498 -Downlink: 499 499 500 -923.3 - SF7BW500 to SF12BW500 501 501 502 -923.9 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 503 503 504 -924.5 - SF7BW500 to SF12BW500 481 +((( 482 + 483 +))) 505 505 506 -925.1 - SF7BW500 to SF12BW500 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 507 507 508 -925.7 - SF7BW500 to SF12BW500 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 509 509 510 -926.3 - SF7BW500 to SF12BW500 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 511 511 512 -926.9 - SF7BW500 to SF12BW500 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 513 513 514 -927.5 - SF7BW500 to SF12BW500 501 +((( 502 + 503 +))) 515 515 516 -923.3 - SF12BW500(RX2 downlink only) 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 517 517 518 - 1.519 - 11.520 - 111. AS920-923 & AS923-925 (AS923)509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 521 521 522 -**Default Uplink channel:** 523 523 524 - 923.2-SF7BW125toSF10BW125514 +* (% style="color:blue" %)**INTMOD** 525 525 526 - 923.4-SF7BW125toSF10BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 527 527 528 528 529 -**Additional Uplink Channel**: 530 530 531 - (OTAAmode,channeladded by JoinAcceptmessage)520 +== 2.6 LED Indicator == 532 532 533 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 534 534 535 -922.2 - SF7BW125 to SF10BW125 536 536 537 -922.4 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 538 538 539 -922.6 - SF7BW125 to SF10BW125 540 540 541 -922.8 - SF7BW125 to SF10BW125 542 542 543 -923.0 - SF7BW125 to SF10BW125 544 544 545 - 922.0 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 546 546 537 +__**Measurement the soil surface**__ 547 547 548 - **AS923~~AS925 forBrunei,Cambodia,Hong Kong, Indonesia,Laos,Taiwan,Thailand, Vietnam**:539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 549 549 550 - 923.6- SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 551 551 552 -923.8 - SF7BW125 to SF10BW125 553 553 554 -924.0 - SF7BW125 to SF10BW125 544 +((( 545 + 555 555 556 -924.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 557 557 558 -924.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 559 559 560 - 924.6- SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 561 561 558 +((( 559 + 560 +))) 562 562 563 563 564 - **Downlink:**563 +== 2.8 Firmware Change Log == 565 565 566 -Uplink channels 1-8 (RX1) 567 567 568 - 923.2-SF10BW125(RX2)566 +Download URL & Firmware Change log 569 569 568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 570 570 571 -1. 572 -11. 573 -111. KR920-923 (KR920) 574 574 575 - Defaultchannel:571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 576 576 577 -922.1 - SF7BW125 to SF12BW125 578 578 579 -922.3 - SF7BW125 to SF12BW125 580 580 581 - 922.5- SF7BW125toSF12BW125575 +== 2.9 Battery Analysis == 582 582 577 +=== 2.9.1 Battery Type === 583 583 584 -Uplink: (OTAA mode, channel added by JoinAccept message) 585 585 586 - 922.1-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 587 587 588 -922.3 - SF7BW125 to SF12BW125 589 589 590 - 922.5-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 591 591 592 -922.7 - SF7BW125 to SF12BW125 593 593 594 - 922.9-SF7BW125toSF12BW125586 +The battery related documents as below: 595 595 596 -923.1 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 597 598 -923.3 - SF7BW125 to SF12BW125 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 599 599 600 600 601 -Downlink: 602 602 603 - Uplinkchannels 1-7(RX1)598 +2.9.2 604 604 605 - 921.9-SF12BW125(RX2downlinkonly;SF12BW125might be changed toSF9BW125)600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 606 606 607 607 608 -1. 609 -11. 610 -111. IN865-867 (IN865) 603 +Instruction to use as below: 611 611 612 -Uplink: 613 613 614 - 865.0625 -SF7BW125toSF12BW125606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 615 615 616 - 865.4025 - SF7BW125toSF12BW125608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 617 617 618 -865.9850 - SF7BW125 to SF12BW125 619 619 611 +Step 2: Open it and choose 620 620 621 -Downlink: 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 622 622 623 - Uplinkchannels1-3(RX1)617 +And the Life expectation in difference case will be shown on the right. 624 624 625 -866.550 - SF10BW125 (RX2) 626 626 627 627 628 -1. 629 -11. LED Indicator 621 +=== 2.9.3 Battery Note === 630 630 631 -The LSE01 has an internal LED which is to show the status of different state. 632 - 633 - 634 -* Blink once when device power on. 635 -* Solid ON for 5 seconds once device successful Join the network. 636 -* Blink once when device transmit a packet. 637 - 638 -1. 639 -11. Installation in Soil 640 - 641 -**Measurement the soil surface** 642 - 643 - 644 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 645 - 646 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 647 - 648 - 649 - 650 - 651 - 652 - 653 - 654 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 655 - 656 - 657 - 658 -Dig a hole with diameter > 20CM. 659 - 660 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 661 - 662 - 663 - 664 - 665 -1. 666 -11. Firmware Change Log 667 - 668 -**Firmware download link:** 669 - 670 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 671 - 672 - 673 -**Firmware Upgrade Method:** 674 - 675 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 676 - 677 - 678 -**V1.0.** 679 - 680 -Release 681 - 682 - 683 - 684 -1. 685 -11. Battery Analysis 686 -111. Battery Type 687 - 688 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 - 690 - 691 -The battery is designed to last for more than 5 years for the LSN50. 692 - 693 - 694 -The battery related documents as below: 695 - 696 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 697 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 698 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 699 - 700 -|((( 701 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 702 702 ))) 703 703 704 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 705 705 706 706 629 +=== 2.9.4 Replace the battery === 707 707 708 -1. 709 -11. 710 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 711 711 712 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 713 713 714 714 715 -1. 716 -11. 717 -111. Replace the battery 718 - 719 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 720 - 721 - 722 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 723 - 724 - 725 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 726 - 727 - 728 - 729 - 730 - 731 - 732 732 = 3. Using the AT Commands = 733 733 734 734 == 3.1 Access AT Commands == ... ... @@ -736,13 +736,13 @@ 736 736 737 737 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 738 738 739 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 740 740 741 741 742 742 Or if you have below board, use below connection: 743 743 744 744 745 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 746 746 747 747 748 748 ... ... @@ -749,10 +749,10 @@ 749 749 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 750 750 751 751 752 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 753 753 754 754 755 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 756 756 757 757 758 758 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -864,20 +864,38 @@ 864 864 865 865 == 4.1 How to change the LoRa Frequency Bands/Region? == 866 866 867 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 868 868 When downloading the images, choose the required image file for download. 773 +))) 869 869 775 +((( 776 + 777 +))) 870 870 779 +((( 871 871 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 872 872 783 +((( 784 + 785 +))) 873 873 787 +((( 874 874 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 875 875 791 +((( 792 + 793 +))) 876 876 795 +((( 877 877 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 878 878 879 879 [[image:image-20220606154726-3.png]] 880 880 801 + 881 881 When you use the TTN network, the US915 frequency bands use are: 882 882 883 883 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -890,37 +890,47 @@ 890 890 * 905.3 - SF7BW125 to SF10BW125 891 891 * 904.6 - SF8BW500 892 892 814 +((( 893 893 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 894 894 895 -(% class="box infomessage" %) 896 -((( 897 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 898 898 ))) 899 899 900 -(% class="box infomessage" %) 901 901 ((( 902 -**ATZ** 903 -))) 822 + 904 904 905 905 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 906 906 827 +((( 828 + 829 +))) 907 907 831 +((( 908 908 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 909 909 910 910 [[image:image-20220606154825-4.png]] 911 911 912 912 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 913 913 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 914 914 = 5. Trouble Shooting = 915 915 916 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 917 917 918 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 919 919 920 920 921 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 922 922 923 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 924 924 925 925 926 926 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -932,7 +932,9 @@ 932 932 933 933 (% style="color:#4f81bd" %)**Cause for this issue:** 934 934 866 +((( 935 935 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 936 936 937 937 938 938 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -939,7 +939,7 @@ 939 939 940 940 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 941 941 942 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 943 943 944 944 945 945 = 6. Order Info = ... ... @@ -964,10 +964,17 @@ 964 964 * (% style="color:red" %)**4**(%%): 4000mAh battery 965 965 * (% style="color:red" %)**8**(%%): 8500mAh battery 966 966 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 967 967 = 7. Packing Info = 968 968 969 969 ((( 970 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 971 971 ))) 972 972 973 973 * ((( ... ... @@ -976,10 +976,8 @@ 976 976 977 977 ((( 978 978 979 -))) 980 980 981 -((( 982 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 983 983 ))) 984 984 985 985 * ((( ... ... @@ -993,6 +993,8 @@ 993 993 ))) 994 994 * ((( 995 995 Weight / pcs : g 934 + 935 + 996 996 ))) 997 997 998 998 = 8. Support = ... ... @@ -999,5 +999,3 @@ 999 999 1000 1000 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1001 1001 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1002 - 1003 -
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content