<
From version < 22.2 >
edited by Xiaoling
on 2022/06/06 16:42
To version < 4.5 >
edited by Xiaoling
on 2022/06/06 15:23
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,7 @@
1 1  (% style="text-align:center" %)
2 2  [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3 3  
4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
4 4  
5 5  
6 6  
... ... @@ -8,40 +8,44 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
23 -(((
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +1. Introduction
24 +11. ​What is LoRaWAN Soil Moisture & EC Sensor
25 +
26 +The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
27 +
28 +
29 +It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server.
30 +
31 +
24 24  The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
35 +LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years.
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
41 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
40 40  
41 41  
44 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
42 42  
43 -== 1.2 ​Features ==
44 44  
47 +
48 +*
49 +*1. ​Features
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 47  * Monitor Soil Moisture
... ... @@ -54,50 +54,67 @@
54 54  * IP66 Waterproof Enclosure
55 55  * 4000mAh or 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
62 +1.
63 +11. Specification
58 58  
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
67 +|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
68 +|**Range**|**0-100.00%**|(((
69 +**0-20000uS/cm**
62 62  
71 +**(25℃)(0-20.0EC)**
72 +)))|**-40.00℃~85.00℃**
73 +|**Unit**|**V/V %,**|**uS/cm,**|**℃**
74 +|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
75 +|**Accuracy**|(((
76 +**±3% (0-53%)**
63 63  
78 +**±5% (>53%)**
79 +)))|**2%FS,**|(((
80 +**-10℃~50℃:<0.3℃**
64 64  
65 -== ​1.4 Applications ==
82 +**All other: <0.6℃**
83 +)))
84 +|(((
85 +**Measure**
66 66  
67 -* Smart Agriculture
87 +**Method**
88 +)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
68 68  
69 69  
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
92 +*
93 +*1. ​Applications
94 +* Smart Agriculture
75 75  
96 +1.
97 +11. ​Firmware Change log
76 76  
77 -**LSE01 v1.0 :**  Release
99 +**LSE01 v1.0:**
78 78  
101 +* Release
79 79  
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 82  
83 -== 2.1 How it works ==
105 +1. Configure LSE01 to connect to LoRaWAN network
106 +11. How it works
84 84  
85 -(((
86 86  The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 -)))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
92 92  
111 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
93 93  
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
115 +
116 +1.
117 +11. ​Quick guide to connect to LoRaWAN server (OTAA)
118 +
97 97  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
99 99  
100 -[[image:1654503992078-669.png]]
122 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
101 101  
102 102  
103 103  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
... ... @@ -107,40 +107,58 @@
107 107  
108 108  Each LSE01 is shipped with a sticker with the default device EUI as below:
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
111 111  
133 +
134 +
112 112  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
113 113  
137 +
114 114  **Add APP EUI in the application**
115 115  
116 116  
117 -[[image:1654504596150-405.png]]
141 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
118 118  
119 119  
120 120  
121 121  **Add APP KEY and DEV EUI**
122 122  
123 -[[image:1654504683289-357.png]]
124 124  
148 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
125 125  
150 +|(((
151 +
152 +)))
126 126  
154 +
155 +
156 +
127 127  **Step 2**: Power on LSE01
128 128  
129 129  
130 130  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
131 131  
132 -[[image:image-20220606163915-7.png]]
133 133  
134 134  
164 +|(((
165 +
166 +)))
167 +
168 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
169 +
170 +
171 +
172 +
173 +
135 135  **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
136 136  
137 -[[image:1654504778294-788.png]]
176 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
138 138  
139 139  
140 140  
141 -== 2.3 Uplink Payload ==
142 142  
143 -=== 2.3.1 MOD~=0(Default Mode) ===
181 +1.
182 +11. ​Uplink Payload
183 +111. MOD=0(Default Mode)
144 144  
145 145  LSE01 will uplink payload via LoRaWAN with below payload format: 
146 146  
... ... @@ -163,12 +163,13 @@
163 163  (Optional)
164 164  )))
165 165  
166 -[[image:1654504881641-514.png]]
206 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
167 167  
168 168  
209 +1.
210 +11.
211 +111. MOD=1(Original value)
169 169  
170 -=== 2.3.2 MOD~=1(Original value) ===
171 -
172 172  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
173 173  
174 174  |(((
... ... @@ -186,12 +186,12 @@
186 186  (Optional)
187 187  )))
188 188  
189 -[[image:1654504907647-967.png]]
230 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
190 190  
232 +1.
233 +11.
234 +111. Battery Info
191 191  
192 -
193 -=== 2.3.3 Battery Info ===
194 -
195 195  Check the battery voltage for LSE01.
196 196  
197 197  Ex1: 0x0B45 = 2885mV
... ... @@ -200,8 +200,8 @@
200 200  
201 201  
202 202  
203 -1.
204 -11.
244 +1.
245 +11.
205 205  111. Soil Moisture
206 206  
207 207  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
... ... @@ -211,8 +211,8 @@
211 211  **05DC(H) = 1500(D) /100 = 15%.**
212 212  
213 213  
214 -1.
215 -11.
255 +1.
256 +11.
216 216  111. Soil Temperature
217 217  
218 218   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
... ... @@ -224,8 +224,8 @@
224 224  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
225 225  
226 226  
227 -1.
228 -11.
268 +1.
269 +11.
229 229  111. Soil Conductivity (EC)
230 230  
231 231  Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -235,8 +235,8 @@
235 235  
236 236  Generally, the EC value of irrigation water is less than 800uS / cm.
237 237  
238 -1.
239 -11.
279 +1.
280 +11.
240 240  111. MOD
241 241  
242 242  Firmware version at least v2.1 supports changing mode.
... ... @@ -253,8 +253,8 @@
253 253  If** **payload =** **0x0A01, workmode=1
254 254  
255 255  
256 -1.
257 -11.
297 +1.
298 +11.
258 258  111. ​Decode payload in The Things Network
259 259  
260 260  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -267,7 +267,7 @@
267 267  LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
268 268  
269 269  
270 -1.
311 +1.
271 271  11. Uplink Interval
272 272  
273 273  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
... ... @@ -274,7 +274,7 @@
274 274  
275 275  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
276 276  
277 -1.
318 +1.
278 278  11. ​Downlink Payload
279 279  
280 280  By default, LSE50 prints the downlink payload to console port.
... ... @@ -307,7 +307,7 @@
307 307  
308 308  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
309 309  
310 -1.
351 +1.
311 311  11. ​Show Data in DataCake IoT Server
312 312  
313 313  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
... ... @@ -348,8 +348,8 @@
348 348  
349 349  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
350 350  
351 -1.
352 -11.
392 +1.
393 +11.
353 353  111. EU863-870 (EU868)
354 354  
355 355  Uplink:
... ... @@ -380,8 +380,8 @@
380 380  869.525 - SF9BW125 (RX2 downlink only)
381 381  
382 382  
383 -1.
384 -11.
424 +1.
425 +11.
385 385  111. US902-928(US915)
386 386  
387 387  Used in USA, Canada and South America. Default use CHE=2
... ... @@ -426,8 +426,8 @@
426 426  923.3 - SF12BW500(RX2 downlink only)
427 427  
428 428  
429 -1.
430 -11.
470 +1.
471 +11.
431 431  111. CN470-510 (CN470)
432 432  
433 433  Used in China, Default use CHE=1
... ... @@ -472,8 +472,8 @@
472 472  505.3 - SF12BW125 (RX2 downlink only)
473 473  
474 474  
475 -1.
476 -11.
516 +1.
517 +11.
477 477  111. AU915-928(AU915)
478 478  
479 479  Default use CHE=2
... ... @@ -517,8 +517,8 @@
517 517  
518 518  923.3 - SF12BW500(RX2 downlink only)
519 519  
520 -1.
521 -11.
561 +1.
562 +11.
522 522  111. AS920-923 & AS923-925 (AS923)
523 523  
524 524  **Default Uplink channel:**
... ... @@ -570,8 +570,8 @@
570 570  923.2 - SF10BW125 (RX2)
571 571  
572 572  
573 -1.
574 -11.
614 +1.
615 +11.
575 575  111. KR920-923 (KR920)
576 576  
577 577  Default channel:
... ... @@ -607,8 +607,8 @@
607 607  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
608 608  
609 609  
610 -1.
611 -11.
651 +1.
652 +11.
612 612  111. IN865-867 (IN865)
613 613  
614 614  Uplink:
... ... @@ -627,7 +627,7 @@
627 627  866.550 - SF10BW125 (RX2)
628 628  
629 629  
630 -1.
671 +1.
631 631  11. LED Indicator
632 632  
633 633  The LSE01 has an internal LED which is to show the status of different state.
... ... @@ -637,7 +637,7 @@
637 637  * Solid ON for 5 seconds once device successful Join the network.
638 638  * Blink once when device transmit a packet.
639 639  
640 -1.
681 +1.
641 641  11. Installation in Soil
642 642  
643 643  **Measurement the soil surface**
... ... @@ -664,7 +664,7 @@
664 664  
665 665  
666 666  
667 -1.
708 +1.
668 668  11. ​Firmware Change Log
669 669  
670 670  **Firmware download link:**
... ... @@ -683,7 +683,7 @@
683 683  
684 684  
685 685  
686 -1.
727 +1.
687 687  11. ​Battery Analysis
688 688  111. ​Battery Type
689 689  
... ... @@ -699,6 +699,7 @@
699 699  * [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
700 700  * [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
701 701  
743 +
702 702  |(((
703 703  JST-XH-2P connector
704 704  )))
... ... @@ -707,15 +707,15 @@
707 707  
708 708  
709 709  
710 -1.
711 -11.
752 +1.
753 +11.
712 712  111. ​Battery Note
713 713  
714 714  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
715 715  
716 716  
717 -1.
718 -11.
759 +1.
760 +11.
719 719  111. ​Replace the battery
720 720  
721 721  If Battery is lower than 2.7v, user should replace the battery of LSE01.
... ... @@ -731,155 +731,173 @@
731 731  
732 732  
733 733  
734 -= 3. ​Using the AT Commands =
776 +1. ​Using the AT Commands
777 +11. ​Access AT Commands
735 735  
736 -== 3.1 Access AT Commands ==
737 -
738 -
739 739  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
740 740  
741 -[[image:1654501986557-872.png]]
781 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
742 742  
743 743  
744 744  Or if you have below board, use below connection:
745 745  
746 746  
747 -[[image:1654502005655-729.png]]
787 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
748 748  
749 749  
750 750  
751 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
791 +In the PC, you need to set the serial baud rate to **9600** to access the serial console for LSE01. LSE01 will output system info once power on as below:
752 752  
753 753  
754 - [[image:1654502050864-459.png]]
794 + [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
755 755  
756 756  
757 757  Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
758 758  
759 759  
760 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
800 +AT+<CMD>?        : Help on <CMD>
761 761  
762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
802 +AT+<CMD>         : Run <CMD>
763 763  
764 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
804 +AT+<CMD>=<value> : Set the value
765 765  
766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
806 +AT+<CMD>=?       : Get the value
767 767  
768 768  
769 -(% style="color:#037691" %)**General Commands**(%%)      
809 +**General Commands**      
770 770  
771 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
811 +AT                    : Attention       
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
813 +AT?                            : Short Help     
774 774  
775 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
815 +ATZ                            : MCU Reset    
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
817 +AT+TDC           : Application Data Transmission Interval 
778 778  
779 779  
780 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
820 +**Keys, IDs and EUIs management**
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
822 +AT+APPEUI              : Application EUI      
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
824 +AT+APPKEY              : Application Key     
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
826 +AT+APPSKEY            : Application Session Key
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
828 +AT+DADDR              : Device Address     
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
830 +AT+DEUI                   : Device EUI     
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
832 +AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
834 +AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
836 +AT+CFM          : Confirm Mode       
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
838 +AT+CFS                     : Confirm Status       
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
840 +AT+JOIN          : Join LoRa? Network       
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
842 +AT+NJM          : LoRa? Network Join Mode    
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
844 +AT+NJS                     : LoRa? Network Join Status    
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
846 +AT+RECV                  : Print Last Received Data in Raw Format
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
848 +AT+RECVB                : Print Last Received Data in Binary Format      
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
850 +AT+SEND                  : Send Text Data      
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
852 +AT+SENB                  : Send Hexadecimal Data
813 813  
814 814  
815 -(% style="color:#037691" %)**LoRa Network Management**
855 +**LoRa Network Management**
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
857 +AT+ADR          : Adaptive Rate
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
859 +AT+CLASS                : LoRa Class(Currently only support class A
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
861 +AT+DCS           : Duty Cycle Setting 
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
863 +AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
865 +AT+FCD           : Frame Counter Downlink       
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
867 +AT+FCU           : Frame Counter Uplink   
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
869 +AT+JN1DL                : Join Accept Delay1
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
871 +AT+JN2DL                : Join Accept Delay2
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
873 +AT+PNM                   : Public Network Mode   
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
875 +AT+RX1DL                : Receive Delay1      
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
877 +AT+RX2DL                : Receive Delay2      
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
879 +AT+RX2DR               : Rx2 Window Data Rate 
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
881 +AT+RX2FQ               : Rx2 Window Frequency
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
883 +AT+TXP           : Transmit Power
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
885 +AT+ MOD                 : Set work mode
846 846  
847 847  
848 -(% style="color:#037691" %)**Information** 
888 +**Information** 
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
890 +AT+RSSI           : RSSI of the Last Received Packet   
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
892 +AT+SNR           : SNR of the Last Received Packet   
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
894 +AT+VER           : Image Version and Frequency Band       
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
896 +AT+FDR           : Factory Data Reset
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
898 +AT+PORT                  : Application Port    
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
900 +AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
861 861  
862 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
902 + AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
863 863  
864 864  
865 -= ​4. FAQ =
866 866  
867 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
868 868  
907 +
908 +
909 +
910 +1. ​FAQ
911 +11. ​How to change the LoRa Frequency Bands/Region?
912 +
869 869  You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
870 870  When downloading the images, choose the required image file for download. ​
871 871  
872 872  
873 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
874 874  
918 +How to set up LSE01 to work in 8 channel mode
875 875  
920 +By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
921 +
922 +
876 876  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
877 877  
878 878  
926 +
879 879  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
880 880  
881 -[[image:image-20220606154726-3.png]]
882 882  
930 +|CHE|(% colspan="9" %)US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)
931 +|0|(% colspan="9" %)ENABLE Channel 0-63
932 +|1|902.3|902.5|902.7|902.9|903.1|903.3|903.5|903.7|Channel 0-7
933 +|2|903.9|904.1|904.3|904.5|904.7|904.9|905.1|905.3|Channel 8-15
934 +|3|905.5|905.7|905.9|906.1|906.3|906.5|906.7|906.9|Channel 16-23
935 +|4|907.1|907.3|907.5|907.7|907.9|908.1|908.3|908.5|Channel 24-31
936 +|5|908.7|908.9|909.1|909.3|909.5|909.7|909.9|910.1|Channel 32-39
937 +|6|910.3|910.5|910.7|910.9|911.1|911.3|911.5|911.7|Channel 40-47
938 +|7|911.9|912.1|912.3|912.5|912.7|912.9|913.1|913.3|Channel 48-55
939 +|8|913.5|913.7|913.9|914.1|914.3|914.5|914.7|914.9|Channel 56-63
940 +|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0)
941 +| |903|904.6|906.2|907.8|909.4|911|912.6|914.2|Channel 64-71
942 +
883 883  When you use the TTN network, the US915 frequency bands use are:
884 884  
885 885  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -894,15 +894,9 @@
894 894  
895 895  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
896 896  
897 -(% class="box infomessage" %)
898 -(((
899 899  **AT+CHE=2**
900 -)))
901 901  
902 -(% class="box infomessage" %)
903 -(((
904 904  **ATZ**
905 -)))
906 906  
907 907  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
908 908  
... ... @@ -909,48 +909,65 @@
909 909  
910 910  The **AU915** band is similar. Below are the AU915 Uplink Channels.
911 911  
912 -[[image:image-20220606154825-4.png]]
913 913  
967 +|CHE|(% colspan="9" %)AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)
968 +|0|(% colspan="9" %)ENABLE Channel 0-63
969 +|1|915.2|915.4|915.6|915.8|916|916.2|916.4|916.6|Channel 0-7
970 +|2|916.8|917|917.2|917.4|917.6|917.8|918|918.2|Channel 8-15
971 +|3|918.4|918.6|918.8|919|919.2|919.4|919.6|919.8|Channel 16-23
972 +|4|920|920.2|920.4|920.6|920.8|921|921.2|921.4|Channel 24-31
973 +|5|921.6|921.8|922|922.2|922.4|922.6|922.8|923|Channel 32-39
974 +|6|923.2|923.4|923.6|923.8|924|924.2|924.4|924.6|Channel 40-47
975 +|7|924.8|925|925.2|925.4|925.6|925.8|926|926.2|Channel 48-55
976 +|8|926.4|926.6|926.8|927|927.2|927.4|927.6|927.8|Channel 56-63
977 +|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0)
978 +| |915.9|917.5|919.1|920.7|922.3|923.9|925.5|927.1|Channel 64-71
914 914  
915 915  
916 -= 5. Trouble Shooting =
917 917  
918 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
919 919  
920 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
921 921  
984 +1. ​Trouble Shooting
985 +11. ​Why I can’t join TTN in US915 / AU915 bands?
922 922  
923 -== 5.2 AT Command input doesn’t work ==
987 +It is due to channel mapping. Please see the [[Eight Channel Mode>>path:#206ipza]] section above for details.
924 924  
925 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
926 926  
927 927  
928 -== 5.3 Device rejoin in at the second uplink packet ==
991 +1.
992 +11. AT Command input doesn’t work
929 929  
930 -(% style="color:#4f81bd" %)**Issue describe as below:**
994 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn’t send **ENTER** while press the send key, user need to add ENTER in their string.
931 931  
932 -[[image:1654500909990-784.png]]
933 933  
934 934  
935 -(% style="color:#4f81bd" %)**Cause for this issue:**
936 936  
999 +1.
1000 +11. Device rejoin in at the second uplink packet.
1001 +
1002 +**Issue describe as below:**
1003 +
1004 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
1005 +
1006 +
1007 +**Cause for this issue:**
1008 +
937 937  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
938 938  
939 939  
940 -(% style="color:#4f81bd" %)**Solution: **
1012 +**Solution: **
941 941  
942 942  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
943 943  
944 -[[image:1654500929571-736.png]]
1016 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
945 945  
946 -
947 947  = 6. ​Order Info =
948 948  
949 949  
950 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1021 +Part Number: (% style="color:#4f81bd" %)**LSE01-XX-YY**
951 951  
952 952  
953 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1024 +(% style="color:#4f81bd" %)**XX**(%%): The default frequency band
954 954  
955 955  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
956 956  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
... ... @@ -966,6 +966,7 @@
966 966  * (% style="color:red" %)**4**(%%): 4000mAh battery
967 967  * (% style="color:red" %)**8**(%%): 8500mAh battery
968 968  
1040 +
969 969  = 7. Packing Info =
970 970  
971 971  (((
1654500909990-784.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.6 KB
Content
1654500929571-736.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -991.8 KB
Content
1654501986557-872.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -767.2 KB
Content
1654502005655-729.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -915.0 KB
Content
1654502050864-459.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -174.6 KB
Content
1654503236291-817.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -685.6 KB
Content
1654503265560-120.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1654503992078-669.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -54.7 KB
Content
image-20220606154726-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -35.1 KB
Content
image-20220606154825-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -35.3 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0