Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 33 added, 0 removed)
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,999 +8,827 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 64 +== 1.3 Specification == 63 63 64 64 65 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 68 68 69 69 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 72 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 74 +(% style="color:#037691" %)**NB-IoT Spec:** 75 75 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 76 76 77 -**LSE01 v1.0 :** Release 78 78 79 79 85 +Probe(% style="color:#037691" %)** Specification:** 80 80 81 - =2. ConfigureLSE01toconnecttoLoRaWANnetwork=87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 - ==2.1How it works ==89 +[[image:image-20220708101224-1.png]] 84 84 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 92 92 93 +== 1.4 Applications == 93 93 95 +* Smart Agriculture 94 94 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 96 96 97 - Followingisan examplefor how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.100 +== 1.5 Pin Definitions == 98 98 99 99 100 -[[image:165 4503992078-669.png]]103 +[[image:1657246476176-652.png]] 101 101 102 102 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 104 107 += 2. Use NSE01 to communicate with IoT Server = 105 105 106 - **Step1**:Createa device in TTN withthe OTAAkeysfrom LSE01.109 +== 2.1 How it works == 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 110 -[[image:image-20220606163732-6.jpeg]] 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 113 113 114 -**Add APP EUI in the application** 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 119 +))) 115 115 121 +[[image:image-20220708101605-2.png]] 116 116 117 -[[image:1654504596150-405.png]] 123 +((( 124 + 125 +))) 118 118 119 119 120 120 121 - **AddAPPKEYandDEVEUI**129 +== 2.2 Configure the NSE01 == 122 122 123 -[[image:1654504683289-357.png]] 124 124 132 +=== 2.2.1 Test Requirement === 125 125 126 126 127 - **Step2**:PoweronLSE01135 +To use NSE01 in your city, make sure meet below requirements: 128 128 137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 129 129 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 143 +))) 131 131 132 -[[image:image-20220606163915-7.png]] 133 133 146 +[[image:1657249419225-449.png]] 134 134 135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 136 137 -[[image:1654504778294-788.png]] 138 138 150 +=== 2.2.2 Insert SIM card === 139 139 152 +Insert the NB-IoT Card get from your provider. 140 140 141 - ==2.3UplinkPayload==154 +User need to take out the NB-IoT module and insert the SIM card like below: 142 142 143 -=== 2.3.1 MOD~=0(Default Mode) === 144 144 145 - LSE01 will uplink payload via LoRaWAN with below payload format:157 +[[image:1657249468462-536.png]] 146 146 147 147 148 -Uplink payload includes in total 11 bytes. 149 - 150 150 151 -|((( 152 -**Size** 161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 153 153 154 -**(bytes)** 155 -)))|**2**|**2**|**2**|**2**|**2**|**1** 156 -|**Value**|[[BAT>>path:#bat]]|((( 157 -Temperature 158 - 159 -(Reserve, Ignore now) 160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 161 -MOD & Digital Interrupt 162 - 163 -(Optional) 163 +((( 164 +((( 165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 164 164 ))) 165 - 166 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 167 - 168 - 169 -1. 170 -11. 171 -111. MOD=1(Original value) 172 - 173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 174 - 175 -|((( 176 -**Size** 177 - 178 -**(bytes)** 179 -)))|**2**|**2**|**2**|**2**|**2**|**1** 180 -|**Value**|[[BAT>>path:#bat]]|((( 181 -Temperature 182 - 183 -(Reserve, Ignore now) 184 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 185 -MOD & Digital Interrupt 186 - 187 -(Optional) 188 188 ))) 189 189 190 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 191 191 192 -1. 193 -11. 194 -111. Battery Info 170 +**Connection:** 195 195 196 - Checkthettery voltage forLSE01.172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 197 197 198 - Ex1:0x0B45=2885mV174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 199 199 200 - Ex2:0x0B49=2889mV176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 201 201 202 202 179 +In the PC, use below serial tool settings: 203 203 204 -1. 205 -11. 206 -111. Soil Moisture 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 207 207 208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 209 209 210 - For example,if the data youget fromthe register is0x050xDC, the moisture content in the soil is191 +[[image:image-20220708110657-3.png]] 211 211 212 - **05DC(H)=1500(D)/100=15%.**193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 213 213 214 214 215 -1. 216 -11. 217 -111. Soil Temperature 218 218 219 - Get the temperature in the soil.The value range of the register is -4000-+800(Decimal), divide thisvalueby 100 toget the temperature in the soil.Forexample,ifthedatayou get from the register is 0x09 0xEC, the temperature content in the soil is197 +=== 2.2.4 Use CoAP protocol to uplink data === 220 220 221 - **Example**:199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 222 222 223 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 224 224 225 - IfpayloadisFF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C202 +**Use below commands:** 226 226 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 227 227 228 -1. 229 -11. 230 -111. Soil Conductivity (EC) 208 +For parameter description, please refer to AT command set 231 231 232 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0 -20000(Decimal)( Canbegreater than 20000).210 +[[image:1657249793983-486.png]] 233 233 234 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 235 235 213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 236 236 237 - Generally, the EC value ofirrigation water is less than800uS / cm.215 +[[image:1657249831934-534.png]] 238 238 239 -1. 240 -11. 241 -111. MOD 242 242 243 -Firmware version at least v2.1 supports changing mode. 244 244 245 - Forexample,bytes[10]=90219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 246 246 247 - mod=(bytes[10]>>7)&0x01=1.221 +This feature is supported since firmware version v1.0.1 248 248 249 249 250 -Downlink Command: 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 251 251 252 - If payload = 0x0A00, workmode=0228 +[[image:1657249864775-321.png]] 253 253 254 -If** **payload =** **0x0A01, workmode=1 255 255 231 +[[image:1657249930215-289.png]] 256 256 257 -1. 258 -11. 259 -111. Decode payload in The Things Network 260 260 261 -While using TTN network, you can add the payload format to decode the payload. 262 262 235 +=== 2.2.6 Use MQTT protocol to uplink data === 263 263 264 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]237 +This feature is supported since firmware version v110 265 265 266 -The payload decoder function for TTN is here: 267 267 268 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 269 269 248 +[[image:1657249978444-674.png]] 270 270 271 -1. 272 -11. Uplink Interval 273 273 274 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:251 +[[image:1657249990869-686.png]] 275 275 276 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 277 277 278 -1. 279 -11. Downlink Payload 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 280 280 281 -By default, LSE50 prints the downlink payload to console port. 282 282 283 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 284 -|TDC (Transmit Time Interval)|Any|01|4 285 -|RESET|Any|04|2 286 -|AT+CFM|Any|05|4 287 -|INTMOD|Any|06|4 288 -|MOD|Any|0A|2 289 289 290 - **Examples**260 +=== 2.2.7 Use TCP protocol to uplink data === 291 291 262 +This feature is supported since firmware version v110 292 292 293 -**Set TDC** 294 294 295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 296 296 297 - Payload:010 001E TDC=30S268 +[[image:1657250217799-140.png]] 298 298 299 -Payload: 01 00 00 3C TDC=60S 300 300 271 +[[image:1657250255956-604.png]] 301 301 302 -**Reset** 303 303 304 -If payload = 0x04FF, it will reset the LSE01 305 305 275 +=== 2.2.8 Change Update Interval === 306 306 307 -** CFM**277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 308 308 309 - DownlinkPayload:05000001, SetAT+CFM=1 or05000000,setAT+CFM=0279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 310 310 311 -1. 312 -11. Show Data in DataCake IoT Server 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 313 313 314 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 315 315 316 316 317 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 318 318 319 - **Step2**:To configure the Applicationto forward data to DATACAKEyou will need todintegration. To add the DATACAKE integration, perform the following steps:291 +== 2.3 Uplink Payload == 320 320 293 +In this mode, uplink payload includes in total 18 bytes 321 321 322 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 323 323 301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 324 324 325 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 326 326 304 +[[image:image-20220708111918-4.png]] 327 327 328 328 307 +The payload is ASCII string, representative same HEX: 329 329 309 +0x72403155615900640c7817075e0a8c02f900 where: 330 330 331 -Step 3: Create an account or log in Datacake. 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 332 332 333 -Step 4: Search the LSE01 and add DevEUI. 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 334 334 335 335 336 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 337 337 338 338 324 +== 2.4 Payload Explanation and Sensor Interface == 339 339 340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 341 341 327 +=== 2.4.1 Device ID === 342 342 343 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]329 +By default, the Device ID equal to the last 6 bytes of IMEI. 344 344 331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 345 333 +**Example:** 346 346 347 -1. 348 -11. Frequency Plans 335 +AT+DEUI=A84041F15612 349 349 350 -The LSE01 uses OTAA mode and below frequency plans by default.Ifuserwanttouse itwithdifferentfrequency plan, pleaserefertheATcommandsets.337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 351 351 352 -1. 353 -11. 354 -111. EU863-870 (EU868) 355 355 356 -Uplink: 357 357 358 - 868.1- SF7BW125toSF12BW125341 +=== 2.4.2 Version Info === 359 359 360 - 868.3 -SF7BW125toSF12BW125andSF7BW250343 +Specify the software version: 0x64=100, means firmware version 1.00. 361 361 362 - 868.5-SF7BW125toSF12BW125345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 363 363 364 -867.1 - SF7BW125 to SF12BW125 365 365 366 -867.3 - SF7BW125 to SF12BW125 367 367 368 - 867.5- SF7BW125toSF12BW125349 +=== 2.4.3 Battery Info === 369 369 370 -867.7 - SF7BW125 to SF12BW125 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 371 371 372 -867.9 - SF7BW125 to SF12BW125 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 373 373 374 -868.8 - FSK 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 375 375 376 376 377 -Downlink: 378 378 379 - Uplink channels1-9(RX1)365 +=== 2.4.4 Signal Strength === 380 380 381 - 869.525 - SF9BW125 (RX2 downlinkonly)367 +NB-IoT Network signal Strength. 382 382 369 +**Ex1: 0x1d = 29** 383 383 384 -1. 385 -11. 386 -111. US902-928(US915) 371 +(% style="color:blue" %)**0**(%%) -113dBm or less 387 387 388 - UsedinUSA,CanadaandSouthAmerica.Defaultuse CHE=2373 +(% style="color:blue" %)**1**(%%) -111dBm 389 389 390 - Uplink:375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 391 391 392 - 903.9-SF7BW125toSF10BW125377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 393 393 394 -9 04.1-SF7BW125toSF10BW125379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 395 395 396 -904.3 - SF7BW125 to SF10BW125 397 397 398 -904.5 - SF7BW125 to SF10BW125 399 399 400 - 904.7-SF7BW125toSF10BW125383 +=== 2.4.5 Soil Moisture === 401 401 402 -904.9 - SF7BW125 to SF10BW125 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 403 403 404 -905.1 - SF7BW125 to SF10BW125 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 405 405 406 -905.3 - SF7BW125 to SF10BW125 393 +((( 394 + 395 +))) 407 407 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 408 408 409 -Downlink: 410 410 411 -923.3 - SF7BW500 to SF12BW500 412 412 413 - 923.9-SF7BW500toSF12BW500403 +=== 2.4.6 Soil Temperature === 414 414 415 -924.5 - SF7BW500 to SF12BW500 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 416 416 417 -925.1 - SF7BW500 to SF12BW500 409 +((( 410 +**Example**: 411 +))) 418 418 419 -925.7 - SF7BW500 to SF12BW500 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 420 420 421 -926.3 - SF7BW500 to SF12BW500 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 422 422 423 -926.9 - SF7BW500 to SF12BW500 424 424 425 -927.5 - SF7BW500 to SF12BW500 426 426 427 - 923.3-SF12BW500(RX2 downlinkonly)423 +=== 2.4.7 Soil Conductivity (EC) === 428 428 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 429 429 430 - 1.431 - 11.432 - 111. CN470-510 (CN470)429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 433 433 434 -Used in China, Default use CHE=1 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 435 435 436 -Uplink: 437 +((( 438 + 439 +))) 437 437 438 -486.3 - SF7BW125 to SF12BW125 441 +((( 442 + 443 +))) 439 439 440 -4 86.5-SF7BW125toSF12BW125445 +=== 2.4.8 Digital Interrupt === 441 441 442 - 486.7-SF7BW125toSF12BW125447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 443 443 444 - 486.9- SF7BW125 toSF12BW125449 +The command is: 445 445 446 - 487.1-SF7BW125to SF12BW125451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 447 447 448 -487.3 - SF7BW125 to SF12BW125 449 449 450 - 487.5-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 451 451 452 -487.7 - SF7BW125 to SF12BW125 453 453 457 +Example: 454 454 455 - Downlink:459 +0x(00): Normal uplink packet. 456 456 457 - 506.7 - SF7BW125toSF12BW125461 +0x(01): Interrupt Uplink Packet. 458 458 459 -506.9 - SF7BW125 to SF12BW125 460 460 461 -507.1 - SF7BW125 to SF12BW125 462 462 463 - 507.3- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 464 464 465 - 507.5-SF7BW125 toSF12BW125467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 466 466 467 -507.7 - SF7BW125 to SF12BW125 468 468 469 -5 07.9-SF7BW125toSF12BW125470 +The 5V output time can be controlled by AT Command. 470 470 471 - 508.1- SF7BW125toSF12BW125472 +(% style="color:blue" %)**AT+5VT=1000** 472 472 473 -50 5.3-SF12BW125(RX2downlinkonly)474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 474 474 475 475 476 -1. 477 -11. 478 -111. AU915-928(AU915) 479 479 480 -D efaultuse CHE=2478 +== 2.5 Downlink Payload == 481 481 482 - Uplink:480 +By default, NSE01 prints the downlink payload to console port. 483 483 484 - 916.8-SF7BW125 to SF12BW125482 +[[image:image-20220708133731-5.png]] 485 485 486 -917.0 - SF7BW125 to SF12BW125 487 487 488 -917.2 - SF7BW125 to SF12BW125 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 489 489 490 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 + 491 +))) 491 491 492 -917.6 - SF7BW125 to SF12BW125 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 493 493 494 -917.8 - SF7BW125 to SF12BW125 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 495 495 496 -918.0 - SF7BW125 to SF12BW125 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 497 497 498 -918.2 - SF7BW125 to SF12BW125 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 499 499 509 +((( 510 + 511 +))) 500 500 501 -Downlink: 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 502 502 503 -923.3 - SF7BW500 to SF12BW500 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 504 504 505 -923.9 - SF7BW500 to SF12BW500 506 506 507 - 924.5-SF7BW500toSF12BW500522 +* (% style="color:blue" %)**INTMOD** 508 508 509 - 925.1-SF7BW500 toSF12BW500524 +Downlink Payload: 06000003, Set AT+INTMOD=3 510 510 511 -925.7 - SF7BW500 to SF12BW500 512 512 513 -926.3 - SF7BW500 to SF12BW500 514 514 515 - 926.9-SF7BW500toSF12BW500528 +== 2.6 LED Indicator == 516 516 517 -927.5 - SF7BW500 to SF12BW500 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 518 518 519 -923.3 - SF12BW500(RX2 downlink only) 520 520 521 -1. 522 -11. 523 -111. AS920-923 & AS923-925 (AS923) 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 524 524 525 -**Default Uplink channel:** 526 526 527 -923.2 - SF7BW125 to SF10BW125 528 528 529 -923.4 - SF7BW125 to SF10BW125 530 530 543 +== 2.7 Installation in Soil == 531 531 532 -** Additional UplinkChannel**:545 +__**Measurement the soil surface**__ 533 533 534 - (OTAAmode,channel addedbyJoinAccept message)547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 535 535 536 - **AS920~~AS923for Japan, Malaysia, Singapore**:549 +[[image:1657259653666-883.png]] 537 537 538 -922.2 - SF7BW125 to SF10BW125 539 539 540 -922.4 - SF7BW125 to SF10BW125 552 +((( 553 + 541 541 542 -922.6 - SF7BW125 to SF10BW125 543 - 544 -922.8 - SF7BW125 to SF10BW125 545 - 546 -923.0 - SF7BW125 to SF10BW125 547 - 548 -922.0 - SF7BW125 to SF10BW125 549 - 550 - 551 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 552 - 553 -923.6 - SF7BW125 to SF10BW125 554 - 555 -923.8 - SF7BW125 to SF10BW125 556 - 557 -924.0 - SF7BW125 to SF10BW125 558 - 559 -924.2 - SF7BW125 to SF10BW125 560 - 561 -924.4 - SF7BW125 to SF10BW125 562 - 563 -924.6 - SF7BW125 to SF10BW125 564 - 565 - 566 - 567 -**Downlink:** 568 - 569 -Uplink channels 1-8 (RX1) 570 - 571 -923.2 - SF10BW125 (RX2) 572 - 573 - 574 -1. 575 -11. 576 -111. KR920-923 (KR920) 577 - 578 -Default channel: 579 - 580 -922.1 - SF7BW125 to SF12BW125 581 - 582 -922.3 - SF7BW125 to SF12BW125 583 - 584 -922.5 - SF7BW125 to SF12BW125 585 - 586 - 587 -Uplink: (OTAA mode, channel added by JoinAccept message) 588 - 589 -922.1 - SF7BW125 to SF12BW125 590 - 591 -922.3 - SF7BW125 to SF12BW125 592 - 593 -922.5 - SF7BW125 to SF12BW125 594 - 595 -922.7 - SF7BW125 to SF12BW125 596 - 597 -922.9 - SF7BW125 to SF12BW125 598 - 599 -923.1 - SF7BW125 to SF12BW125 600 - 601 -923.3 - SF7BW125 to SF12BW125 602 - 603 - 604 -Downlink: 605 - 606 -Uplink channels 1-7(RX1) 607 - 608 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 609 - 610 - 611 -1. 612 -11. 613 -111. IN865-867 (IN865) 614 - 615 -Uplink: 616 - 617 -865.0625 - SF7BW125 to SF12BW125 618 - 619 -865.4025 - SF7BW125 to SF12BW125 620 - 621 -865.9850 - SF7BW125 to SF12BW125 622 - 623 - 624 -Downlink: 625 - 626 -Uplink channels 1-3 (RX1) 627 - 628 -866.550 - SF10BW125 (RX2) 629 - 630 - 631 -1. 632 -11. LED Indicator 633 - 634 -The LSE01 has an internal LED which is to show the status of different state. 635 - 636 - 637 -* Blink once when device power on. 638 -* Solid ON for 5 seconds once device successful Join the network. 639 -* Blink once when device transmit a packet. 640 - 641 -1. 642 -11. Installation in Soil 643 - 644 -**Measurement the soil surface** 645 - 646 - 647 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 648 - 649 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 650 - 651 - 652 - 653 - 654 - 655 - 656 - 657 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 658 - 659 - 660 - 555 +((( 661 661 Dig a hole with diameter > 20CM. 557 +))) 662 662 559 +((( 663 663 Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 664 664 564 +[[image:1654506665940-119.png]] 665 665 566 +((( 567 + 568 +))) 666 666 667 667 668 -1. 669 -11. Firmware Change Log 571 +== 2.8 Firmware Change Log == 670 670 671 -**Firmware download link:** 672 672 673 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]574 +Download URL & Firmware Change log 674 674 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 675 675 676 -**Firmware Upgrade Method:** 677 677 678 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 679 679 680 680 681 -**V1.0.** 682 682 683 - Release583 +== 2.9 Battery Analysis == 684 684 585 +=== 2.9.1 Battery Type === 685 685 686 686 687 -1. 688 -11. Battery Analysis 689 -111. Battery Type 588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 690 690 691 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 692 692 591 +The battery is designed to last for several years depends on the actually use environment and update interval. 693 693 694 -The battery is designed to last for more than 5 years for the LSN50. 695 695 696 - 697 697 The battery related documents as below: 698 698 699 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],700 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/ downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]701 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 702 702 703 - |(((704 - JST-XH-2P connector600 +((( 601 +[[image:image-20220708140453-6.png]] 705 705 ))) 706 706 707 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 708 708 709 709 606 +=== 2.9.2 Power consumption Analyze === 710 710 711 - 1.712 - 11.713 - 111. Battery Note608 +((( 609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 610 +))) 714 714 715 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 716 716 613 +((( 614 +Instruction to use as below: 615 +))) 717 717 718 - 1.719 -1 1.720 - 111. Replace the battery617 +((( 618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 619 +))) 721 721 722 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 723 723 622 +((( 623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 624 +))) 724 724 725 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 626 +* ((( 627 +Product Model 628 +))) 629 +* ((( 630 +Uplink Interval 631 +))) 632 +* ((( 633 +Working Mode 634 +))) 726 726 636 +((( 637 +And the Life expectation in difference case will be shown on the right. 638 +))) 727 727 728 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)640 +[[image:image-20220708141352-7.jpeg]] 729 729 730 730 731 731 644 +=== 2.9.3 Battery Note === 732 732 646 +((( 647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 648 +))) 733 733 734 734 735 -= 3. Using the AT Commands = 736 736 737 -== 3.1AccessATCommands==652 +=== 2.9.4 Replace the battery === 738 738 654 +((( 655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 656 +))) 739 739 740 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 741 741 742 -[[image:1654501986557-872.png]] 743 743 660 += 3. Access NB-IoT Module = 744 744 745 -Or if you have below board, use below connection: 662 +((( 663 +Users can directly access the AT command set of the NB-IoT module. 664 +))) 746 746 666 +((( 667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 668 +))) 747 747 748 -[[image:165 4502005655-729.png]]670 +[[image:1657261278785-153.png]] 749 749 750 750 751 751 752 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:674 += 4. Using the AT Commands = 753 753 676 +== 4.1 Access AT Commands == 754 754 755 - [[ima ge:1654502050864-459.png]]678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 756 756 757 757 758 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]681 +AT+<CMD>? : Help on <CMD> 759 759 683 +AT+<CMD> : Run <CMD> 760 760 761 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>685 +AT+<CMD>=<value> : Set the value 762 762 763 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>687 +AT+<CMD>=? : Get the value 764 764 765 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 766 766 767 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 768 - 769 - 770 770 (% style="color:#037691" %)**General Commands**(%%) 771 771 772 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 773 773 774 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 775 775 776 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 777 777 778 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 779 779 700 +AT+CFG : Print all configurations 780 780 781 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 782 782 783 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 784 784 785 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 786 786 787 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 798 798 799 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 800 800 801 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 804 804 805 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 806 806 807 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 810 810 811 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 812 812 813 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 814 814 733 +AT+CLIENT : Get or Set MQTT client 815 815 816 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 819 819 820 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 823 823 824 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 825 825 826 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 827 827 828 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 831 831 832 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 833 833 834 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 835 835 836 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 837 837 838 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 839 839 840 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 841 841 842 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 757 +((( 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 759 +))) 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 845 - 846 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 847 - 848 - 849 -(% style="color:#037691" %)**Information** 850 - 851 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 852 - 853 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 858 - 859 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 860 - 861 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 862 - 863 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 864 - 865 - 866 -= 4. FAQ = 867 - 868 -== 4.1 How to change the LoRa Frequency Bands/Region? == 869 - 870 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 871 -When downloading the images, choose the required image file for download. 872 - 873 - 874 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 875 - 876 - 877 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 878 - 879 - 880 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 881 - 882 -[[image:image-20220606154726-3.png]] 883 - 884 -When you use the TTN network, the US915 frequency bands use are: 885 - 886 -* 903.9 - SF7BW125 to SF10BW125 887 -* 904.1 - SF7BW125 to SF10BW125 888 -* 904.3 - SF7BW125 to SF10BW125 889 -* 904.5 - SF7BW125 to SF10BW125 890 -* 904.7 - SF7BW125 to SF10BW125 891 -* 904.9 - SF7BW125 to SF10BW125 892 -* 905.1 - SF7BW125 to SF10BW125 893 -* 905.3 - SF7BW125 to SF10BW125 894 -* 904.6 - SF8BW500 895 - 896 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 897 - 898 -(% class="box infomessage" %) 899 899 ((( 900 - **AT+CHE=2**762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 901 901 ))) 902 902 903 -(% class="box infomessage" %) 904 904 ((( 905 - **ATZ**766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 906 906 ))) 907 907 908 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 909 909 910 910 911 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.771 += 6. Trouble Shooting = 912 912 913 - [[image:image-20220606154825-4.png]]773 +== 6.1 Connection problem when uploading firmware == 914 914 915 915 776 +(% class="wikigeneratedid" %) 777 +((( 778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 779 +))) 916 916 917 -= 5. Trouble Shooting = 918 918 919 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 920 920 921 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.783 +== 6.2 AT Command input doesn't work == 922 922 785 +((( 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 787 +))) 923 923 924 -== 5.2 AT Command input doesn’t work == 925 925 926 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 927 927 791 += 7. Order Info = 928 928 929 -== 5.3 Device rejoin in at the second uplink packet == 930 930 931 -(% style="color:#4f81bd" %)** Issue describe as below:**794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 932 932 933 -[[image:1654500909990-784.png]] 934 934 797 +(% class="wikigeneratedid" %) 798 +((( 799 + 800 +))) 935 935 936 - (% style="color:#4f81bd"%)**Causeforthis issue:**802 += 8. Packing Info = 937 937 938 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 804 +((( 805 + 939 939 807 +(% style="color:#037691" %)**Package Includes**: 940 940 941 -(% style="color:#4f81bd" %)**Solution: ** 942 942 943 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 812 +))) 944 944 945 -[[image:1654500929571-736.png]] 814 +((( 815 + 946 946 817 +(% style="color:#037691" %)**Dimension and weight**: 947 947 948 -= 6. Order Info = 949 949 950 - 951 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 952 - 953 - 954 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 955 - 956 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 957 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 958 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 959 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 960 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 961 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 962 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 963 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 964 - 965 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 966 - 967 -* (% style="color:red" %)**4**(%%): 4000mAh battery 968 -* (% style="color:red" %)**8**(%%): 8500mAh battery 969 - 970 -= 7. Packing Info = 971 - 972 -((( 973 -**Package Includes**: 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 974 974 ))) 975 975 976 -* ((( 977 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 978 -))) 979 - 980 980 ((( 981 981 982 -))) 983 983 984 -((( 985 -**Dimension and weight**: 986 -))) 987 987 988 -* ((( 989 -Device Size: cm 828 + 990 990 ))) 991 -* ((( 992 -Device Weight: g 993 -))) 994 -* ((( 995 -Package Size / pcs : cm 996 -))) 997 -* ((( 998 -Weight / pcs : g 999 -))) 1000 1000 1001 -= 8. Support =831 += 9. Support = 1002 1002 1003 1003 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1004 1004 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1005 - 1006 -
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content