Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 34 added, 0 removed)
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="848" width="848"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 ... ... @@ -8,998 +8,910 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 13 +**Table of Contents:** 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 40 40 25 +((( 26 + 41 41 28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 42 42 43 - ==1.2Features==30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 56 56 57 - ==1.3Specification==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 58 58 59 - MeasureVolume:Base onthe centrapinof theprobe,acylinderwith 7cm diameter and10cmheight.36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 - 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 - 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 75 - 76 - 77 -**LSE01 v1.0 :** Release 78 - 79 - 80 - 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 - 83 -== 2.1 How it works == 84 - 85 85 ((( 86 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 87 87 ))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 42 + 91 91 ))) 92 92 45 +[[image:1654503236291-817.png]] 93 93 94 94 95 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==48 +[[image:1657245163077-232.png]] 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 99 99 100 - [[image:1654503992078-669.png]]52 +== 1.2 Features == 101 101 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 102 102 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 104 105 105 106 - **Step1**:Create a devicein TTN with the OTAA keys fromLSE01.69 +== 1.3 Specification == 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 110 - [[image:image-20220606163732-6.jpeg]]72 +(% style="color:#037691" %)**Common DC Characteristics:** 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 113 113 114 - **AddAPP EUI intheapplication**77 +(% style="color:#037691" %)**NB-IoT Spec:** 115 115 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 116 116 117 - [[image:1654504596150-405.png]]86 +Probe(% style="color:#037691" %)** Specification:** 118 118 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 119 119 90 +[[image:image-20220708101224-1.png]] 120 120 121 -**Add APP KEY and DEV EUI** 122 122 123 -[[image:1654504683289-357.png]] 124 124 94 +== 1.4 Applications == 125 125 96 +* Smart Agriculture 126 126 127 -**Step 2**: Power on LSE01 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 128 128 101 +== 1.5 Pin Definitions == 129 129 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 131 132 -[[image: image-20220606163915-7.png]]104 +[[image:1657246476176-652.png]] 133 133 134 134 135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 136 137 - [[image:1654504778294-788.png]]108 += 2. Use NSE01 to communicate with IoT Server = 138 138 110 +== 2.1 How it works == 139 139 140 140 141 -== 2.3 Uplink Payload == 113 +((( 114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 115 +))) 142 142 143 -=== 2.3.1 MOD~=0(Default Mode) === 144 144 145 -LSE01 will uplink payload via LoRaWAN with below payload format: 118 +((( 119 +The diagram below shows the working flow in default firmware of NSE01: 120 +))) 146 146 122 +[[image:image-20220708101605-2.png]] 147 147 148 - Uplink payload includes in total 11 bytes.124 +((( 149 149 150 - 151 -|((( 152 -**Size** 153 - 154 -**(bytes)** 155 -)))|**2**|**2**|**2**|**2**|**2**|**1** 156 -|**Value**|[[BAT>>path:#bat]]|((( 157 -Temperature 158 - 159 -(Reserve, Ignore now) 160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 161 -MOD & Digital Interrupt 162 - 163 -(Optional) 164 164 ))) 165 165 166 -[[image:1654504881641-514.png]] 167 167 168 168 130 +== 2.2 Configure the NSE01 == 169 169 170 -=== 2.3.2 MOD~=1(Original value) === 171 171 172 - Thismodecangettheoriginal AD value of moistureand original conductivity (with temperature drift compensation).133 +=== 2.2.1 Test Requirement === 173 173 174 -|((( 175 -**Size** 176 176 177 -**(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 179 -|**Value**|[[BAT>>path:#bat]]|((( 180 -Temperature 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 138 +))) 181 181 182 - (Reserve,Ignorenow)183 - )))|[[SoilMoisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[SoilConductivity(EC)>>path:#EC]](raw)|(((184 - MOD&DigitalInterrupt140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 185 185 186 -(Optional) 144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 187 187 ))) 188 188 189 -[[image:1654504907647-967.png]] 190 190 149 +[[image:1657249419225-449.png]] 191 191 192 192 193 -=== 2.3.3 Battery Info === 194 194 195 - Checkthebattery voltageforLSE01.153 +=== 2.2.2 Insert SIM card === 196 196 197 -Ex1: 0x0B45 = 2885mV 155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 198 198 199 -Ex2: 0x0B49 = 2889mV 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 200 200 201 201 164 +[[image:1657249468462-536.png]] 202 202 203 -1. 204 -11. 205 -111. Soil Moisture 206 206 207 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 208 208 209 - Forexample,ifthedatayougetfromtheregister is0x050xDC,themoisturecontentinthesoil is168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 210 210 211 -**05DC(H) = 1500(D) /100 = 15%.** 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 212 212 213 213 214 -1. 215 -11. 216 -111. Soil Temperature 177 +**Connection:** 217 217 218 - Getthetemperature in the soil. The value range of the register is-4000 - +800(Decimal), divide this value by 100 toget the temperature in the soil. Forxample, if the data yougetfromtheregisteris 0x09 0xEC, the temperature content in the soil is179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 219 219 220 - **Example**:181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 221 221 222 - Ifpayloadis 0105H:((0x0105 & 0x8000)>>15 === 0),temp= 0105(H)/100=2.61°C183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 223 223 224 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 225 225 186 +In the PC, use below serial tool settings: 226 226 227 -1. 228 -11. 229 -111. Soil Conductivity (EC) 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 230 230 231 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 232 232 233 - For example,if the data youget fromthe register is 0x00 0xC8, the soil conductivity is 00C8(H) =200(D) =200uS/cm.198 +[[image:image-20220708110657-3.png]] 234 234 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 235 235 236 -Generally, the EC value of irrigation water is less than 800uS / cm. 237 237 238 -1. 239 -11. 240 -111. MOD 241 241 242 - Firmwareversionatleastv2.1supportschangingmode.206 +=== 2.2.4 Use CoAP protocol to uplink data === 243 243 244 - For example,bytes[10]=90208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 245 245 246 -mod=(bytes[10]>>7)&0x01=1. 247 247 211 +**Use below commands:** 248 248 249 -Downlink Command: 213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 250 250 251 - Ifpayload=0x0A00,workmode=0217 +For parameter description, please refer to AT command set 252 252 253 - If** **payload =** **0x0A01, workmode=1219 +[[image:1657249793983-486.png]] 254 254 255 255 256 -1. 257 -11. 258 -111. Decode payload in The Things Network 222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 259 259 260 - While using TTN network, you can add the payload format to decode the payload.224 +[[image:1657249831934-534.png]] 261 261 262 262 263 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 264 264 265 - The payload decoderfunctionfor TTNishere:228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 266 266 267 - LSE01TTNPayload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]230 +This feature is supported since firmware version v1.0.1 268 268 269 269 270 -1. 271 -11. Uplink Interval 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 272 272 273 - The LSE01 by default uplink the sensor data every 20minutes. User can changethis interval by AT Command or LoRaWAN Downlink Command.See this link:237 +[[image:1657249864775-321.png]] 274 274 275 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 276 276 277 -1. 278 -11. Downlink Payload 240 +[[image:1657249930215-289.png]] 279 279 280 -By default, LSE50 prints the downlink payload to console port. 281 281 282 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 283 -|TDC (Transmit Time Interval)|Any|01|4 284 -|RESET|Any|04|2 285 -|AT+CFM|Any|05|4 286 -|INTMOD|Any|06|4 287 -|MOD|Any|0A|2 288 288 289 - **Examples**244 +=== 2.2.6 Use MQTT protocol to uplink data === 290 290 246 +This feature is supported since firmware version v110 291 291 292 -**Set TDC** 293 293 294 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 295 295 296 - Payload:0100 00 1E TDC=30S257 +[[image:1657249978444-674.png]] 297 297 298 -Payload: 01 00 00 3C TDC=60S 299 299 260 +[[image:1657249990869-686.png]] 300 300 301 -**Reset** 302 302 303 -If payload = 0x04FF, it will reset the LSE01 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 304 304 305 305 306 -**CFM** 307 307 308 - DownlinkPayload:05000001,SetAT+CFM=1or05000000,setAT+CFM=0269 +=== 2.2.7 Use TCP protocol to uplink data === 309 309 310 -1. 311 -11. Show Data in DataCake IoT Server 271 +This feature is supported since firmware version v110 312 312 313 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 314 314 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 315 315 316 - **Step 1**: Be sure that your device is programmedand properly connected to the network at this time.277 +[[image:1657250217799-140.png]] 317 317 318 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 319 319 280 +[[image:1657250255956-604.png]] 320 320 321 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 322 322 323 323 324 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]284 +=== 2.2.8 Change Update Interval === 325 325 286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 326 326 288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 327 327 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 328 328 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 329 329 330 -Step 3: Create an account or log in Datacake. 331 331 332 -Step 4: Search the LSE01 and add DevEUI. 333 333 300 +== 2.3 Uplink Payload == 334 334 335 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]302 +In this mode, uplink payload includes in total 18 bytes 336 336 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 337 337 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 338 338 339 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 340 340 315 +[[image:image-20220708111918-4.png]] 341 341 342 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 343 343 318 +The payload is ASCII string, representative same HEX: 344 344 320 +0x72403155615900640c7817075e0a8c02f900 where: 345 345 346 -1 .347 - 11.FrequencyPlans322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 348 348 349 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 350 350 351 -1. 352 -11. 353 -111. EU863-870 (EU868) 354 354 355 -Uplink: 356 356 357 - 868.1- SF7BW125to SF12BW125334 +== 2.4 Payload Explanation and Sensor Interface == 358 358 359 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 360 360 361 - 868.5- SF7BW125toSF12BW125337 +=== 2.4.1 Device ID === 362 362 363 -867.1 - SF7BW125 to SF12BW125 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 364 364 365 -867.3 - SF7BW125 to SF12BW125 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 366 366 367 -867.5 - SF7BW125 to SF12BW125 347 +((( 348 +**Example:** 349 +))) 368 368 369 -867.7 - SF7BW125 to SF12BW125 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 370 370 371 -867.9 - SF7BW125 to SF12BW125 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 372 372 373 -868.8 - FSK 374 374 375 375 376 - Downlink:361 +=== 2.4.2 Version Info === 377 377 378 -Uplink channels 1-9 (RX1) 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 379 379 380 -869.525 - SF9BW125 (RX2 downlink only) 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 381 381 382 382 383 -1. 384 -11. 385 -111. US902-928(US915) 386 386 387 - UsedinUSA, Canada and South America.Defaultuse CHE=2373 +=== 2.4.3 Battery Info === 388 388 389 -Uplink: 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 390 390 391 -903.9 - SF7BW125 to SF10BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 392 392 393 -904.1 - SF7BW125 to SF10BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 394 394 395 -904.3 - SF7BW125 to SF10BW125 396 396 397 -904.5 - SF7BW125 to SF10BW125 398 398 399 - 904.7-SF7BW125toSF10BW125389 +=== 2.4.4 Signal Strength === 400 400 401 -904.9 - SF7BW125 to SF10BW125 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 402 402 403 -905.1 - SF7BW125 to SF10BW125 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 404 404 405 -905.3 - SF7BW125 to SF10BW125 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 406 406 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 407 407 408 -Downlink: 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 409 409 410 -923.3 - SF7BW500 to SF12BW500 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 411 411 412 -923.9 - SF7BW500 to SF12BW500 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 413 413 414 -924.5 - SF7BW500 to SF12BW500 415 415 416 -925.1 - SF7BW500 to SF12BW500 417 417 418 - 925.7-SF7BW500toSF12BW500421 +=== 2.4.5 Soil Moisture === 419 419 420 -926.3 - SF7BW500 to SF12BW500 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 421 421 422 -926.9 - SF7BW500 to SF12BW500 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 423 423 424 -927.5 - SF7BW500 to SF12BW500 435 +((( 436 + 437 +))) 425 425 426 -923.3 - SF12BW500(RX2 downlink only) 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 427 427 428 428 429 -1. 430 -11. 431 -111. CN470-510 (CN470) 432 432 433 - UsedinChina,DefaultseCHE=1445 +=== 2.4.6 Soil Temperature === 434 434 435 -Uplink: 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 436 436 437 -486.3 - SF7BW125 to SF12BW125 451 +((( 452 +**Example**: 453 +))) 438 438 439 -486.5 - SF7BW125 to SF12BW125 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 440 440 441 -486.7 - SF7BW125 to SF12BW125 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 442 442 443 -486.9 - SF7BW125 to SF12BW125 444 444 445 -487.1 - SF7BW125 to SF12BW125 446 446 447 -4 87.3-SF7BW125toSF12BW125465 +=== 2.4.7 Soil Conductivity (EC) === 448 448 449 -487.5 - SF7BW125 to SF12BW125 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 450 450 451 -487.7 - SF7BW125 to SF12BW125 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 452 452 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 453 453 454 -Downlink: 479 +((( 480 + 481 +))) 455 455 456 -506.7 - SF7BW125 to SF12BW125 483 +((( 484 + 485 +))) 457 457 458 - 506.9- SF7BW125toSF12BW125487 +=== 2.4.8 Digital Interrupt === 459 459 460 -507.1 - SF7BW125 to SF12BW125 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 461 461 462 -507.3 - SF7BW125 to SF12BW125 493 +((( 494 +The command is: 495 +))) 463 463 464 -507.5 - SF7BW125 to SF12BW125 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 465 465 466 -507.7 - SF7BW125 to SF12BW125 467 467 468 -507.9 - SF7BW125 to SF12BW125 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 469 469 470 -508.1 - SF7BW125 to SF12BW125 471 471 472 -505.3 - SF12BW125 (RX2 downlink only) 507 +((( 508 +Example: 509 +))) 473 473 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 474 474 475 - 1.476 -1 1.477 - 111. AU915-928(AU915)515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 478 478 479 -Default use CHE=2 480 480 481 -Uplink: 482 482 483 - 916.8- SF7BW125 toSF12BW125521 +=== 2.4.9 +5V Output === 484 484 485 -917.0 - SF7BW125 to SF12BW125 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 486 486 487 -917.2 - SF7BW125 to SF12BW125 488 488 489 -917.4 - SF7BW125 to SF12BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 490 490 491 -917.6 - SF7BW125 to SF12BW125 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 492 492 493 -917.8 - SF7BW125 to SF12BW125 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 494 494 495 -918.0 - SF7BW125 to SF12BW125 496 496 497 -918.2 - SF7BW125 to SF12BW125 498 498 542 +== 2.5 Downlink Payload == 499 499 500 - Downlink:544 +By default, NSE01 prints the downlink payload to console port. 501 501 502 - 923.3- SF7BW500 to SF12BW500546 +[[image:image-20220708133731-5.png]] 503 503 504 -923.9 - SF7BW500 to SF12BW500 505 505 506 -924.5 - SF7BW500 to SF12BW500 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 507 507 508 -925.1 - SF7BW500 to SF12BW500 553 +((( 554 + 555 +))) 509 509 510 -925.7 - SF7BW500 to SF12BW500 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 511 511 512 -926.3 - SF7BW500 to SF12BW500 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 513 513 514 -926.9 - SF7BW500 to SF12BW500 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 515 515 516 -927.5 - SF7BW500 to SF12BW500 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 517 517 518 -923.3 - SF12BW500(RX2 downlink only) 573 +((( 574 + 575 +))) 519 519 520 - 1.521 - 11.522 - 111. AS920-923 & AS923-925 (AS923)577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 523 523 524 -**Default Uplink channel:** 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 525 525 526 -923.2 - SF7BW125 to SF10BW125 527 527 528 - 923.4-SF7BW125toSF10BW125586 +* (% style="color:blue" %)**INTMOD** 529 529 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 530 530 531 -**Additional Uplink Channel**: 532 532 533 -(OTAA mode, channel added by JoinAccept message) 534 534 535 - **AS920~~AS923forJapan, Malaysia, Singapore**:594 +== 2.6 LED Indicator == 536 536 537 -922.2 - SF7BW125 to SF10BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 538 538 539 -922.4 - SF7BW125 to SF10BW125 540 540 541 -922.6 - SF7BW125 to SF10BW125 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 542 542 543 -922.8 - SF7BW125 to SF10BW125 544 544 545 -923.0 - SF7BW125 to SF10BW125 546 546 547 -922.0 - SF7BW125 to SF10BW125 548 548 609 +== 2.7 Installation in Soil == 549 549 550 -** AS923 ~~ AS925 for Brunei, Cambodia, HongKong, Indonesia,Laos, Taiwan, Thailand,Vietnam**:611 +__**Measurement the soil surface**__ 551 551 552 -923.6 - SF7BW125 to SF10BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 553 553 554 - 923.8 - SF7BW125to SF10BW125617 +[[image:1657259653666-883.png]] 555 555 556 -924.0 - SF7BW125 to SF10BW125 557 557 558 -924.2 - SF7BW125 to SF10BW125 620 +((( 621 + 559 559 560 -924.4 - SF7BW125 to SF10BW125 561 - 562 -924.6 - SF7BW125 to SF10BW125 563 - 564 - 565 - 566 -**Downlink:** 567 - 568 -Uplink channels 1-8 (RX1) 569 - 570 -923.2 - SF10BW125 (RX2) 571 - 572 - 573 -1. 574 -11. 575 -111. KR920-923 (KR920) 576 - 577 -Default channel: 578 - 579 -922.1 - SF7BW125 to SF12BW125 580 - 581 -922.3 - SF7BW125 to SF12BW125 582 - 583 -922.5 - SF7BW125 to SF12BW125 584 - 585 - 586 -Uplink: (OTAA mode, channel added by JoinAccept message) 587 - 588 -922.1 - SF7BW125 to SF12BW125 589 - 590 -922.3 - SF7BW125 to SF12BW125 591 - 592 -922.5 - SF7BW125 to SF12BW125 593 - 594 -922.7 - SF7BW125 to SF12BW125 595 - 596 -922.9 - SF7BW125 to SF12BW125 597 - 598 -923.1 - SF7BW125 to SF12BW125 599 - 600 -923.3 - SF7BW125 to SF12BW125 601 - 602 - 603 -Downlink: 604 - 605 -Uplink channels 1-7(RX1) 606 - 607 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 608 - 609 - 610 -1. 611 -11. 612 -111. IN865-867 (IN865) 613 - 614 -Uplink: 615 - 616 -865.0625 - SF7BW125 to SF12BW125 617 - 618 -865.4025 - SF7BW125 to SF12BW125 619 - 620 -865.9850 - SF7BW125 to SF12BW125 621 - 622 - 623 -Downlink: 624 - 625 -Uplink channels 1-3 (RX1) 626 - 627 -866.550 - SF10BW125 (RX2) 628 - 629 - 630 -1. 631 -11. LED Indicator 632 - 633 -The LSE01 has an internal LED which is to show the status of different state. 634 - 635 - 636 -* Blink once when device power on. 637 -* Solid ON for 5 seconds once device successful Join the network. 638 -* Blink once when device transmit a packet. 639 - 640 -1. 641 -11. Installation in Soil 642 - 643 -**Measurement the soil surface** 644 - 645 - 646 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 647 - 648 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 649 - 650 - 651 - 652 - 653 - 654 - 655 - 656 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 657 - 658 - 659 - 623 +((( 660 660 Dig a hole with diameter > 20CM. 625 +))) 661 661 627 +((( 662 662 Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 663 663 632 +[[image:1654506665940-119.png]] 664 664 634 +((( 635 + 636 +))) 665 665 666 666 667 -1. 668 -11. Firmware Change Log 639 +== 2.8 Firmware Change Log == 669 669 670 -**Firmware download link:** 671 671 672 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]642 +Download URL & Firmware Change log 673 673 644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 674 674 675 -**Firmware Upgrade Method:** 676 676 677 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 678 678 679 679 680 -**V1.0.** 681 681 682 - Release651 +== 2.9 Battery Analysis == 683 683 653 +=== 2.9.1 Battery Type === 684 684 685 685 686 - 1.687 -1 1.Battery Analysis688 - 111. Battery Type656 +((( 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 658 +))) 689 689 690 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 691 691 661 +((( 662 +The battery is designed to last for several years depends on the actually use environment and update interval. 663 +))) 692 692 693 -The battery is designed to last for more than 5 years for the LSN50. 694 694 695 - 666 +((( 696 696 The battery related documents as below: 668 +))) 697 697 698 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],699 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]700 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 701 701 702 - |(((703 - JST-XH-2P connector674 +((( 675 +[[image:image-20220708140453-6.png]] 704 704 ))) 705 705 706 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 707 707 708 708 680 +=== 2.9.2 Power consumption Analyze === 709 709 710 - 1.711 - 11.712 - 111. Battery Note682 +((( 683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 +))) 713 713 714 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 715 715 687 +((( 688 +Instruction to use as below: 689 +))) 716 716 717 - 1.718 -1 1.719 - 111. Replace the battery691 +((( 692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 693 +))) 720 720 721 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 722 722 696 +((( 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 698 +))) 723 723 724 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 700 +* ((( 701 +Product Model 702 +))) 703 +* ((( 704 +Uplink Interval 705 +))) 706 +* ((( 707 +Working Mode 708 +))) 725 725 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 726 726 727 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)714 +[[image:image-20220708141352-7.jpeg]] 728 728 729 729 730 730 718 +=== 2.9.3 Battery Note === 731 731 720 +((( 721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 +))) 732 732 733 733 734 -= 3. Using the AT Commands = 735 735 736 -== 3.1AccessATCommands==726 +=== 2.9.4 Replace the battery === 737 737 728 +((( 729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 730 +))) 738 738 739 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 740 740 741 -[[image:1654501986557-872.png]] 742 742 734 += 3. Access NB-IoT Module = 743 743 744 -Or if you have below board, use below connection: 736 +((( 737 +Users can directly access the AT command set of the NB-IoT module. 738 +))) 745 745 740 +((( 741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 742 +))) 746 746 747 -[[image:165 4502005655-729.png]]744 +[[image:1657261278785-153.png]] 748 748 749 749 750 750 751 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:748 += 4. Using the AT Commands = 752 752 750 +== 4.1 Access AT Commands == 753 753 754 - [[ima ge:1654502050864-459.png]]752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 755 755 756 756 757 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]755 +AT+<CMD>? : Help on <CMD> 758 758 757 +AT+<CMD> : Run <CMD> 759 759 760 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>759 +AT+<CMD>=<value> : Set the value 761 761 762 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>761 +AT+<CMD>=? : Get the value 763 763 764 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 765 765 766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 767 - 768 - 769 769 (% style="color:#037691" %)**General Commands**(%%) 770 770 771 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 772 772 773 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 774 774 775 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 776 776 777 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 778 778 774 +AT+CFG : Print all configurations 779 779 780 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 781 781 782 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 797 797 798 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 799 799 800 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 803 803 804 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 805 805 806 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 809 809 810 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 811 811 812 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 813 813 807 +AT+CLIENT : Get or Set MQTT client 814 814 815 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 816 816 817 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 822 822 823 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 824 824 825 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 826 826 827 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 830 830 831 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 834 834 835 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 836 836 837 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 835 +((( 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 837 +))) 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 839 +((( 840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 841 +))) 846 846 847 847 848 -(% style="color:#037691" %)**Information** 849 849 850 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket845 +== 5.2 Can I calibrate NSE01 to different soil types? == 851 851 852 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 855 855 856 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset852 += 6. Trouble Shooting = 857 857 858 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort854 +== 6.1 Connection problem when uploading firmware == 859 859 860 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 863 - 864 - 865 -= 4. FAQ = 866 - 867 -== 4.1 How to change the LoRa Frequency Bands/Region? == 868 - 869 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 870 -When downloading the images, choose the required image file for download. 871 - 872 - 873 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 874 - 875 - 876 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 877 - 878 - 879 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 880 - 881 -[[image:image-20220606154726-3.png]] 882 - 883 -When you use the TTN network, the US915 frequency bands use are: 884 - 885 -* 903.9 - SF7BW125 to SF10BW125 886 -* 904.1 - SF7BW125 to SF10BW125 887 -* 904.3 - SF7BW125 to SF10BW125 888 -* 904.5 - SF7BW125 to SF10BW125 889 -* 904.7 - SF7BW125 to SF10BW125 890 -* 904.9 - SF7BW125 to SF10BW125 891 -* 905.1 - SF7BW125 to SF10BW125 892 -* 905.3 - SF7BW125 to SF10BW125 893 -* 904.6 - SF8BW500 894 - 895 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 896 - 897 -(% class="box infomessage" %) 898 898 ((( 899 -** AT+CHE=2**858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 900 900 ))) 901 901 902 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 903 903 ((( 904 - **ATZ**863 + 905 905 ))) 906 906 907 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 908 908 867 +== 6.2 AT Command input doesn't work == 909 909 910 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 911 911 912 -[[image:image-20220606154825-4.png]] 872 + 873 +))) 913 913 914 914 876 += 7. Order Info = 915 915 916 -= 5. Trouble Shooting = 917 917 918 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 919 919 920 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 921 921 882 +(% class="wikigeneratedid" %) 883 +((( 884 + 885 +))) 922 922 923 -= =5.2AT Commandinputdoesn’t work==887 += 8. Packing Info = 924 924 925 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 +((( 890 + 926 926 892 +(% style="color:#037691" %)**Package Includes**: 927 927 928 -== 5.3 Device rejoin in at the second uplink packet == 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 896 +))) 929 929 930 -(% style="color:#4f81bd" %)**Issue describe as below:** 898 +((( 899 + 931 931 932 - [[image:1654500909990-784.png]]901 +(% style="color:#037691" %)**Dimension and weight**: 933 933 934 - 935 -(% style="color:#4f81bd" %)**Cause for this issue:** 936 - 937 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 938 - 939 - 940 -(% style="color:#4f81bd" %)**Solution: ** 941 - 942 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 943 - 944 -[[image:1654500929571-736.png]] 945 - 946 - 947 -= 6. Order Info = 948 - 949 - 950 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 951 - 952 - 953 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 954 - 955 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 956 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 957 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 958 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 959 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 960 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 961 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 962 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 963 - 964 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 965 - 966 -* (% style="color:red" %)**4**(%%): 4000mAh battery 967 -* (% style="color:red" %)**8**(%%): 8500mAh battery 968 - 969 -= 7. Packing Info = 970 - 971 -((( 972 -**Package Includes**: 903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 973 973 ))) 974 974 975 -* ((( 976 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 977 -))) 978 - 979 979 ((( 980 980 981 -))) 982 982 983 -((( 984 -**Dimension and weight**: 985 -))) 986 986 987 -* ((( 988 -Device Size: cm 911 + 989 989 ))) 990 -* ((( 991 -Device Weight: g 992 -))) 993 -* ((( 994 -Package Size / pcs : cm 995 -))) 996 -* ((( 997 -Weight / pcs : g 998 -))) 999 999 1000 -= 8. Support =914 += 9. Support = 1001 1001 1002 1002 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1003 1003 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1004 - 1005 -
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content