Last modified by Mengting Qiu on 2024/04/02 16:44

From version 22.2
edited by Xiaoling
on 2022/06/06 16:42
Change comment: There is no comment for this version
To version 46.1
edited by Xiaoling
on 2022/07/08 11:03
Change comment: Uploaded new attachment "1657249419225-449.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,237 +8,416 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
63 +
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
69 -
70 70  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 71  ​
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
78 78  
79 79  
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
82 82  
83 -== 2.1 How it works ==
107 +== 2.1  How it works ==
84 84  
109 +
85 85  (((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
87 87  )))
88 88  
114 +
89 89  (((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
116 +The diagram below shows the working flow in default firmware of NSE01:
91 91  )))
92 92  
119 +[[image:image-20220708101605-2.png]]
93 93  
121 +(((
122 +
123 +)))
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
127 +== 2.2 ​ Configure the NSE01 ==
99 99  
100 -[[image:1654503992078-669.png]]
129 +=== 2.2.1 Test Requirement ===
101 101  
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 +To use NSE01 in your city, make sure meet below requirements:
104 104  
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
113 113  
114 -**Add APP EUI in the application**
115 115  
116 116  
117 -[[image:1654504596150-405.png]]
146 +=== 2.2.2 Insert SIM card ===
118 118  
148 +Insert the NB-IoT Card get from your provider.
119 119  
120 120  
121 -**Add APP KEY and DEV EUI**
151 +User need to take out the NB-IoT module and insert the SIM card like below:
122 122  
123 -[[image:1654504683289-357.png]]
124 124  
154 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
125 125  
126 126  
127 -**Step 2**: Power on LSE01
157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
128 128  
129 129  
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
160 +User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
131 131  
132 -[[image:image-20220606163915-7.png]]
133 133  
134 134  
135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
136 136  
137 -[[image:1654504778294-788.png]]
165 +Connection:
138 138  
167 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
139 139  
169 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
140 140  
171 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
172 +
173 +
174 +
175 +In the PC, use below serial tool settings:
176 +
177 +* Baud: ** (% style="background-color:green" %)9600**(%%)
178 +* Data bits:** (% style="background-color:green" %)8**(%%)
179 +* Stop bits: **(% style="background-color:green" %)1**(%%)
180 +* Parity: **(% style="background-color:green" %)None**(%%)
181 +* Flow Control: **(% style="background-color:green" %)None**
182 +
183 +
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input.
185 +
186 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187 +
188 +Note: the valid AT Commands can be found at:
189 +
190 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191 +
192 +
193 +
194 +=== 2.2.4 Use CoAP protocol to uplink data === 
195 +
196 +
197 +(% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one:
198 +
199 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
200 +
201 +
202 +Use below commands:
203 +
204 +* **(% style="color:blue" %)AT+PRO=1**  (%%)  ~/~/ Set to use CoAP protocol to uplink
205 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)      ~/~/Set COAP resource path
207 +
208 +
209 +For parameter description, please refer to AT command set
210 +
211 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
212 +
213 +
214 +After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
215 +
216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
217 +
218 +
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 +
221 +
222 +This feature is supported since firmware version v1.0.1
223 +
224 +
225 +* **(% style="color:blue" %)AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
226 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
227 +* **(% style="color:blue" %)AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
228 +
229 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
230 +
231 +
232 +
233 +
234 +
235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
236 +
237 +
238 +=== 2.2.6 Use MQTT protocol to uplink data ===
239 +
240 +
241 +This feature is supported since firmware version v110
242 +
243 +
244 +* **(% style="color:blue" %)AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
245 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
246 +* **(% style="color:blue" %)AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT
247 +* **(% style="color:blue" %)AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
248 +* **(% style="color:blue" %)AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
249 +* **(% style="color:blue" %)AT+PUBTOPIC=NSE01_PUB   **(%%)~/~/Set the sending topic of MQTT
250 +* **(% style="color:blue" %)AT+SUBTOPIC=NSE01_SUB    **(%%) ~/~/Set the subscription topic of MQTT
251 +
252 +
253 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
254 +
255 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
256 +
257 +
258 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
259 +
260 +
261 +=== 2.2.7 Use TCP protocol to uplink data ===
262 +
263 +
264 +This feature is supported since firmware version v110
265 +
266 +
267 +* **(% style="color:blue" %)AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
269 +
270 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
271 +
272 +
273 +
274 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
275 +
276 +
277 +=== 2.2.8 Change Update Interval ===
278 +
279 +User can use below command to change the **(% style="color:green" %)uplink interval**.
280 +
281 +**~ (% style="color:blue" %)AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
282 +
283 +
284 +**(% style="color:red" %)NOTE:**
285 +
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +
288 +
289 +
290 +
291 +
292 +
293 +
141 141  == 2.3 Uplink Payload ==
142 142  
296 +
143 143  === 2.3.1 MOD~=0(Default Mode) ===
144 144  
145 145  LSE01 will uplink payload via LoRaWAN with below payload format: 
146 146  
147 -
301 +(((
148 148  Uplink payload includes in total 11 bytes.
149 -
303 +)))
150 150  
305 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
151 151  |(((
152 152  **Size**
153 153  
154 154  **(bytes)**
155 155  )))|**2**|**2**|**2**|**2**|**2**|**1**
156 -|**Value**|[[BAT>>path:#bat]]|(((
311 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
157 157  Temperature
158 158  
159 159  (Reserve, Ignore now)
160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
315 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
161 161  MOD & Digital Interrupt
162 162  
163 163  (Optional)
164 164  )))
165 165  
166 -[[image:1654504881641-514.png]]
167 -
168 -
169 -
170 170  === 2.3.2 MOD~=1(Original value) ===
171 171  
172 172  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
173 173  
325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 174  |(((
175 175  **Size**
176 176  
177 177  **(bytes)**
178 178  )))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>path:#bat]]|(((
331 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 180  Temperature
181 181  
182 182  (Reserve, Ignore now)
183 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
335 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 184  MOD & Digital Interrupt
185 185  
186 186  (Optional)
187 187  )))
188 188  
189 -[[image:1654504907647-967.png]]
190 -
191 -
192 -
193 193  === 2.3.3 Battery Info ===
194 194  
343 +(((
195 195  Check the battery voltage for LSE01.
345 +)))
196 196  
347 +(((
197 197  Ex1: 0x0B45 = 2885mV
349 +)))
198 198  
351 +(((
199 199  Ex2: 0x0B49 = 2889mV
353 +)))
200 200  
201 201  
202 202  
203 -1.
204 -11.
205 -111. Soil Moisture
357 +=== 2.3.4 Soil Moisture ===
206 206  
359 +(((
207 207  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
361 +)))
208 208  
209 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
363 +(((
364 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
365 +)))
210 210  
211 -**05DC(H) = 1500(D) /100 = 15%.**
367 +(((
368 +
369 +)))
212 212  
371 +(((
372 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
373 +)))
213 213  
214 -1.
215 -11.
216 -111. Soil Temperature
217 217  
376 +
377 +=== 2.3.5 Soil Temperature ===
378 +
379 +(((
218 218   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
381 +)))
219 219  
383 +(((
220 220  **Example**:
385 +)))
221 221  
387 +(((
222 222  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
389 +)))
223 223  
391 +(((
224 224  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
393 +)))
225 225  
226 226  
227 -1.
228 -11.
229 -111. Soil Conductivity (EC)
230 230  
231 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
397 +=== 2.3.6 Soil Conductivity (EC) ===
232 232  
399 +(((
400 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
401 +)))
402 +
403 +(((
233 233  For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
405 +)))
234 234  
235 -
407 +(((
236 236  Generally, the EC value of irrigation water is less than 800uS / cm.
409 +)))
237 237  
238 -1.
239 -11.
240 -111. MOD
411 +(((
412 +
413 +)))
241 241  
415 +(((
416 +
417 +)))
418 +
419 +=== 2.3.7 MOD ===
420 +
242 242  Firmware version at least v2.1 supports changing mode.
243 243  
244 244  For example, bytes[10]=90
... ... @@ -246,7 +246,7 @@
246 246  mod=(bytes[10]>>7)&0x01=1.
247 247  
248 248  
249 -Downlink Command:
428 +**Downlink Command:**
250 250  
251 251  If payload = 0x0A00, workmode=0
252 252  
... ... @@ -253,107 +253,127 @@
253 253  If** **payload =** **0x0A01, workmode=1
254 254  
255 255  
256 -1.
257 -11.
258 -111. ​Decode payload in The Things Network
259 259  
436 +=== 2.3.8 ​Decode payload in The Things Network ===
437 +
260 260  While using TTN network, you can add the payload format to decode the payload.
261 261  
262 262  
263 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
441 +[[image:1654505570700-128.png]]
264 264  
443 +(((
265 265  The payload decoder function for TTN is here:
445 +)))
266 266  
267 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
447 +(((
448 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
449 +)))
268 268  
269 269  
270 -1.
271 -11. Uplink Interval
452 +== 2.4 Uplink Interval ==
272 272  
273 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
454 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
274 274  
275 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
276 276  
277 -1.
278 -11. ​Downlink Payload
279 279  
458 +== 2.5 Downlink Payload ==
459 +
280 280  By default, LSE50 prints the downlink payload to console port.
281 281  
282 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
283 -|TDC (Transmit Time Interval)|Any|01|4
284 -|RESET|Any|04|2
285 -|AT+CFM|Any|05|4
286 -|INTMOD|Any|06|4
287 -|MOD|Any|0A|2
462 +[[image:image-20220606165544-8.png]]
288 288  
289 -**Examples**
290 290  
465 +(((
466 +(% style="color:blue" %)**Examples:**
467 +)))
291 291  
292 -**Set TDC**
469 +(((
470 +
471 +)))
293 293  
473 +* (((
474 +(% style="color:blue" %)**Set TDC**
475 +)))
476 +
477 +(((
294 294  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
479 +)))
295 295  
481 +(((
296 296  Payload:    01 00 00 1E    TDC=30S
483 +)))
297 297  
485 +(((
298 298  Payload:    01 00 00 3C    TDC=60S
487 +)))
299 299  
489 +(((
490 +
491 +)))
300 300  
301 -**Reset**
493 +* (((
494 +(% style="color:blue" %)**Reset**
495 +)))
302 302  
497 +(((
303 303  If payload = 0x04FF, it will reset the LSE01
499 +)))
304 304  
305 305  
306 -**CFM**
502 +* (% style="color:blue" %)**CFM**
307 307  
308 308  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
309 309  
310 -1.
311 -11. ​Show Data in DataCake IoT Server
312 312  
313 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
314 314  
508 +== 2.6 ​Show Data in DataCake IoT Server ==
315 315  
316 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
510 +(((
511 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
512 +)))
317 317  
318 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
514 +(((
515 +
516 +)))
319 319  
518 +(((
519 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
520 +)))
320 320  
321 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
522 +(((
523 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
524 +)))
322 322  
323 323  
324 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
527 +[[image:1654505857935-743.png]]
325 325  
326 326  
530 +[[image:1654505874829-548.png]]
327 327  
328 328  
533 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
329 329  
330 -Step 3: Create an account or log in Datacake.
535 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
331 331  
332 -Step 4: Search the LSE01 and add DevEUI.
333 333  
538 +[[image:1654505905236-553.png]]
334 334  
335 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
336 336  
337 -
338 -
339 339  After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
340 340  
543 +[[image:1654505925508-181.png]]
341 341  
342 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
343 343  
344 344  
547 +== 2.7 Frequency Plans ==
345 345  
346 -1.
347 -11. Frequency Plans
348 -
349 349  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
350 350  
351 -1.
352 -11.
353 -111. EU863-870 (EU868)
354 354  
355 -Uplink:
552 +=== 2.7.1 EU863-870 (EU868) ===
356 356  
554 +(% style="color:#037691" %)** Uplink:**
555 +
357 357  868.1 - SF7BW125 to SF12BW125
358 358  
359 359  868.3 - SF7BW125 to SF12BW125 and SF7BW250
... ... @@ -373,7 +373,7 @@
373 373  868.8 - FSK
374 374  
375 375  
376 -Downlink:
575 +(% style="color:#037691" %)** Downlink:**
377 377  
378 378  Uplink channels 1-9 (RX1)
379 379  
... ... @@ -380,13 +380,12 @@
380 380  869.525 - SF9BW125 (RX2 downlink only)
381 381  
382 382  
383 -1.
384 -11.
385 -111. US902-928(US915)
386 386  
583 +=== 2.7.2 US902-928(US915) ===
584 +
387 387  Used in USA, Canada and South America. Default use CHE=2
388 388  
389 -Uplink:
587 +(% style="color:#037691" %)**Uplink:**
390 390  
391 391  903.9 - SF7BW125 to SF10BW125
392 392  
... ... @@ -405,7 +405,7 @@
405 405  905.3 - SF7BW125 to SF10BW125
406 406  
407 407  
408 -Downlink:
606 +(% style="color:#037691" %)**Downlink:**
409 409  
410 410  923.3 - SF7BW500 to SF12BW500
411 411  
... ... @@ -426,13 +426,12 @@
426 426  923.3 - SF12BW500(RX2 downlink only)
427 427  
428 428  
429 -1.
430 -11.
431 -111. CN470-510 (CN470)
432 432  
628 +=== 2.7.3 CN470-510 (CN470) ===
629 +
433 433  Used in China, Default use CHE=1
434 434  
435 -Uplink:
632 +(% style="color:#037691" %)**Uplink:**
436 436  
437 437  486.3 - SF7BW125 to SF12BW125
438 438  
... ... @@ -451,7 +451,7 @@
451 451  487.7 - SF7BW125 to SF12BW125
452 452  
453 453  
454 -Downlink:
651 +(% style="color:#037691" %)**Downlink:**
455 455  
456 456  506.7 - SF7BW125 to SF12BW125
457 457  
... ... @@ -472,13 +472,12 @@
472 472  505.3 - SF12BW125 (RX2 downlink only)
473 473  
474 474  
475 -1.
476 -11.
477 -111. AU915-928(AU915)
478 478  
673 +=== 2.7.4 AU915-928(AU915) ===
674 +
479 479  Default use CHE=2
480 480  
481 -Uplink:
677 +(% style="color:#037691" %)**Uplink:**
482 482  
483 483  916.8 - SF7BW125 to SF12BW125
484 484  
... ... @@ -497,7 +497,7 @@
497 497  918.2 - SF7BW125 to SF12BW125
498 498  
499 499  
500 -Downlink:
696 +(% style="color:#037691" %)**Downlink:**
501 501  
502 502  923.3 - SF7BW500 to SF12BW500
503 503  
... ... @@ -517,22 +517,22 @@
517 517  
518 518  923.3 - SF12BW500(RX2 downlink only)
519 519  
520 -1.
521 -11.
522 -111. AS920-923 & AS923-925 (AS923)
523 523  
524 -**Default Uplink channel:**
525 525  
718 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
719 +
720 +(% style="color:#037691" %)**Default Uplink channel:**
721 +
526 526  923.2 - SF7BW125 to SF10BW125
527 527  
528 528  923.4 - SF7BW125 to SF10BW125
529 529  
530 530  
531 -**Additional Uplink Channel**:
727 +(% style="color:#037691" %)**Additional Uplink Channel**:
532 532  
533 533  (OTAA mode, channel added by JoinAccept message)
534 534  
535 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
536 536  
537 537  922.2 - SF7BW125 to SF10BW125
538 538  
... ... @@ -547,7 +547,7 @@
547 547  922.0 - SF7BW125 to SF10BW125
548 548  
549 549  
550 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
551 551  
552 552  923.6 - SF7BW125 to SF10BW125
553 553  
... ... @@ -562,18 +562,16 @@
562 562  924.6 - SF7BW125 to SF10BW125
563 563  
564 564  
761 +(% style="color:#037691" %)** Downlink:**
565 565  
566 -**Downlink:**
567 -
568 568  Uplink channels 1-8 (RX1)
569 569  
570 570  923.2 - SF10BW125 (RX2)
571 571  
572 572  
573 -1.
574 -11.
575 -111. KR920-923 (KR920)
576 576  
769 +=== 2.7.6 KR920-923 (KR920) ===
770 +
577 577  Default channel:
578 578  
579 579  922.1 - SF7BW125 to SF12BW125
... ... @@ -583,7 +583,7 @@
583 583  922.5 - SF7BW125 to SF12BW125
584 584  
585 585  
586 -Uplink: (OTAA mode, channel added by JoinAccept message)
780 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
587 587  
588 588  922.1 - SF7BW125 to SF12BW125
589 589  
... ... @@ -600,7 +600,7 @@
600 600  923.3 - SF7BW125 to SF12BW125
601 601  
602 602  
603 -Downlink:
797 +(% style="color:#037691" %)**Downlink:**
604 604  
605 605  Uplink channels 1-7(RX1)
606 606  
... ... @@ -607,12 +607,11 @@
607 607  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
608 608  
609 609  
610 -1.
611 -11.
612 -111. IN865-867 (IN865)
613 613  
614 -Uplink:
805 +=== 2.7.7 IN865-867 (IN865) ===
615 615  
807 +(% style="color:#037691" %)** Uplink:**
808 +
616 616  865.0625 - SF7BW125 to SF12BW125
617 617  
618 618  865.4025 - SF7BW125 to SF12BW125
... ... @@ -620,7 +620,7 @@
620 620  865.9850 - SF7BW125 to SF12BW125
621 621  
622 622  
623 -Downlink:
816 +(% style="color:#037691" %) **Downlink:**
624 624  
625 625  Uplink channels 1-3 (RX1)
626 626  
... ... @@ -627,110 +627,129 @@
627 627  866.550 - SF10BW125 (RX2)
628 628  
629 629  
630 -1.
631 -11. LED Indicator
632 632  
633 -The LSE01 has an internal LED which is to show the status of different state.
634 634  
825 +== 2.8 LED Indicator ==
635 635  
827 +The LSE01 has an internal LED which is to show the status of different state.
828 +
636 636  * Blink once when device power on.
637 637  * Solid ON for 5 seconds once device successful Join the network.
638 638  * Blink once when device transmit a packet.
639 639  
640 -1.
641 -11. Installation in Soil
833 +== 2.9 Installation in Soil ==
642 642  
643 643  **Measurement the soil surface**
644 644  
645 645  
646 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
838 +[[image:1654506634463-199.png]] ​
647 647  
840 +(((
841 +(((
648 648  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
843 +)))
844 +)))
649 649  
650 650  
651 651  
848 +[[image:1654506665940-119.png]]
652 652  
653 -
654 -
655 -
656 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
657 -
658 -
659 -
850 +(((
660 660  Dig a hole with diameter > 20CM.
852 +)))
661 661  
854 +(((
662 662  Horizontal insert the probe to the soil and fill the hole for long term measurement.
856 +)))
663 663  
664 664  
859 +== 2.10 ​Firmware Change Log ==
665 665  
666 -
667 -1.
668 -11. ​Firmware Change Log
669 -
861 +(((
670 670  **Firmware download link:**
863 +)))
671 671  
865 +(((
672 672  [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
867 +)))
673 673  
869 +(((
870 +
871 +)))
674 674  
675 -**Firmware Upgrade Method:**
873 +(((
874 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
875 +)))
676 676  
677 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
877 +(((
878 +
879 +)))
678 678  
679 -
881 +(((
680 680  **V1.0.**
883 +)))
681 681  
885 +(((
682 682  Release
887 +)))
683 683  
684 684  
890 +== 2.11 ​Battery Analysis ==
685 685  
686 -1.
687 -11. ​Battery Analysis
688 -111. ​Battery Type
892 +=== 2.11.1 ​Battery Type ===
689 689  
894 +(((
690 690  The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
896 +)))
691 691  
692 -
898 +(((
693 693  The battery is designed to last for more than 5 years for the LSN50.
900 +)))
694 694  
902 +(((
903 +(((
904 +The battery-related documents are as below:
905 +)))
906 +)))
695 695  
696 -The battery related documents as below:
697 -
698 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
699 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
700 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
701 -
702 -|(((
703 -JST-XH-2P connector
908 +* (((
909 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
704 704  )))
911 +* (((
912 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
913 +)))
914 +* (((
915 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
916 +)))
705 705  
706 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
918 + [[image:image-20220610172436-1.png]]
707 707  
708 708  
709 709  
710 -1.
711 -11.
712 -111. ​Battery Note
922 +=== 2.11.2 ​Battery Note ===
713 713  
924 +(((
714 714  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
926 +)))
715 715  
716 716  
717 -1.
718 -11.
719 -111. ​Replace the battery
720 720  
930 +=== 2.11.3 Replace the battery ===
931 +
932 +(((
721 721  If Battery is lower than 2.7v, user should replace the battery of LSE01.
934 +)))
722 722  
723 -
936 +(((
724 724  You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
938 +)))
725 725  
726 -
940 +(((
727 727  The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
942 +)))
728 728  
729 729  
730 730  
731 -
732 -
733 -
734 734  = 3. ​Using the AT Commands =
735 735  
736 736  == 3.1 Access AT Commands ==
... ... @@ -738,13 +738,13 @@
738 738  
739 739  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
740 740  
741 -[[image:1654501986557-872.png]]
953 +[[image:1654501986557-872.png||height="391" width="800"]]
742 742  
743 743  
744 744  Or if you have below board, use below connection:
745 745  
746 746  
747 -[[image:1654502005655-729.png]]
959 +[[image:1654502005655-729.png||height="503" width="801"]]
748 748  
749 749  
750 750  
... ... @@ -751,10 +751,10 @@
751 751  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
752 752  
753 753  
754 - [[image:1654502050864-459.png]]
966 + [[image:1654502050864-459.png||height="564" width="806"]]
755 755  
756 756  
757 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
969 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
758 758  
759 759  
760 760  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -866,20 +866,38 @@
866 866  
867 867  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
868 868  
869 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
1081 +(((
1082 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
870 870  When downloading the images, choose the required image file for download. ​
1084 +)))
871 871  
1086 +(((
1087 +
1088 +)))
872 872  
1090 +(((
873 873  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1092 +)))
874 874  
1094 +(((
1095 +
1096 +)))
875 875  
1098 +(((
876 876  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1100 +)))
877 877  
1102 +(((
1103 +
1104 +)))
878 878  
1106 +(((
879 879  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1108 +)))
880 880  
881 881  [[image:image-20220606154726-3.png]]
882 882  
1112 +
883 883  When you use the TTN network, the US915 frequency bands use are:
884 884  
885 885  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -892,37 +892,47 @@
892 892  * 905.3 - SF7BW125 to SF10BW125
893 893  * 904.6 - SF8BW500
894 894  
1125 +(((
895 895  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
896 896  
897 -(% class="box infomessage" %)
898 -(((
899 -**AT+CHE=2**
1128 +* (% style="color:#037691" %)**AT+CHE=2**
1129 +* (% style="color:#037691" %)**ATZ**
900 900  )))
901 901  
902 -(% class="box infomessage" %)
903 903  (((
904 -**ATZ**
905 -)))
1133 +
906 906  
907 907  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1136 +)))
908 908  
1138 +(((
1139 +
1140 +)))
909 909  
1142 +(((
910 910  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1144 +)))
911 911  
912 912  [[image:image-20220606154825-4.png]]
913 913  
914 914  
1149 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
915 915  
1151 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1152 +
1153 +
916 916  = 5. Trouble Shooting =
917 917  
918 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1156 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
919 919  
920 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1158 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
921 921  
922 922  
923 -== 5.2 AT Command input doesnt work ==
1161 +== 5.2 AT Command input doesn't work ==
924 924  
925 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1163 +(((
1164 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1165 +)))
926 926  
927 927  
928 928  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -934,7 +934,9 @@
934 934  
935 935  (% style="color:#4f81bd" %)**Cause for this issue:**
936 936  
1177 +(((
937 937  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1179 +)))
938 938  
939 939  
940 940  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -941,7 +941,7 @@
941 941  
942 942  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
943 943  
944 -[[image:1654500929571-736.png]]
1186 +[[image:1654500929571-736.png||height="458" width="832"]]
945 945  
946 946  
947 947  = 6. ​Order Info =
... ... @@ -966,10 +966,17 @@
966 966  * (% style="color:red" %)**4**(%%): 4000mAh battery
967 967  * (% style="color:red" %)**8**(%%): 8500mAh battery
968 968  
1211 +(% class="wikigeneratedid" %)
1212 +(((
1213 +
1214 +)))
1215 +
969 969  = 7. Packing Info =
970 970  
971 971  (((
972 -**Package Includes**:
1219 +
1220 +
1221 +(% style="color:#037691" %)**Package Includes**:
973 973  )))
974 974  
975 975  * (((
... ... @@ -978,10 +978,8 @@
978 978  
979 979  (((
980 980  
981 -)))
982 982  
983 -(((
984 -**Dimension and weight**:
1231 +(% style="color:#037691" %)**Dimension and weight**:
985 985  )))
986 986  
987 987  * (((
... ... @@ -995,6 +995,8 @@
995 995  )))
996 996  * (((
997 997  Weight / pcs : g
1245 +
1246 +
998 998  )))
999 999  
1000 1000  = 8. Support =
... ... @@ -1001,5 +1001,3 @@
1001 1001  
1002 1002  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1003 1003  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1004 -
1005 -
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content