Last modified by Mengting Qiu on 2024/04/02 16:44

From version 22.2
edited by Xiaoling
on 2022/06/06 16:42
Change comment: There is no comment for this version
To version 68.1
edited by Xiaoling
on 2022/07/09 08:40
Change comment: Uploaded new attachment "image-20220709084038-1.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:1657271519014-786.png]]
3 3  
4 4  
5 5  
... ... @@ -8,998 +8,910 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
13 +**Table of Contents:**
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
42 42  
43 -== 1.2 ​Features ==
30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
56 56  
57 -== 1.3 Specification ==
34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*.
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
36 +~* Actually lifetime depends on network coverage and uplink interval and other factors
60 60  
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
72 -
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
75 -
76 -
77 -**LSE01 v1.0 :**  Release
78 -
79 -
80 -
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 -
83 -== 2.1 How it works ==
84 -
85 85  (((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
39 +
87 87  )))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
42 +
91 91  )))
92 92  
45 +[[image:1654503236291-817.png]]
93 93  
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
48 +[[image:1657245163077-232.png]]
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
99 99  
100 -[[image:1654503992078-669.png]]
52 +== 1.2 ​ Features ==
101 101  
54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
55 +* Monitor Soil Moisture
56 +* Monitor Soil Temperature
57 +* Monitor Soil Conductivity
58 +* AT Commands to change parameters
59 +* Uplink on periodically
60 +* Downlink to change configure
61 +* IP66 Waterproof Enclosure
62 +* Ultra-Low Power consumption
63 +* AT Commands to change parameters
64 +* Micro SIM card slot for NB-IoT SIM
65 +* 8500mAh Battery for long term use
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 104  
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
69 +== 1.3  Specification ==
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
72 +(% style="color:#037691" %)**Common DC Characteristics:**
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
74 +* Supply Voltage: 2.1v ~~ 3.6v
75 +* Operating Temperature: -40 ~~ 85°C
113 113  
114 -**Add APP EUI in the application**
77 +(% style="color:#037691" %)**NB-IoT Spec:**
115 115  
79 +* - B1 @H-FDD: 2100MHz
80 +* - B3 @H-FDD: 1800MHz
81 +* - B8 @H-FDD: 900MHz
82 +* - B5 @H-FDD: 850MHz
83 +* - B20 @H-FDD: 800MHz
84 +* - B28 @H-FDD: 700MHz
116 116  
117 -[[image:1654504596150-405.png]]
86 +Probe(% style="color:#037691" %)** Specification:**
118 118  
88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
119 119  
90 +[[image:image-20220708101224-1.png]]
120 120  
121 -**Add APP KEY and DEV EUI**
122 122  
123 -[[image:1654504683289-357.png]]
124 124  
94 +== ​1.4  Applications ==
125 125  
96 +* Smart Agriculture
126 126  
127 -**Step 2**: Power on LSE01
98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 +​
128 128  
101 +== 1.5  Pin Definitions ==
129 129  
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
131 131  
132 -[[image:image-20220606163915-7.png]]
104 +[[image:1657246476176-652.png]]
133 133  
134 134  
135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
136 136  
137 -[[image:1654504778294-788.png]]
108 += 2.  Use NSE01 to communicate with IoT Server =
138 138  
110 +== 2.1  How it works ==
139 139  
140 140  
141 -== 2.3 Uplink Payload ==
113 +(((
114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
115 +)))
142 142  
143 -=== 2.3.1 MOD~=0(Default Mode) ===
144 144  
145 -LSE01 will uplink payload via LoRaWAN with below payload format: 
118 +(((
119 +The diagram below shows the working flow in default firmware of NSE01:
120 +)))
146 146  
122 +[[image:image-20220708101605-2.png]]
147 147  
148 -Uplink payload includes in total 11 bytes.
124 +(((
149 149  
150 -
151 -|(((
152 -**Size**
153 -
154 -**(bytes)**
155 -)))|**2**|**2**|**2**|**2**|**2**|**1**
156 -|**Value**|[[BAT>>path:#bat]]|(((
157 -Temperature
158 -
159 -(Reserve, Ignore now)
160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
161 -MOD & Digital Interrupt
162 -
163 -(Optional)
164 164  )))
165 165  
166 -[[image:1654504881641-514.png]]
167 167  
168 168  
130 +== 2.2 ​ Configure the NSE01 ==
169 169  
170 -=== 2.3.2 MOD~=1(Original value) ===
171 171  
172 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
133 +=== 2.2.1 Test Requirement ===
173 173  
174 -|(((
175 -**Size**
176 176  
177 -**(bytes)**
178 -)))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>path:#bat]]|(((
180 -Temperature
136 +(((
137 +To use NSE01 in your city, make sure meet below requirements:
138 +)))
181 181  
182 -(Reserve, Ignore now)
183 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
184 -MOD & Digital Interrupt
140 +* Your local operator has already distributed a NB-IoT Network there.
141 +* The local NB-IoT network used the band that NSE01 supports.
142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
185 185  
186 -(Optional)
144 +(((
145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
187 187  )))
188 188  
189 -[[image:1654504907647-967.png]]
190 190  
149 +[[image:1657249419225-449.png]]
191 191  
192 192  
193 -=== 2.3.3 Battery Info ===
194 194  
195 -Check the battery voltage for LSE01.
153 +=== 2.2.2 Insert SIM card ===
196 196  
197 -Ex1: 0x0B45 = 2885mV
155 +(((
156 +Insert the NB-IoT Card get from your provider.
157 +)))
198 198  
199 -Ex2: 0x0B49 = 2889mV
159 +(((
160 +User need to take out the NB-IoT module and insert the SIM card like below:
161 +)))
200 200  
201 201  
164 +[[image:1657249468462-536.png]]
202 202  
203 -1.
204 -11.
205 -111. Soil Moisture
206 206  
207 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
208 208  
209 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
168 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
210 210  
211 -**05DC(H) = 1500(D) /100 = 15%.**
170 +(((
171 +(((
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 +)))
174 +)))
212 212  
213 213  
214 -1.
215 -11.
216 -111. Soil Temperature
177 +**Connection:**
217 217  
218 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
219 219  
220 -**Example**:
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
221 221  
222 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
223 223  
224 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
225 225  
186 +In the PC, use below serial tool settings:
226 226  
227 -1.
228 -11.
229 -111. Soil Conductivity (EC)
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
230 230  
231 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
232 232  
233 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
198 +[[image:image-20220708110657-3.png]]
234 234  
200 +(((
201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
202 +)))
235 235  
236 -Generally, the EC value of irrigation water is less than 800uS / cm.
237 237  
238 -1.
239 -11.
240 -111. MOD
241 241  
242 -Firmware version at least v2.1 supports changing mode.
206 +=== 2.2.4 Use CoAP protocol to uplink data ===
243 243  
244 -For example, bytes[10]=90
208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
245 245  
246 -mod=(bytes[10]>>7)&0x01=1.
247 247  
211 +**Use below commands:**
248 248  
249 -Downlink Command:
213 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
250 250  
251 -If payload = 0x0A00, workmode=0
217 +For parameter description, please refer to AT command set
252 252  
253 -If** **payload =** **0x0A01, workmode=1
219 +[[image:1657249793983-486.png]]
254 254  
255 255  
256 -1.
257 -11.
258 -111. ​Decode payload in The Things Network
222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
259 259  
260 -While using TTN network, you can add the payload format to decode the payload.
224 +[[image:1657249831934-534.png]]
261 261  
262 262  
263 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
264 264  
265 -The payload decoder function for TTN is here:
228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
266 266  
267 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
230 +This feature is supported since firmware version v1.0.1
268 268  
269 269  
270 -1.
271 -11. Uplink Interval
233 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
235 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
272 272  
273 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
237 +[[image:1657249864775-321.png]]
274 274  
275 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
276 276  
277 -1.
278 -11. ​Downlink Payload
240 +[[image:1657249930215-289.png]]
279 279  
280 -By default, LSE50 prints the downlink payload to console port.
281 281  
282 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
283 -|TDC (Transmit Time Interval)|Any|01|4
284 -|RESET|Any|04|2
285 -|AT+CFM|Any|05|4
286 -|INTMOD|Any|06|4
287 -|MOD|Any|0A|2
288 288  
289 -**Examples**
244 +=== 2.2.6 Use MQTT protocol to uplink data ===
290 290  
246 +This feature is supported since firmware version v110
291 291  
292 -**Set TDC**
293 293  
294 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
295 295  
296 -Payload:    01 00 00 1E    TDC=30S
257 +[[image:1657249978444-674.png]]
297 297  
298 -Payload:    01 00 00 3C    TDC=60S
299 299  
260 +[[image:1657249990869-686.png]]
300 300  
301 -**Reset**
302 302  
303 -If payload = 0x04FF, it will reset the LSE01
263 +(((
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 +)))
304 304  
305 305  
306 -**CFM**
307 307  
308 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
269 +=== 2.2.7 Use TCP protocol to uplink data ===
309 309  
310 -1.
311 -11. ​Show Data in DataCake IoT Server
271 +This feature is supported since firmware version v110
312 312  
313 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
314 314  
274 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
315 315  
316 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
277 +[[image:1657250217799-140.png]]
317 317  
318 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
319 319  
280 +[[image:1657250255956-604.png]]
320 320  
321 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
322 322  
323 323  
324 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
284 +=== 2.2.8 Change Update Interval ===
325 325  
286 +User can use below command to change the (% style="color:green" %)**uplink interval**.
326 326  
288 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
327 327  
290 +(((
291 +(% style="color:red" %)**NOTE:**
292 +)))
328 328  
294 +(((
295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 +)))
329 329  
330 -Step 3: Create an account or log in Datacake.
331 331  
332 -Step 4: Search the LSE01 and add DevEUI.
333 333  
300 +== 2.3  Uplink Payload ==
334 334  
335 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
302 +In this mode, uplink payload includes in total 18 bytes
336 336  
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 +|=(% style="width: 60px;" %)(((
306 +**Size(bytes)**
307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
337 337  
310 +(((
311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
312 +)))
338 338  
339 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
340 340  
315 +[[image:image-20220708111918-4.png]]
341 341  
342 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
343 343  
318 +The payload is ASCII string, representative same HEX:
344 344  
320 +0x72403155615900640c7817075e0a8c02f900 where:
345 345  
346 -1.
347 -11. Frequency Plans
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
348 348  
349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
350 350  
351 -1.
352 -11.
353 -111. EU863-870 (EU868)
354 354  
355 -Uplink:
356 356  
357 -868.1 - SF7BW125 to SF12BW125
334 +== 2.4  Payload Explanation and Sensor Interface ==
358 358  
359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
360 360  
361 -868.5 - SF7BW125 to SF12BW125
337 +=== 2.4.1  Device ID ===
362 362  
363 -867.1 - SF7BW125 to SF12BW125
339 +(((
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
341 +)))
364 364  
365 -867.3 - SF7BW125 to SF12BW125
343 +(((
344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
345 +)))
366 366  
367 -867.5 - SF7BW125 to SF12BW125
347 +(((
348 +**Example:**
349 +)))
368 368  
369 -867.7 - SF7BW125 to SF12BW125
351 +(((
352 +AT+DEUI=A84041F15612
353 +)))
370 370  
371 -867.9 - SF7BW125 to SF12BW125
355 +(((
356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 +)))
372 372  
373 -868.8 - FSK
374 374  
375 375  
376 -Downlink:
361 +=== 2.4.2  Version Info ===
377 377  
378 -Uplink channels 1-9 (RX1)
363 +(((
364 +Specify the software version: 0x64=100, means firmware version 1.00.
365 +)))
379 379  
380 -869.525 - SF9BW125 (RX2 downlink only)
367 +(((
368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 +)))
381 381  
382 382  
383 -1.
384 -11.
385 -111. US902-928(US915)
386 386  
387 -Used in USA, Canada and South America. Default use CHE=2
373 +=== 2.4.3  Battery Info ===
388 388  
389 -Uplink:
375 +(((
376 +Check the battery voltage for LSE01.
377 +)))
390 390  
391 -903.9 - SF7BW125 to SF10BW125
379 +(((
380 +Ex1: 0x0B45 = 2885mV
381 +)))
392 392  
393 -904.1 - SF7BW125 to SF10BW125
383 +(((
384 +Ex2: 0x0B49 = 2889mV
385 +)))
394 394  
395 -904.3 - SF7BW125 to SF10BW125
396 396  
397 -904.5 - SF7BW125 to SF10BW125
398 398  
399 -904.7 - SF7BW125 to SF10BW125
389 +=== 2.4. Signal Strength ===
400 400  
401 -904.9 - SF7BW125 to SF10BW125
391 +(((
392 +NB-IoT Network signal Strength.
393 +)))
402 402  
403 -905.1 - SF7BW125 to SF10BW125
395 +(((
396 +**Ex1: 0x1d = 29**
397 +)))
404 404  
405 -905.3 - SF7BW125 to SF10BW125
399 +(((
400 +(% style="color:blue" %)**0**(%%)  -113dBm or less
401 +)))
406 406  
403 +(((
404 +(% style="color:blue" %)**1**(%%)  -111dBm
405 +)))
407 407  
408 -Downlink:
407 +(((
408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
409 +)))
409 409  
410 -923.3 - SF7BW500 to SF12BW500
411 +(((
412 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
413 +)))
411 411  
412 -923.9 - SF7BW500 to SF12BW500
415 +(((
416 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 +)))
413 413  
414 -924.5 - SF7BW500 to SF12BW500
415 415  
416 -925.1 - SF7BW500 to SF12BW500
417 417  
418 -925.7 - SF7BW500 to SF12BW500
421 +=== 2.4.5  Soil Moisture ===
419 419  
420 -926.3 - SF7BW500 to SF12BW500
423 +(((
424 +(((
425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
426 +)))
427 +)))
421 421  
422 -926.9 - SF7BW500 to SF12BW500
429 +(((
430 +(((
431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
432 +)))
433 +)))
423 423  
424 -927.5 - SF7BW500 to SF12BW500
435 +(((
436 +
437 +)))
425 425  
426 -923.3 - SF12BW500(RX2 downlink only)
439 +(((
440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
441 +)))
427 427  
428 428  
429 -1.
430 -11.
431 -111. CN470-510 (CN470)
432 432  
433 -Used in China, Default use CHE=1
445 +=== 2.4.6  Soil Temperature ===
434 434  
435 -Uplink:
447 +(((
448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
449 +)))
436 436  
437 -486.3 - SF7BW125 to SF12BW125
451 +(((
452 +**Example**:
453 +)))
438 438  
439 -486.5 - SF7BW125 to SF12BW125
455 +(((
456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
457 +)))
440 440  
441 -486.7 - SF7BW125 to SF12BW125
459 +(((
460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
461 +)))
442 442  
443 -486.9 - SF7BW125 to SF12BW125
444 444  
445 -487.1 - SF7BW125 to SF12BW125
446 446  
447 -487.3 - SF7BW125 to SF12BW125
465 +=== 2.4. Soil Conductivity (EC) ===
448 448  
449 -487.5 - SF7BW125 to SF12BW125
467 +(((
468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
469 +)))
450 450  
451 -487.7 - SF7BW125 to SF12BW125
471 +(((
472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
473 +)))
452 452  
475 +(((
476 +Generally, the EC value of irrigation water is less than 800uS / cm.
477 +)))
453 453  
454 -Downlink:
479 +(((
480 +
481 +)))
455 455  
456 -506.7 - SF7BW125 to SF12BW125
483 +(((
484 +
485 +)))
457 457  
458 -506.9 - SF7BW125 to SF12BW125
487 +=== 2.4.8  Digital Interrupt ===
459 459  
460 -507.1 - SF7BW125 to SF12BW125
489 +(((
490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
491 +)))
461 461  
462 -507.3 - SF7BW125 to SF12BW125
493 +(((
494 +The command is:
495 +)))
463 463  
464 -507.5 - SF7BW125 to SF12BW125
497 +(((
498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 +)))
465 465  
466 -507.7 - SF7BW125 to SF12BW125
467 467  
468 -507.9 - SF7BW125 to SF12BW125
502 +(((
503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
504 +)))
469 469  
470 -508.1 - SF7BW125 to SF12BW125
471 471  
472 -505.3 - SF12BW125 (RX2 downlink only)
507 +(((
508 +Example:
509 +)))
473 473  
511 +(((
512 +0x(00): Normal uplink packet.
513 +)))
474 474  
475 -1.
476 -11.
477 -111. AU915-928(AU915)
515 +(((
516 +0x(01): Interrupt Uplink Packet.
517 +)))
478 478  
479 -Default use CHE=2
480 480  
481 -Uplink:
482 482  
483 -916.8 - SF7BW125 to SF12BW125
521 +=== 2.4.9  ​+5V Output ===
484 484  
485 -917.0 - SF7BW125 to SF12BW125
523 +(((
524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 +)))
486 486  
487 -917.2 - SF7BW125 to SF12BW125
488 488  
489 -917.4 - SF7BW125 to SF12BW125
528 +(((
529 +The 5V output time can be controlled by AT Command.
530 +)))
490 490  
491 -917.6 - SF7BW125 to SF12BW125
532 +(((
533 +(% style="color:blue" %)**AT+5VT=1000**
534 +)))
492 492  
493 -917.8 - SF7BW125 to SF12BW125
536 +(((
537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 +)))
494 494  
495 -918.0 - SF7BW125 to SF12BW125
496 496  
497 -918.2 - SF7BW125 to SF12BW125
498 498  
542 +== 2.5  Downlink Payload ==
499 499  
500 -Downlink:
544 +By default, NSE01 prints the downlink payload to console port.
501 501  
502 -923.3 - SF7BW500 to SF12BW500
546 +[[image:image-20220708133731-5.png]]
503 503  
504 -923.9 - SF7BW500 to SF12BW500
505 505  
506 -924.5 - SF7BW500 to SF12BW500
549 +(((
550 +(% style="color:blue" %)**Examples:**
551 +)))
507 507  
508 -925.1 - SF7BW500 to SF12BW500
553 +(((
554 +
555 +)))
509 509  
510 -925.7 - SF7BW500 to SF12BW500
557 +* (((
558 +(% style="color:blue" %)**Set TDC**
559 +)))
511 511  
512 -926.3 - SF7BW500 to SF12BW500
561 +(((
562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
563 +)))
513 513  
514 -926.9 - SF7BW500 to SF12BW500
565 +(((
566 +Payload:    01 00 00 1E    TDC=30S
567 +)))
515 515  
516 -927.5 - SF7BW500 to SF12BW500
569 +(((
570 +Payload:    01 00 00 3C    TDC=60S
571 +)))
517 517  
518 -923.3 - SF12BW500(RX2 downlink only)
573 +(((
574 +
575 +)))
519 519  
520 -1.
521 -11.
522 -111. AS920-923 & AS923-925 (AS923)
577 +* (((
578 +(% style="color:blue" %)**Reset**
579 +)))
523 523  
524 -**Default Uplink channel:**
581 +(((
582 +If payload = 0x04FF, it will reset the NSE01
583 +)))
525 525  
526 -923.2 - SF7BW125 to SF10BW125
527 527  
528 -923.4 - SF7BW125 to SF10BW125
586 +* (% style="color:blue" %)**INTMOD**
529 529  
588 +(((
589 +Downlink Payload: 06000003, Set AT+INTMOD=3
590 +)))
530 530  
531 -**Additional Uplink Channel**:
532 532  
533 -(OTAA mode, channel added by JoinAccept message)
534 534  
535 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
594 +== 2.6  ​LED Indicator ==
536 536  
537 -922.2 - SF7BW125 to SF10BW125
596 +(((
597 +The NSE01 has an internal LED which is to show the status of different state.
538 538  
539 -922.4 - SF7BW125 to SF10BW125
540 540  
541 -922.6 - SF7BW125 to SF10BW125
600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
601 +* Then the LED will be on for 1 second means device is boot normally.
602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
603 +* For each uplink probe, LED will be on for 500ms.
604 +)))
542 542  
543 -922.8 - SF7BW125 to SF10BW125
544 544  
545 -923.0 - SF7BW125 to SF10BW125
546 546  
547 -922.0 - SF7BW125 to SF10BW125
548 548  
609 +== 2.7  Installation in Soil ==
549 549  
550 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
611 +__**Measurement the soil surface**__
551 551  
552 -923.6 - SF7BW125 to SF10BW125
613 +(((
614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
615 +)))
553 553  
554 -923.8 - SF7BW125 to SF10BW125
617 +[[image:1657259653666-883.png]] ​
555 555  
556 -924.0 - SF7BW125 to SF10BW125
557 557  
558 -924.2 - SF7BW125 to SF10BW125
620 +(((
621 +
559 559  
560 -924.4 - SF7BW125 to SF10BW125
561 -
562 -924.6 - SF7BW125 to SF10BW125
563 -
564 -
565 -
566 -**Downlink:**
567 -
568 -Uplink channels 1-8 (RX1)
569 -
570 -923.2 - SF10BW125 (RX2)
571 -
572 -
573 -1.
574 -11.
575 -111. KR920-923 (KR920)
576 -
577 -Default channel:
578 -
579 -922.1 - SF7BW125 to SF12BW125
580 -
581 -922.3 - SF7BW125 to SF12BW125
582 -
583 -922.5 - SF7BW125 to SF12BW125
584 -
585 -
586 -Uplink: (OTAA mode, channel added by JoinAccept message)
587 -
588 -922.1 - SF7BW125 to SF12BW125
589 -
590 -922.3 - SF7BW125 to SF12BW125
591 -
592 -922.5 - SF7BW125 to SF12BW125
593 -
594 -922.7 - SF7BW125 to SF12BW125
595 -
596 -922.9 - SF7BW125 to SF12BW125
597 -
598 -923.1 - SF7BW125 to SF12BW125
599 -
600 -923.3 - SF7BW125 to SF12BW125
601 -
602 -
603 -Downlink:
604 -
605 -Uplink channels 1-7(RX1)
606 -
607 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
608 -
609 -
610 -1.
611 -11.
612 -111. IN865-867 (IN865)
613 -
614 -Uplink:
615 -
616 -865.0625 - SF7BW125 to SF12BW125
617 -
618 -865.4025 - SF7BW125 to SF12BW125
619 -
620 -865.9850 - SF7BW125 to SF12BW125
621 -
622 -
623 -Downlink:
624 -
625 -Uplink channels 1-3 (RX1)
626 -
627 -866.550 - SF10BW125 (RX2)
628 -
629 -
630 -1.
631 -11. LED Indicator
632 -
633 -The LSE01 has an internal LED which is to show the status of different state.
634 -
635 -
636 -* Blink once when device power on.
637 -* Solid ON for 5 seconds once device successful Join the network.
638 -* Blink once when device transmit a packet.
639 -
640 -1.
641 -11. Installation in Soil
642 -
643 -**Measurement the soil surface**
644 -
645 -
646 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
647 -
648 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
649 -
650 -
651 -
652 -
653 -
654 -
655 -
656 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
657 -
658 -
659 -
623 +(((
660 660  Dig a hole with diameter > 20CM.
625 +)))
661 661  
627 +(((
662 662  Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 +)))
630 +)))
663 663  
632 +[[image:1654506665940-119.png]]
664 664  
634 +(((
635 +
636 +)))
665 665  
666 666  
667 -1.
668 -11. ​Firmware Change Log
639 +== 2.8  ​Firmware Change Log ==
669 669  
670 -**Firmware download link:**
671 671  
672 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
642 +Download URL & Firmware Change log
673 673  
644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
674 674  
675 -**Firmware Upgrade Method:**
676 676  
677 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
678 678  
679 679  
680 -**V1.0.**
681 681  
682 -Release
651 +== 2.9  ​Battery Analysis ==
683 683  
653 +=== 2.9.1  ​Battery Type ===
684 684  
685 685  
686 -1.
687 -11. ​Battery Analysis
688 -111. ​Battery Type
656 +(((
657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
658 +)))
689 689  
690 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
691 691  
661 +(((
662 +The battery is designed to last for several years depends on the actually use environment and update interval. 
663 +)))
692 692  
693 -The battery is designed to last for more than 5 years for the LSN50.
694 694  
695 -
666 +(((
696 696  The battery related documents as below:
668 +)))
697 697  
698 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
699 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
700 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
701 701  
702 -|(((
703 -JST-XH-2P connector
674 +(((
675 +[[image:image-20220708140453-6.png]]
704 704  )))
705 705  
706 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
707 707  
708 708  
680 +=== 2.9.2  Power consumption Analyze ===
709 709  
710 -1.
711 -11.
712 -111. ​Battery Note
682 +(((
683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
684 +)))
713 713  
714 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
715 715  
687 +(((
688 +Instruction to use as below:
689 +)))
716 716  
717 -1.
718 -11.
719 -111. ​Replace the battery
691 +(((
692 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
693 +)))
720 720  
721 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
722 722  
696 +(((
697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
698 +)))
723 723  
724 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
700 +* (((
701 +Product Model
702 +)))
703 +* (((
704 +Uplink Interval
705 +)))
706 +* (((
707 +Working Mode
708 +)))
725 725  
710 +(((
711 +And the Life expectation in difference case will be shown on the right.
712 +)))
726 726  
727 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
714 +[[image:image-20220708141352-7.jpeg]]
728 728  
729 729  
730 730  
718 +=== 2.9.3  ​Battery Note ===
731 731  
720 +(((
721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
722 +)))
732 732  
733 733  
734 -= 3. ​Using the AT Commands =
735 735  
736 -== 3.1 Access AT Commands ==
726 +=== 2.9.4  Replace the battery ===
737 737  
728 +(((
729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
730 +)))
738 738  
739 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
740 740  
741 -[[image:1654501986557-872.png]]
742 742  
734 += 3. ​ Access NB-IoT Module =
743 743  
744 -Or if you have below board, use below connection:
736 +(((
737 +Users can directly access the AT command set of the NB-IoT module.
738 +)))
745 745  
740 +(((
741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
742 +)))
746 746  
747 -[[image:1654502005655-729.png]]
744 +[[image:1657261278785-153.png]]
748 748  
749 749  
750 750  
751 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
748 += 4.  Using the AT Commands =
752 752  
750 +== 4.1  Access AT Commands ==
753 753  
754 - [[image:1654502050864-459.png]]
752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
755 755  
756 756  
757 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
755 +AT+<CMD>?  : Help on <CMD>
758 758  
757 +AT+<CMD>         : Run <CMD>
759 759  
760 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
759 +AT+<CMD>=<value> : Set the value
761 761  
762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
761 +AT+<CMD>=?  : Get the value
763 763  
764 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
765 765  
766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
767 -
768 -
769 769  (% style="color:#037691" %)**General Commands**(%%)      
770 770  
771 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
766 +AT  : Attention       
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
768 +AT?  : Short Help     
774 774  
775 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
770 +ATZ  : MCU Reset    
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
772 +AT+TDC  : Application Data Transmission Interval
778 778  
774 +AT+CFG  : Print all configurations
779 779  
780 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
776 +AT+CFGMOD           : Working mode selection
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
778 +AT+INTMOD            : Set the trigger interrupt mode
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
780 +AT+5VT  : Set extend the time of 5V power  
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
782 +AT+PRO  : Choose agreement
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
784 +AT+WEIGRE  : Get weight or set weight to 0
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
786 +AT+WEIGAP  : Get or Set the GapValue of weight
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
788 +AT+RXDL  : Extend the sending and receiving time
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
790 +AT+CNTFAC  : Get or set counting parameters
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
792 +AT+SERVADDR  : Server Address
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
795 +(% style="color:#037691" %)**COAP Management**      
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
797 +AT+URI            : Resource parameters
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
800 +(% style="color:#037691" %)**UDP Management**
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
802 +AT+CFM          : Upload confirmation mode (only valid for UDP)
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
805 +(% style="color:#037691" %)**MQTT Management**
813 813  
807 +AT+CLIENT               : Get or Set MQTT client
814 814  
815 -(% style="color:#037691" %)**LoRa Network Management**
809 +AT+UNAME  : Get or Set MQTT Username
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
811 +AT+PWD                  : Get or Set MQTT password
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
813 +AT+PUBTOPI : Get or Set MQTT publish topic
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
815 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
818 +(% style="color:#037691" %)**Information**          
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
820 +AT+FDR  : Factory Data Reset
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
822 +AT+PWOR : Serial Access Password
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
826 += ​5.  FAQ =
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
828 +== 5.1 How to Upgrade Firmware ==
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
831 +(((
832 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
833 +)))
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
835 +(((
836 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
837 +)))
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
839 +(((
840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
841 +)))
846 846  
847 847  
848 -(% style="color:#037691" %)**Information** 
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
845 +== 5.2  Can I calibrate NSE01 to different soil types? ==
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
847 +(((
848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
849 +)))
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
852 += 6.  Trouble Shooting =
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
854 +== 6.1  ​Connection problem when uploading firmware ==
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
861 861  
862 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
863 -
864 -
865 -= ​4. FAQ =
866 -
867 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
868 -
869 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
870 -When downloading the images, choose the required image file for download. ​
871 -
872 -
873 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
874 -
875 -
876 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
877 -
878 -
879 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
880 -
881 -[[image:image-20220606154726-3.png]]
882 -
883 -When you use the TTN network, the US915 frequency bands use are:
884 -
885 -* 903.9 - SF7BW125 to SF10BW125
886 -* 904.1 - SF7BW125 to SF10BW125
887 -* 904.3 - SF7BW125 to SF10BW125
888 -* 904.5 - SF7BW125 to SF10BW125
889 -* 904.7 - SF7BW125 to SF10BW125
890 -* 904.9 - SF7BW125 to SF10BW125
891 -* 905.1 - SF7BW125 to SF10BW125
892 -* 905.3 - SF7BW125 to SF10BW125
893 -* 904.6 - SF8BW500
894 -
895 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
896 -
897 -(% class="box infomessage" %)
898 898  (((
899 -**AT+CHE=2**
858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
900 900  )))
901 901  
902 -(% class="box infomessage" %)
861 +(% class="wikigeneratedid" %)
903 903  (((
904 -**ATZ**
863 +
905 905  )))
906 906  
907 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
908 908  
867 +== 6.2  AT Command input doesn't work ==
909 909  
910 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
869 +(((
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
911 911  
912 -[[image:image-20220606154825-4.png]]
872 +
873 +)))
913 913  
914 914  
876 += 7. ​ Order Info =
915 915  
916 -= 5. Trouble Shooting =
917 917  
918 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
919 919  
920 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
921 921  
882 +(% class="wikigeneratedid" %)
883 +(((
884 +
885 +)))
922 922  
923 -== 5.2 AT Command input doesn’t work ==
887 += 8.  Packing Info =
924 924  
925 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
889 +(((
890 +
926 926  
892 +(% style="color:#037691" %)**Package Includes**:
927 927  
928 -== 5.3 Device rejoin in at the second uplink packet ==
894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 +* External antenna x 1
896 +)))
929 929  
930 -(% style="color:#4f81bd" %)**Issue describe as below:**
898 +(((
899 +
931 931  
932 -[[image:1654500909990-784.png]]
901 +(% style="color:#037691" %)**Dimension and weight**:
933 933  
934 -
935 -(% style="color:#4f81bd" %)**Cause for this issue:**
936 -
937 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
938 -
939 -
940 -(% style="color:#4f81bd" %)**Solution: **
941 -
942 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
943 -
944 -[[image:1654500929571-736.png]]
945 -
946 -
947 -= 6. ​Order Info =
948 -
949 -
950 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
951 -
952 -
953 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
954 -
955 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
956 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
957 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
958 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
959 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
960 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
961 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
962 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
963 -
964 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
965 -
966 -* (% style="color:red" %)**4**(%%): 4000mAh battery
967 -* (% style="color:red" %)**8**(%%): 8500mAh battery
968 -
969 -= 7. Packing Info =
970 -
971 -(((
972 -**Package Includes**:
903 +* Size: 195 x 125 x 55 mm
904 +* Weight:   420g
973 973  )))
974 974  
975 -* (((
976 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
977 -)))
978 -
979 979  (((
980 980  
981 -)))
982 982  
983 -(((
984 -**Dimension and weight**:
985 -)))
986 986  
987 -* (((
988 -Device Size: cm
911 +
989 989  )))
990 -* (((
991 -Device Weight: g
992 -)))
993 -* (((
994 -Package Size / pcs : cm
995 -)))
996 -* (((
997 -Weight / pcs : g
998 -)))
999 999  
1000 -= 8. Support =
914 += 9.  Support =
1001 1001  
1002 1002  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1003 1003  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1004 -
1005 -
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content