Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 29 added, 0 removed)
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,730 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 40 40 25 +((( 26 + 41 41 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 42 42 43 -= =1.2Features==30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 56 56 57 - ==1.3Specification==34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 - 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 - 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 - 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 75 - 76 - 77 -**LSE01 v1.0 :** Release 78 - 79 - 80 - 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 - 83 -== 2.1 How it works == 84 - 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 36 + 87 87 ))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 39 +[[image:1654503236291-817.png]] 92 92 93 93 42 +[[image:1657245163077-232.png]] 94 94 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 46 +== 1.2 Features == 99 99 100 -[[image:1654503992078-669.png]] 101 101 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* AT Commands to change parameters 54 +* Uplink on periodically 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 102 102 103 - TheLG308is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so whatwe need to nowis configurethe TTN server.62 +== 1.3 Specification == 104 104 105 105 106 - **Step1**:Createa device in TTN with the OTAA keysfrom LSE01.65 +(% style="color:#037691" %)**Common DC Characteristics:** 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 109 109 110 - [[image:image-20220606163732-6.jpeg]]70 +(% style="color:#037691" %)**NB-IoT Spec:** 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 113 113 114 -** Add APP EUI in theapplication**79 +(% style="color:#037691" %)**Probe Specification:** 115 115 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 116 116 117 -[[image: 1654504596150-405.png]]83 +[[image:image-20220708101224-1.png]] 118 118 119 119 120 120 121 - **AddAPPKEYandDEV EUI**87 +== 1.4 Applications == 122 122 123 - [[image:1654504683289-357.png]]89 +* Smart Agriculture 124 124 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 125 125 94 +== 1.5 Pin Definitions == 126 126 127 -**Step 2**: Power on LSE01 128 128 97 +[[image:1657246476176-652.png]] 129 129 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 131 132 -[[image:image-20220606163915-7.png]] 133 133 101 += 2. Use NSE01 to communicate with IoT Server = 134 134 135 - **Step3:** The LSE01 willauto jointothe TTN network. After joinsuccess,it will start to upload messages to TTN and you can see the messages in the panel.103 +== 2.1 How it works == 136 136 137 -[[image:1654504778294-788.png]] 138 138 106 +((( 107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 108 +))) 139 139 140 140 141 -== 2.3 Uplink Payload == 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 113 +))) 142 142 143 - === 2.3.1 MOD~=0(Default Mode) ===115 +[[image:image-20220708101605-2.png]] 144 144 145 -LSE01 will uplink payload via LoRaWAN with below payload format: 146 - 147 - 148 -Uplink payload includes in total 11 bytes. 117 +((( 149 149 150 - 151 -|((( 152 -**Size** 153 - 154 -**(bytes)** 155 -)))|**2**|**2**|**2**|**2**|**2**|**1** 156 -|**Value**|[[BAT>>path:#bat]]|((( 157 -Temperature 158 - 159 -(Reserve, Ignore now) 160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 161 -MOD & Digital Interrupt 162 - 163 -(Optional) 164 164 ))) 165 165 166 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 167 167 168 168 169 -1. 170 -11. 171 -111. MOD=1(Original value) 123 +== 2.2 Configure the NSE01 == 172 172 173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 174 174 175 -|((( 176 -**Size** 126 +=== 2.2.1 Test Requirement === 177 177 178 -**(bytes)** 179 -)))|**2**|**2**|**2**|**2**|**2**|**1** 180 -|**Value**|[[BAT>>path:#bat]]|((( 181 -Temperature 182 182 183 -(Reserve, Ignore now) 184 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 185 -MOD & Digital Interrupt 129 +To use NSE01 in your city, make sure meet below requirements: 186 186 187 -(Optional) 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 134 + 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 188 188 ))) 189 189 190 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 191 191 192 -1. 193 -11. 194 -111. Battery Info 140 +[[image:1657249419225-449.png]] 195 195 196 -Check the battery voltage for LSE01. 197 197 198 -Ex1: 0x0B45 = 2885mV 199 199 200 - Ex2:0x0B49=2889mV144 +=== 2.2.2 Insert SIM card === 201 201 146 +Insert the NB-IoT Card get from your provider. 202 202 148 +User need to take out the NB-IoT module and insert the SIM card like below: 203 203 204 -1. 205 -11. 206 -111. Soil Moisture 207 207 208 - Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 toget thepercentage of moisture in the soil.151 +[[image:1657249468462-536.png]] 209 209 210 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is 211 211 212 -**05DC(H) = 1500(D) /100 = 15%.** 213 213 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 214 215 -1. 216 -11. 217 -111. Soil Temperature 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 +))) 161 +))) 218 218 219 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 220 220 221 -** Example**:164 +**Connection:** 222 222 223 - Ifpayloadis 0105H:((0x0105 & 0x8000)>>15 === 0),temp= 0105(H)/100=2.61°C166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 224 224 225 - Ifpayloadis FF7EH:((FF7E & 0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100 =-1.29°C168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 226 226 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 227 227 228 -1. 229 -11. 230 -111. Soil Conductivity (EC) 231 231 232 - Obtainsoluble saltconcentrationinsoilor solubleionconcentration inliquidfertilizeror plantingmedium,. The value range ofthe registeris 0 - 20000(Decimal)( Canbegreater than 20000).173 +In the PC, use below serial tool settings: 233 233 234 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 235 235 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 236 236 237 - Generally, the EC value ofirrigation wateris less than 800uS / cm.185 +[[image:image-20220708110657-3.png]] 238 238 239 -1. 240 -11. 241 -111. MOD 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 242 242 243 -Firmware version at least v2.1 supports changing mode. 244 244 245 -For example, bytes[10]=90 246 246 247 - mod=(bytes[10]>>7)&0x01=1.191 +=== 2.2.4 Use CoAP protocol to uplink data === 248 248 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 249 249 250 -Downlink Command: 251 251 252 - Ifpayload = 0x0A00,workmode=0196 +**Use below commands:** 253 253 254 -If** **payload =** **0x0A01, workmode=1 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 255 255 202 +For parameter description, please refer to AT command set 256 256 257 -1. 258 -11. 259 -111. Decode payload in The Things Network 204 +[[image:1657249793983-486.png]] 260 260 261 -While using TTN network, you can add the payload format to decode the payload. 262 262 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 263 263 264 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]209 +[[image:1657249831934-534.png]] 265 265 266 -The payload decoder function for TTN is here: 267 267 268 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 269 269 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 270 270 271 -1. 272 -11. Uplink Interval 215 +This feature is supported since firmware version v1.0.1 273 273 274 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 275 275 276 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 277 277 278 -1. 279 -11. Downlink Payload 222 +[[image:1657249864775-321.png]] 280 280 281 -By default, LSE50 prints the downlink payload to console port. 282 282 283 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 284 -|TDC (Transmit Time Interval)|Any|01|4 285 -|RESET|Any|04|2 286 -|AT+CFM|Any|05|4 287 -|INTMOD|Any|06|4 288 -|MOD|Any|0A|2 225 +[[image:1657249930215-289.png]] 289 289 290 -**Examples** 291 291 292 292 293 - **SetTDC**229 +=== 2.2.6 Use MQTT protocol to uplink data === 294 294 295 - If the payload=0100003C,it meanssettheEND Node’sTDC to0x00003C=60(S), whiletype code is01.231 +This feature is supported since firmware version v110 296 296 297 -Payload: 01 00 00 1E TDC=30S 298 298 299 -Payload: 01 00 00 3C TDC=60S 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 300 300 242 +[[image:1657249978444-674.png]] 301 301 302 -**Reset** 303 303 304 - If payload = 0x04FF,it will reset the LSE01245 +[[image:1657249990869-686.png]] 305 305 306 306 307 -**CFM** 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 308 308 309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 310 310 311 -1. 312 -11. Show Data in DataCake IoT Server 313 313 314 - [[DATACAKE>>url:https://datacake.co/]]providesa human friendly interface toshow thesensor data, once we have data inTTN, we can use [[DATACAKE>>url:https://datacake.co/]]tonnecttoTTN andsee thedatain DATACAKE. Below are the steps:254 +=== 2.2.7 Use TCP protocol to uplink data === 315 315 256 +This feature is supported since firmware version v110 316 316 317 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 318 318 319 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 320 320 262 +[[image:1657250217799-140.png]] 321 321 322 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 323 323 265 +[[image:1657250255956-604.png]] 324 324 325 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 326 326 327 327 269 +=== 2.2.8 Change Update Interval === 328 328 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 329 329 273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 330 330 331 -Step 3: Create an account or log in Datacake. 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 332 332 333 -Step 4: Search the LSE01 and add DevEUI. 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 334 334 335 335 336 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 337 337 285 +== 2.3 Uplink Payload == 338 338 287 +In this mode, uplink payload includes in total 18 bytes 339 339 340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 341 341 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 342 342 343 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 344 344 298 +[[image:image-20220708111918-4.png]] 345 345 346 346 347 -1. 348 -11. Frequency Plans 301 +The payload is ASCII string, representative same HEX: 349 349 350 - The LSE01uses OTAA modeand below frequency plans by default.If userwant to use it withdifferent frequency plan, please refer the AT command sets.303 +0x72403155615900640c7817075e0a8c02f900 where: 351 351 352 -1. 353 -11. 354 -111. EU863-870 (EU868) 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 355 355 356 -Uplink: 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 357 357 358 - 868.1- SF7BW125to SF12BW125315 +== 2.4 Payload Explanation and Sensor Interface == 359 359 360 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 361 361 362 - 868.5- SF7BW125toSF12BW125318 +=== 2.4.1 Device ID === 363 363 364 - 867.1-SF7BW125toSF12BW125320 +By default, the Device ID equal to the last 6 bytes of IMEI. 365 365 366 - 867.3-SF7BW125toSF12BW125322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 367 367 368 - 867.5 - SF7BW125 to SF12BW125324 +**Example:** 369 369 370 -8 67.7 - SF7BW125to SF12BW125326 +AT+DEUI=A84041F15612 371 371 372 - 867.9-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 373 373 374 -868.8 - FSK 375 375 376 376 377 - Downlink:332 +=== 2.4.2 Version Info === 378 378 379 - Uplinkchannels 1-9 (RX1)334 +Specify the software version: 0x64=100, means firmware version 1.00. 380 380 381 - 869.525-SF9BW125(RX2 downlinkonly)336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 382 382 383 383 384 -1. 385 -11. 386 -111. US902-928(US915) 387 387 388 - UsedinUSA, Canada and South America.Defaultuse CHE=2340 +=== 2.4.3 Battery Info === 389 389 390 -Uplink: 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 391 391 392 -903.9 - SF7BW125 to SF10BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 393 393 394 -904.1 - SF7BW125 to SF10BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 395 395 396 -904.3 - SF7BW125 to SF10BW125 397 397 398 -904.5 - SF7BW125 to SF10BW125 399 399 400 - 904.7-SF7BW125toSF10BW125356 +=== 2.4.4 Signal Strength === 401 401 402 - 904.9-SF7BW125to SF10BW125358 +NB-IoT Network signal Strength. 403 403 404 - 905.1- SF7BW125toSF10BW125360 +**Ex1: 0x1d = 29** 405 405 406 - 905.3-SF7BW125toSF10BW125362 +(% style="color:blue" %)**0**(%%) -113dBm or less 407 407 364 +(% style="color:blue" %)**1**(%%) -111dBm 408 408 409 - Downlink:366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 410 410 411 - 923.3-SF7BW500toSF12BW500368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 412 412 413 -9 23.9-SF7BW500toSF12BW500370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 414 414 415 -924.5 - SF7BW500 to SF12BW500 416 416 417 -925.1 - SF7BW500 to SF12BW500 418 418 419 - 925.7-SF7BW500toSF12BW500374 +=== 2.4.5 Soil Moisture === 420 420 421 -926.3 - SF7BW500 to SF12BW500 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 422 422 423 -926.9 - SF7BW500 to SF12BW500 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 424 424 425 -927.5 - SF7BW500 to SF12BW500 384 +((( 385 + 386 +))) 426 426 427 -923.3 - SF12BW500(RX2 downlink only) 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 428 428 429 429 430 -1. 431 -11. 432 -111. CN470-510 (CN470) 433 433 434 - UsedinChina,DefaultseCHE=1394 +=== 2.4.6 Soil Temperature === 435 435 436 -Uplink: 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 437 437 438 -486.3 - SF7BW125 to SF12BW125 400 +((( 401 +**Example**: 402 +))) 439 439 440 -486.5 - SF7BW125 to SF12BW125 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 441 441 442 -486.7 - SF7BW125 to SF12BW125 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 443 443 444 -486.9 - SF7BW125 to SF12BW125 445 445 446 -487.1 - SF7BW125 to SF12BW125 447 447 448 -4 87.3-SF7BW125toSF12BW125414 +=== 2.4.7 Soil Conductivity (EC) === 449 449 450 -487.5 - SF7BW125 to SF12BW125 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 451 451 452 -487.7 - SF7BW125 to SF12BW125 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 453 453 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 454 454 455 -Downlink: 428 +((( 429 + 430 +))) 456 456 457 -506.7 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 458 458 459 - 506.9- SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 460 460 461 - 507.1-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 462 462 463 - 507.3- SF7BW125 toSF12BW125440 +The command is: 464 464 465 - 507.5-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 466 466 467 -507.7 - SF7BW125 to SF12BW125 468 468 469 - 507.9-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 470 470 471 -508.1 - SF7BW125 to SF12BW125 472 472 473 - 505.3 - SF12BW125 (RX2 downlink only)448 +Example: 474 474 450 +0x(00): Normal uplink packet. 475 475 476 -1. 477 -11. 478 -111. AU915-928(AU915) 452 +0x(01): Interrupt Uplink Packet. 479 479 480 -Default use CHE=2 481 481 482 -Uplink: 483 483 484 - 916.8- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 485 485 486 - 917.0-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 487 487 488 -917.2 - SF7BW125 to SF12BW125 489 489 490 - 917.4- SF7BW125 toSF12BW125461 +The 5V output time can be controlled by AT Command. 491 491 492 - 917.6- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 493 493 494 - 917.8-SF7BW125 toSF12BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 495 495 496 -918.0 - SF7BW125 to SF12BW125 497 497 498 -918.2 - SF7BW125 to SF12BW125 499 499 469 +== 2.5 Downlink Payload == 500 500 501 - Downlink:471 +By default, NSE01 prints the downlink payload to console port. 502 502 503 - 923.3- SF7BW500 to SF12BW500473 +[[image:image-20220708133731-5.png]] 504 504 505 -923.9 - SF7BW500 to SF12BW500 506 506 507 -924.5 - SF7BW500 to SF12BW500 508 508 509 -925.1 - SF7BW500 to SF12BW500 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 510 510 511 -925.7 - SF7BW500 to SF12BW500 481 +((( 482 + 483 +))) 512 512 513 -926.3 - SF7BW500 to SF12BW500 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 514 514 515 -926.9 - SF7BW500 to SF12BW500 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 516 516 517 -927.5 - SF7BW500 to SF12BW500 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 518 518 519 -923.3 - SF12BW500(RX2 downlink only) 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 520 520 521 - 1.522 - 11.523 - 111. AS920-923 & AS923-925 (AS923)501 +((( 502 + 503 +))) 524 524 525 -**Default Uplink channel:** 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 526 526 527 -923.2 - SF7BW125 to SF10BW125 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 528 528 529 -923.4 - SF7BW125 to SF10BW125 530 530 514 +* (% style="color:blue" %)**INTMOD** 531 531 532 - **AdditionalUplinkChannel**:516 +Downlink Payload: 06000003, Set AT+INTMOD=3 533 533 534 -(OTAA mode, channel added by JoinAccept message) 535 535 536 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 537 537 538 - 922.2-SF7BW125toSF10BW125520 +== 2.6 LED Indicator == 539 539 540 -922.4 - SF7BW125 to SF10BW125 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 541 541 542 -922.6 - SF7BW125 to SF10BW125 543 543 544 -922.8 - SF7BW125 to SF10BW125 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 545 545 546 -923.0 - SF7BW125 to SF10BW125 547 547 548 -922.0 - SF7BW125 to SF10BW125 549 549 550 550 551 - **AS923~~ AS925for Brunei, Cambodia, Hong Kong,Indonesia, Laos,Taiwan,Thailand,Vietnam**:535 +== 2.7 Installation in Soil == 552 552 553 - 923.6- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 554 554 555 - 923.8-SF7BW125SF10BW125539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 556 556 557 - 924.0 - SF7BW125to SF10BW125541 +[[image:1657259653666-883.png]] 558 558 559 -924.2 - SF7BW125 to SF10BW125 560 560 561 -924.4 - SF7BW125 to SF10BW125 544 +((( 545 + 562 562 563 -924.6 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 564 564 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 565 565 556 +[[image:1654506665940-119.png]] 566 566 567 -**Downlink:** 558 +((( 559 + 560 +))) 568 568 569 -Uplink channels 1-8 (RX1) 570 570 571 - 923.2- SF10BW125(RX2)563 +== 2.8 Firmware Change Log == 572 572 573 573 574 -1. 575 -11. 576 -111. KR920-923 (KR920) 566 +Download URL & Firmware Change log 577 577 578 - Default channel:568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 579 579 580 -922.1 - SF7BW125 to SF12BW125 581 581 582 - 922.3- SF7BW125toSF12BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 583 583 584 -922.5 - SF7BW125 to SF12BW125 585 585 586 586 587 - Uplink:(OTAAmode, channeladded byJoinAccept message)575 +== 2.9 Battery Analysis == 588 588 589 - 922.1- SF7BW125toSF12BW125577 +=== 2.9.1 Battery Type === 590 590 591 -922.3 - SF7BW125 to SF12BW125 592 592 593 - 922.5-SF7BW125to SF12BW125580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 594 594 595 -922.7 - SF7BW125 to SF12BW125 596 596 597 - 922.9-SF7BW125toSF12BW125583 +The battery is designed to last for several years depends on the actually use environment and update interval. 598 598 599 -923.1 - SF7BW125 to SF12BW125 600 600 601 - 923.3-SF7BW125toSF12BW125586 +The battery related documents as below: 602 602 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 603 603 604 -Downlink: 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 605 605 606 -Uplink channels 1-7(RX1) 607 607 608 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 609 609 598 +2.9.2 610 610 611 -1. 612 -11. 613 -111. IN865-867 (IN865) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 614 614 615 -Uplink: 616 616 617 - 865.0625- SF7BW125toSF12BW125603 +Instruction to use as below: 618 618 619 -865.4025 - SF7BW125 to SF12BW125 620 620 621 - 865.9850 -SF7BW125toSF12BW125606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 622 622 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 623 623 624 -Downlink: 625 625 626 - Uplinkchannels1-3 (RX1)611 +Step 2: Open it and choose 627 627 628 -866.550 - SF10BW125 (RX2) 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 629 629 617 +And the Life expectation in difference case will be shown on the right. 630 630 631 -1. 632 -11. LED Indicator 633 633 634 -The LSE01 has an internal LED which is to show the status of different state. 635 635 621 +=== 2.9.3 Battery Note === 636 636 637 -* Blink once when device power on. 638 -* Solid ON for 5 seconds once device successful Join the network. 639 -* Blink once when device transmit a packet. 640 - 641 -1. 642 -11. Installation in Soil 643 - 644 -**Measurement the soil surface** 645 - 646 - 647 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 648 - 649 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 650 - 651 - 652 - 653 - 654 - 655 - 656 - 657 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 658 - 659 - 660 - 661 -Dig a hole with diameter > 20CM. 662 - 663 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 664 - 665 - 666 - 667 - 668 -1. 669 -11. Firmware Change Log 670 - 671 -**Firmware download link:** 672 - 673 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 674 - 675 - 676 -**Firmware Upgrade Method:** 677 - 678 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 679 - 680 - 681 -**V1.0.** 682 - 683 -Release 684 - 685 - 686 - 687 -1. 688 -11. Battery Analysis 689 -111. Battery Type 690 - 691 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 692 - 693 - 694 -The battery is designed to last for more than 5 years for the LSN50. 695 - 696 - 697 -The battery related documents as below: 698 - 699 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 700 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 701 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 702 - 703 -|((( 704 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 705 705 ))) 706 706 707 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 708 708 709 709 629 +=== 2.9.4 Replace the battery === 710 710 711 -1. 712 -11. 713 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 714 714 715 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 716 716 717 717 718 -1. 719 -11. 720 -111. Replace the battery 721 - 722 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 723 - 724 - 725 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 726 - 727 - 728 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 729 - 730 - 731 - 732 - 733 - 734 - 735 735 = 3. Using the AT Commands = 736 736 737 737 == 3.1 Access AT Commands == ... ... @@ -739,13 +739,13 @@ 739 739 740 740 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 741 741 742 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 743 743 744 744 745 745 Or if you have below board, use below connection: 746 746 747 747 748 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 749 749 750 750 751 751 ... ... @@ -752,10 +752,10 @@ 752 752 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 753 753 754 754 755 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 756 756 757 757 758 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 759 759 760 760 761 761 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -867,20 +867,38 @@ 867 867 868 868 == 4.1 How to change the LoRa Frequency Bands/Region? == 869 869 870 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 871 871 When downloading the images, choose the required image file for download. 773 +))) 872 872 775 +((( 776 + 777 +))) 873 873 779 +((( 874 874 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 875 875 783 +((( 784 + 785 +))) 876 876 787 +((( 877 877 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 878 878 791 +((( 792 + 793 +))) 879 879 795 +((( 880 880 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 881 881 882 882 [[image:image-20220606154726-3.png]] 883 883 801 + 884 884 When you use the TTN network, the US915 frequency bands use are: 885 885 886 886 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -893,37 +893,47 @@ 893 893 * 905.3 - SF7BW125 to SF10BW125 894 894 * 904.6 - SF8BW500 895 895 814 +((( 896 896 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 897 897 898 -(% class="box infomessage" %) 899 -((( 900 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 901 901 ))) 902 902 903 -(% class="box infomessage" %) 904 904 ((( 905 -**ATZ** 906 -))) 822 + 907 907 908 908 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 909 909 827 +((( 828 + 829 +))) 910 910 831 +((( 911 911 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 912 912 913 913 [[image:image-20220606154825-4.png]] 914 914 915 915 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 916 916 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 917 917 = 5. Trouble Shooting = 918 918 919 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 920 920 921 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 922 922 923 923 924 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 925 925 926 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 927 927 928 928 929 929 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -935,7 +935,9 @@ 935 935 936 936 (% style="color:#4f81bd" %)**Cause for this issue:** 937 937 866 +((( 938 938 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 939 939 940 940 941 941 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -942,7 +942,7 @@ 942 942 943 943 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 944 944 945 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 946 946 947 947 948 948 = 6. Order Info = ... ... @@ -967,10 +967,17 @@ 967 967 * (% style="color:red" %)**4**(%%): 4000mAh battery 968 968 * (% style="color:red" %)**8**(%%): 8500mAh battery 969 969 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 970 970 = 7. Packing Info = 971 971 972 972 ((( 973 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 974 974 ))) 975 975 976 976 * ((( ... ... @@ -979,10 +979,8 @@ 979 979 980 980 ((( 981 981 982 -))) 983 983 984 -((( 985 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 986 986 ))) 987 987 988 988 * ((( ... ... @@ -996,6 +996,8 @@ 996 996 ))) 997 997 * ((( 998 998 Weight / pcs : g 934 + 935 + 999 999 ))) 1000 1000 1001 1001 = 8. Support = ... ... @@ -1002,5 +1002,3 @@ 1002 1002 1003 1003 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1004 1004 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1005 - 1006 -
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content