Last modified by Mengting Qiu on 2024/04/02 16:44

From version 20.3
edited by Xiaoling
on 2022/06/06 16:40
Change comment: There is no comment for this version
To version 65.3
edited by Xiaoling
on 2022/07/08 15:04
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,999 +8,829 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
16 +{{toc/}}
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
23 += 1.  Introduction =
40 40  
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
41 41  
27 +(((
28 +
42 42  
43 -== 1.2 Features ==
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
56 56  
57 -== 1.3 Specification ==
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
60 60  
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
72 -
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
75 -
76 -
77 -**LSE01 v1.0 :**  Release
78 -
79 -
80 -
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 -
83 -== 2.1 How it works ==
84 -
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
38 +
87 87  )))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
41 +[[image:1654503236291-817.png]]
92 92  
93 93  
44 +[[image:1657245163077-232.png]]
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
48 +== 1.2 ​ Features ==
99 99  
100 -[[image:1654503992078-669.png]]
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
101 101  
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 104  
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
66 +== 1.3  Specification ==
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
69 +(% style="color:#037691" %)**Common DC Characteristics:**
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
71 +* Supply Voltage: 2.1v ~~ 3.6v
72 +* Operating Temperature: -40 ~~ 85°C
113 113  
114 -**Add APP EUI in the application**
115 115  
116 116  
117 -[[image:1654504596150-405.png]]
76 +(% style="color:#037691" %)**NB-IoT Spec:**
118 118  
78 +* - B1 @H-FDD: 2100MHz
79 +* - B3 @H-FDD: 1800MHz
80 +* - B8 @H-FDD: 900MHz
81 +* - B5 @H-FDD: 850MHz
82 +* - B20 @H-FDD: 800MHz
83 +* - B28 @H-FDD: 700MHz
119 119  
120 120  
121 -**Add APP KEY and DEV EUI**
122 122  
123 -[[image:1654504683289-357.png]]
87 +Probe(% style="color:#037691" %)** Specification:**
124 124  
89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
125 125  
91 +[[image:image-20220708101224-1.png]]
126 126  
127 -**Step 2**: Power on LSE01
128 128  
129 129  
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
95 +== ​1.4  Applications ==
131 131  
132 -[[image:image-20220606163915-7.png]]
97 +* Smart Agriculture
133 133  
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
134 134  
135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
102 +== 1.5  Pin Definitions ==
136 136  
137 -[[image:1654504778294-788.png]]
138 138  
105 +[[image:1657246476176-652.png]]
139 139  
140 140  
141 -== 2.3 Uplink Payload ==
142 142  
143 -=== 2.3.1 MOD~=0(Default Mode) ===
109 += 2.  Use NSE01 to communicate with IoT Server =
144 144  
145 -LSE01 will uplink payload via LoRaWAN with below payload format: 
111 +== 2.1  How it works ==
146 146  
147 147  
148 -Uplink payload includes in total 11 bytes.
149 -
114 +(((
115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
116 +)))
150 150  
151 -|(((
152 -**Size**
153 153  
154 -**(bytes)**
155 -)))|**2**|**2**|**2**|**2**|**2**|**1**
156 -|**Value**|[[BAT>>path:#bat]]|(((
157 -Temperature
158 -
159 -(Reserve, Ignore now)
160 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
161 -MOD & Digital Interrupt
162 -
163 -(Optional)
119 +(((
120 +The diagram below shows the working flow in default firmware of NSE01:
164 164  )))
165 165  
166 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
123 +[[image:image-20220708101605-2.png]]
167 167  
168 -
169 -1.
170 -11.
171 -111. MOD=1(Original value)
172 -
173 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
174 -
175 -|(((
176 -**Size**
177 -
178 -**(bytes)**
179 -)))|**2**|**2**|**2**|**2**|**2**|**1**
180 -|**Value**|[[BAT>>path:#bat]]|(((
181 -Temperature
182 -
183 -(Reserve, Ignore now)
184 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
185 -MOD & Digital Interrupt
186 -
187 -(Optional)
125 +(((
126 +
188 188  )))
189 189  
190 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
191 191  
192 -1.
193 -11.
194 -111. Battery Info
195 195  
196 -Check the battery voltage for LSE01.
131 +== 2.2 Configure the NSE01 ==
197 197  
198 -Ex1: 0x0B45 = 2885mV
199 199  
200 -Ex2: 0x0B49 = 2889mV
134 +=== 2.2.1 Test Requirement ===
201 201  
202 202  
137 +To use NSE01 in your city, make sure meet below requirements:
203 203  
204 -1.
205 -11.
206 -111. Soil Moisture
139 +* Your local operator has already distributed a NB-IoT Network there.
140 +* The local NB-IoT network used the band that NSE01 supports.
141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
207 207  
208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
143 +(((
144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
145 +)))
209 209  
210 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
211 211  
212 -**05DC(H) = 1500(D) /100 = 15%.**
148 +[[image:1657249419225-449.png]]
213 213  
214 214  
215 -1.
216 -11.
217 -111. Soil Temperature
218 218  
219 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
152 +=== 2.2.2 Insert SIM card ===
220 220  
221 -**Example**:
154 +Insert the NB-IoT Card get from your provider.
222 222  
223 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
156 +User need to take out the NB-IoT module and insert the SIM card like below:
224 224  
225 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
226 226  
159 +[[image:1657249468462-536.png]]
227 227  
228 -1.
229 -11.
230 -111. Soil Conductivity (EC)
231 231  
232 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
233 233  
234 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
163 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
235 235  
165 +(((
166 +(((
167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
168 +)))
169 +)))
236 236  
237 -Generally, the EC value of irrigation water is less than 800uS / cm.
238 238  
239 -1.
240 -11.
241 -111. MOD
172 +**Connection:**
242 242  
243 -Firmware version at least v2.1 supports changing mode.
174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
244 244  
245 -For example, bytes[10]=90
176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
246 246  
247 -mod=(bytes[10]>>7)&0x01=1.
178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
248 248  
249 249  
250 -Downlink Command:
181 +In the PC, use below serial tool settings:
251 251  
252 -If payload = 0x0A00, workmode=0
183 +* Baud:  (% style="color:green" %)**9600**
184 +* Data bits:** (% style="color:green" %)8(%%)**
185 +* Stop bits: (% style="color:green" %)**1**
186 +* Parity:  (% style="color:green" %)**None**
187 +* Flow Control: (% style="color:green" %)**None**
253 253  
254 -If** **payload =** **0x0A01, workmode=1
189 +(((
190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
191 +)))
255 255  
193 +[[image:image-20220708110657-3.png]]
256 256  
257 -1.
258 -11.
259 -111. ​Decode payload in The Things Network
195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
260 260  
261 -While using TTN network, you can add the payload format to decode the payload.
262 262  
263 263  
264 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
199 +=== 2.2.4 Use CoAP protocol to uplink data ===
265 265  
266 -The payload decoder function for TTN is here:
201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
267 267  
268 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
269 269  
204 +**Use below commands:**
270 270  
271 -1.
272 -11. Uplink Interval
206 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
273 273  
274 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
210 +For parameter description, please refer to AT command set
275 275  
276 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
212 +[[image:1657249793983-486.png]]
277 277  
278 -1.
279 -11. ​Downlink Payload
280 280  
281 -By default, LSE50 prints the downlink payload to console port.
215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
282 282  
283 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
284 -|TDC (Transmit Time Interval)|Any|01|4
285 -|RESET|Any|04|2
286 -|AT+CFM|Any|05|4
287 -|INTMOD|Any|06|4
288 -|MOD|Any|0A|2
217 +[[image:1657249831934-534.png]]
289 289  
290 -**Examples**
291 291  
292 292  
293 -**Set TDC**
221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
294 294  
295 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
223 +This feature is supported since firmware version v1.0.1
296 296  
297 -Payload:    01 00 00 1E    TDC=30S
298 298  
299 -Payload:    01 00 00 3C    TDC=60S
226 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
228 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
300 300  
230 +[[image:1657249864775-321.png]]
301 301  
302 -**Reset**
303 303  
304 -If payload = 0x04FF, it will reset the LSE01
233 +[[image:1657249930215-289.png]]
305 305  
306 306  
307 -**CFM**
308 308  
309 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
237 +=== 2.2.6 Use MQTT protocol to uplink data ===
310 310  
311 -1.
312 -11. ​Show Data in DataCake IoT Server
239 +This feature is supported since firmware version v110
313 313  
314 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
315 315  
242 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
245 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
246 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
316 316  
317 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
250 +[[image:1657249978444-674.png]]
318 318  
319 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
320 320  
253 +[[image:1657249990869-686.png]]
321 321  
322 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
323 323  
256 +(((
257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 +)))
324 324  
325 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
326 326  
327 327  
262 +=== 2.2.7 Use TCP protocol to uplink data ===
328 328  
264 +This feature is supported since firmware version v110
329 329  
330 330  
331 -Step 3: Create an account or log in Datacake.
267 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
332 332  
333 -Step 4: Search the LSE01 and add DevEUI.
270 +[[image:1657250217799-140.png]]
334 334  
335 335  
336 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
273 +[[image:1657250255956-604.png]]
337 337  
338 338  
339 339  
340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
277 +=== 2.2.8 Change Update Interval ===
341 341  
279 +User can use below command to change the (% style="color:green" %)**uplink interval**.
342 342  
343 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
281 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
344 344  
283 +(((
284 +(% style="color:red" %)**NOTE:**
285 +)))
345 345  
287 +(((
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
289 +)))
346 346  
347 -1.
348 -11. Frequency Plans
349 349  
350 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
351 351  
352 -1.
353 -11.
354 -111. EU863-870 (EU868)
293 +== 2.3  Uplink Payload ==
355 355  
356 -Uplink:
295 +In this mode, uplink payload includes in total 18 bytes
357 357  
358 -868.1 - SF7BW125 to SF12BW125
297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 +|=(% style="width: 50px;" %)(((
299 +**Size(bytes)**
300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
359 359  
360 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
361 361  
362 -868.5 - SF7BW125 to SF12BW125
363 363  
364 -867.1 - SF7BW125 to SF12BW125
306 +[[image:image-20220708111918-4.png]]
365 365  
366 -867.3 - SF7BW125 to SF12BW125
367 367  
368 -867.5 - SF7BW125 to SF12BW125
309 +The payload is ASCII string, representative same HEX:
369 369  
370 -867.7 - SF7BW125 to SF12BW125
311 +0x72403155615900640c7817075e0a8c02f900 where:
371 371  
372 -867.9 - SF7BW125 to SF12BW125
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
373 373  
374 -868.8 - FSK
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
375 375  
376 376  
377 -Downlink:
378 378  
379 -Uplink channels 1-9 (RX1)
380 380  
381 -869.525 - SF9BW125 (RX2 downlink only)
326 +== 2.4  Payload Explanation and Sensor Interface ==
382 382  
383 383  
384 -1.
385 -11.
386 -111. US902-928(US915)
329 +=== 2.4.1  Device ID ===
387 387  
388 -Used in USA, Canada and South America. Default use CHE=2
331 +By default, the Device ID equal to the last 6 bytes of IMEI.
389 389  
390 -Uplink:
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
391 391  
392 -903.9 - SF7BW125 to SF10BW125
335 +**Example:**
393 393  
394 -904.1 - SF7BW125 to SF10BW125
337 +AT+DEUI=A84041F15612
395 395  
396 -904.3 - SF7BW125 to SF10BW125
339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
397 397  
398 -904.5 - SF7BW125 to SF10BW125
399 399  
400 -904.7 - SF7BW125 to SF10BW125
401 401  
402 -904.9 - SF7BW125 to SF10BW125
343 +=== 2.4.2  Version Info ===
403 403  
404 -905.1 - SF7BW125 to SF10BW125
345 +Specify the software version: 0x64=100, means firmware version 1.00.
405 405  
406 -905.3 - SF7BW125 to SF10BW125
347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
407 407  
408 408  
409 -Downlink:
410 410  
411 -923.3 - SF7BW500 to SF12BW500
351 +=== 2.4.3  Battery Info ===
412 412  
413 -923.9 - SF7BW500 to SF12BW500
353 +(((
354 +Check the battery voltage for LSE01.
355 +)))
414 414  
415 -924.5 - SF7BW500 to SF12BW500
357 +(((
358 +Ex1: 0x0B45 = 2885mV
359 +)))
416 416  
417 -925.1 - SF7BW500 to SF12BW500
361 +(((
362 +Ex2: 0x0B49 = 2889mV
363 +)))
418 418  
419 -925.7 - SF7BW500 to SF12BW500
420 420  
421 -926.3 - SF7BW500 to SF12BW500
422 422  
423 -926.9 - SF7BW500 to SF12BW500
367 +=== 2.4.4  Signal Strength ===
424 424  
425 -927.5 - SF7BW500 to SF12BW500
369 +NB-IoT Network signal Strength.
426 426  
427 -923.3 - SF12BW500(RX2 downlink only)
371 +**Ex1: 0x1d = 29**
428 428  
373 +(% style="color:blue" %)**0**(%%)  -113dBm or less
429 429  
430 -1.
431 -11.
432 -111. CN470-510 (CN470)
375 +(% style="color:blue" %)**1**(%%)  -111dBm
433 433  
434 -Used in China, Default use CHE=1
377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
435 435  
436 -Uplink:
379 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
437 437  
438 -486.3 - SF7BW125 to SF12BW125
381 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
439 439  
440 -486.5 - SF7BW125 to SF12BW125
441 441  
442 -486.7 - SF7BW125 to SF12BW125
443 443  
444 -486.9 - SF7BW125 to SF12BW125
385 +=== 2.4. Soil Moisture ===
445 445  
446 -487.1 - SF7BW125 to SF12BW125
387 +(((
388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
389 +)))
447 447  
448 -487.3 - SF7BW125 to SF12BW125
391 +(((
392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
393 +)))
449 449  
450 -487.5 - SF7BW125 to SF12BW125
395 +(((
396 +
397 +)))
451 451  
452 -487.7 - SF7BW125 to SF12BW125
399 +(((
400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
401 +)))
453 453  
454 454  
455 -Downlink:
456 456  
457 -506.7 - SF7BW125 to SF12BW125
405 +=== 2.4.6  Soil Temperature ===
458 458  
459 -506.9 - SF7BW125 to SF12BW125
407 +(((
408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
409 +)))
460 460  
461 -507.1 - SF7BW125 to SF12BW125
411 +(((
412 +**Example**:
413 +)))
462 462  
463 -507.3 - SF7BW125 to SF12BW125
415 +(((
416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
417 +)))
464 464  
465 -507.5 - SF7BW125 to SF12BW125
419 +(((
420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
421 +)))
466 466  
467 -507.7 - SF7BW125 to SF12BW125
468 468  
469 -507.9 - SF7BW125 to SF12BW125
470 470  
471 -508.1 - SF7BW125 to SF12BW125
425 +=== 2.4.7  Soil Conductivity (EC) ===
472 472  
473 -505.3 - SF12BW125 (RX2 downlink only)
427 +(((
428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
429 +)))
474 474  
431 +(((
432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
433 +)))
475 475  
476 -1.
477 -11.
478 -111. AU915-928(AU915)
435 +(((
436 +Generally, the EC value of irrigation water is less than 800uS / cm.
437 +)))
479 479  
480 -Default use CHE=2
439 +(((
440 +
441 +)))
481 481  
482 -Uplink:
443 +(((
444 +
445 +)))
483 483  
484 -916.8 - SF7BW125 to SF12BW125
447 +=== 2.4.8  Digital Interrupt ===
485 485  
486 -917.0 - SF7BW125 to SF12BW125
449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
487 487  
488 -917.2 - SF7BW125 to SF12BW125
451 +The command is:
489 489  
490 -917.4 - SF7BW125 to SF12BW125
453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
491 491  
492 -917.6 - SF7BW125 to SF12BW125
493 493  
494 -917.8 - SF7BW125 to SF12BW125
456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
495 495  
496 -918.0 - SF7BW125 to SF12BW125
497 497  
498 -918.2 - SF7BW125 to SF12BW125
459 +Example:
499 499  
461 +0x(00): Normal uplink packet.
500 500  
501 -Downlink:
463 +0x(01): Interrupt Uplink Packet.
502 502  
503 -923.3 - SF7BW500 to SF12BW500
504 504  
505 -923.9 - SF7BW500 to SF12BW500
506 506  
507 -924.5 - SF7BW500 to SF12BW500
467 +=== 2.4. ​+5V Output ===
508 508  
509 -925.1 - SF7BW500 to SF12BW500
469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
510 510  
511 -925.7 - SF7BW500 to SF12BW500
512 512  
513 -926.3 - SF7BW500 to SF12BW500
472 +The 5V output time can be controlled by AT Command.
514 514  
515 -926.9 - SF7BW500 to SF12BW500
474 +(% style="color:blue" %)**AT+5VT=1000**
516 516  
517 -927.5 - SF7BW500 to SF12BW500
476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
518 518  
519 -923.3 - SF12BW500(RX2 downlink only)
520 520  
521 -1.
522 -11.
523 -111. AS920-923 & AS923-925 (AS923)
524 524  
525 -**Default Uplink channel:**
480 +== 2.5  Downlink Payload ==
526 526  
527 -923.2 - SF7BW125 to SF10BW125
482 +By default, NSE01 prints the downlink payload to console port.
528 528  
529 -923.4 - SF7BW125 to SF10BW125
484 +[[image:image-20220708133731-5.png]]
530 530  
531 531  
532 -**Additional Uplink Channel**:
487 +(((
488 +(% style="color:blue" %)**Examples:**
489 +)))
533 533  
534 -(OTAA mode, channel added by JoinAccept message)
491 +(((
492 +
493 +)))
535 535  
536 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
495 +* (((
496 +(% style="color:blue" %)**Set TDC**
497 +)))
537 537  
538 -922.2 - SF7BW125 to SF10BW125
499 +(((
500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
501 +)))
539 539  
540 -922.4 - SF7BW125 to SF10BW125
503 +(((
504 +Payload:    01 00 00 1E    TDC=30S
505 +)))
541 541  
542 -922.6 - SF7BW125 to SF10BW125
507 +(((
508 +Payload:    01 00 00 3C    TDC=60S
509 +)))
543 543  
544 -922.8 - SF7BW125 to SF10BW125
511 +(((
512 +
513 +)))
545 545  
546 -923.0 - SF7BW125 to SF10BW125
515 +* (((
516 +(% style="color:blue" %)**Reset**
517 +)))
547 547  
548 -922.0 - SF7BW125 to SF10BW125
519 +(((
520 +If payload = 0x04FF, it will reset the NSE01
521 +)))
549 549  
550 550  
551 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
524 +* (% style="color:blue" %)**INTMOD**
552 552  
553 -923.6 - SF7BW125 to SF10BW125
526 +Downlink Payload: 06000003, Set AT+INTMOD=3
554 554  
555 -923.8 - SF7BW125 to SF10BW125
556 556  
557 -924.0 - SF7BW125 to SF10BW125
558 558  
559 -924.2 - SF7BW125 to SF10BW125
530 +== 2. ​LED Indicator ==
560 560  
561 -924.4 - SF7BW125 to SF10BW125
532 +(((
533 +The NSE01 has an internal LED which is to show the status of different state.
562 562  
563 -924.6 - SF7BW125 to SF10BW125
564 564  
536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
537 +* Then the LED will be on for 1 second means device is boot normally.
538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
539 +* For each uplink probe, LED will be on for 500ms.
540 +)))
565 565  
566 566  
567 -**Downlink:**
568 568  
569 -Uplink channels 1-8 (RX1)
570 570  
571 -923.2 - SF10BW125 (RX2)
545 +== 2. Installation in Soil ==
572 572  
547 +__**Measurement the soil surface**__
573 573  
574 -1.
575 -11.
576 -111. KR920-923 (KR920)
549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
577 577  
578 -Default channel:
551 +[[image:1657259653666-883.png]] ​
579 579  
580 -922.1 - SF7BW125 to SF12BW125
581 581  
582 -922.3 - SF7BW125 to SF12BW125
554 +(((
555 +
583 583  
584 -922.5 - SF7BW125 to SF12BW125
585 -
586 -
587 -Uplink: (OTAA mode, channel added by JoinAccept message)
588 -
589 -922.1 - SF7BW125 to SF12BW125
590 -
591 -922.3 - SF7BW125 to SF12BW125
592 -
593 -922.5 - SF7BW125 to SF12BW125
594 -
595 -922.7 - SF7BW125 to SF12BW125
596 -
597 -922.9 - SF7BW125 to SF12BW125
598 -
599 -923.1 - SF7BW125 to SF12BW125
600 -
601 -923.3 - SF7BW125 to SF12BW125
602 -
603 -
604 -Downlink:
605 -
606 -Uplink channels 1-7(RX1)
607 -
608 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
609 -
610 -
611 -1.
612 -11.
613 -111. IN865-867 (IN865)
614 -
615 -Uplink:
616 -
617 -865.0625 - SF7BW125 to SF12BW125
618 -
619 -865.4025 - SF7BW125 to SF12BW125
620 -
621 -865.9850 - SF7BW125 to SF12BW125
622 -
623 -
624 -Downlink:
625 -
626 -Uplink channels 1-3 (RX1)
627 -
628 -866.550 - SF10BW125 (RX2)
629 -
630 -
631 -1.
632 -11. LED Indicator
633 -
634 -The LSE01 has an internal LED which is to show the status of different state.
635 -
636 -
637 -* Blink once when device power on.
638 -* Solid ON for 5 seconds once device successful Join the network.
639 -* Blink once when device transmit a packet.
640 -
641 -1.
642 -11. Installation in Soil
643 -
644 -**Measurement the soil surface**
645 -
646 -
647 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
648 -
649 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
650 -
651 -
652 -
653 -
654 -
655 -
656 -
657 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
658 -
659 -
660 -
557 +(((
661 661  Dig a hole with diameter > 20CM.
559 +)))
662 662  
561 +(((
663 663  Horizontal insert the probe to the soil and fill the hole for long term measurement.
563 +)))
564 +)))
664 664  
566 +[[image:1654506665940-119.png]]
665 665  
568 +(((
569 +
570 +)))
666 666  
667 667  
668 -1.
669 -11. ​Firmware Change Log
573 +== 2.8  ​Firmware Change Log ==
670 670  
671 -**Firmware download link:**
672 672  
673 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
576 +Download URL & Firmware Change log
674 674  
578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
675 675  
676 -**Firmware Upgrade Method:**
677 677  
678 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
679 679  
680 680  
681 -**V1.0.**
682 682  
683 -Release
585 +== 2.9  ​Battery Analysis ==
684 684  
587 +=== 2.9.1  ​Battery Type ===
685 685  
686 686  
687 -1.
688 -11. ​Battery Analysis
689 -111. ​Battery Type
590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
690 690  
691 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
692 692  
593 +The battery is designed to last for several years depends on the actually use environment and update interval. 
693 693  
694 -The battery is designed to last for more than 5 years for the LSN50.
695 695  
696 -
697 697  The battery related documents as below:
698 698  
699 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
700 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
701 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
702 702  
703 -|(((
704 -JST-XH-2P connector
602 +(((
603 +[[image:image-20220708140453-6.png]]
705 705  )))
706 706  
707 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
708 708  
709 709  
608 +=== 2.9.2  Power consumption Analyze ===
710 710  
711 -1.
712 -11.
713 -111. ​Battery Note
610 +(((
611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
612 +)))
714 714  
715 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
716 716  
615 +(((
616 +Instruction to use as below:
617 +)))
717 717  
718 -1.
719 -11.
720 -111. ​Replace the battery
619 +(((
620 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
621 +)))
721 721  
722 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
723 723  
624 +(((
625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
626 +)))
724 724  
725 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
628 +* (((
629 +Product Model
630 +)))
631 +* (((
632 +Uplink Interval
633 +)))
634 +* (((
635 +Working Mode
636 +)))
726 726  
638 +(((
639 +And the Life expectation in difference case will be shown on the right.
640 +)))
727 727  
728 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
642 +[[image:image-20220708141352-7.jpeg]]
729 729  
730 730  
731 731  
646 +=== 2.9.3  ​Battery Note ===
732 732  
648 +(((
649 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
650 +)))
733 733  
734 734  
735 -= 3. ​Using the AT Commands =
736 736  
737 -== 3.1 Access AT Commands ==
654 +=== 2.9.4  Replace the battery ===
738 738  
656 +(((
657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
658 +)))
739 739  
740 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 741  
742 -[[image:1654501986557-872.png]]
743 743  
662 += 3. ​ Access NB-IoT Module =
744 744  
745 -Or if you have below board, use below connection:
664 +(((
665 +Users can directly access the AT command set of the NB-IoT module.
666 +)))
746 746  
668 +(((
669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
670 +)))
747 747  
748 -[[image:1654502005655-729.png]]
672 +[[image:1657261278785-153.png]]
749 749  
750 750  
751 751  
752 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
676 += 4.  Using the AT Commands =
753 753  
678 +== 4.1  Access AT Commands ==
754 754  
755 - [[image:1654502050864-459.png]]
680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
756 756  
757 757  
758 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
683 +AT+<CMD>?  : Help on <CMD>
759 759  
685 +AT+<CMD>         : Run <CMD>
760 760  
761 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
687 +AT+<CMD>=<value> : Set the value
762 762  
763 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
689 +AT+<CMD>=?  : Get the value
764 764  
765 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
766 766  
767 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
768 -
769 -
770 770  (% style="color:#037691" %)**General Commands**(%%)      
771 771  
772 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
694 +AT  : Attention       
773 773  
774 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
696 +AT?  : Short Help     
775 775  
776 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
698 +ATZ  : MCU Reset    
777 777  
778 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
700 +AT+TDC  : Application Data Transmission Interval
779 779  
702 +AT+CFG  : Print all configurations
780 780  
781 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
704 +AT+CFGMOD           : Working mode selection
782 782  
783 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
706 +AT+INTMOD            : Set the trigger interrupt mode
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
708 +AT+5VT  : Set extend the time of 5V power  
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
710 +AT+PRO  : Choose agreement
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
712 +AT+WEIGRE  : Get weight or set weight to 0
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
714 +AT+WEIGAP  : Get or Set the GapValue of weight
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
716 +AT+RXDL  : Extend the sending and receiving time
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
718 +AT+CNTFAC  : Get or set counting parameters
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
720 +AT+SERVADDR  : Server Address
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
723 +(% style="color:#037691" %)**COAP Management**      
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
725 +AT+URI            : Resource parameters
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
728 +(% style="color:#037691" %)**UDP Management**
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
730 +AT+CFM          : Upload confirmation mode (only valid for UDP)
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
733 +(% style="color:#037691" %)**MQTT Management**
814 814  
735 +AT+CLIENT               : Get or Set MQTT client
815 815  
816 -(% style="color:#037691" %)**LoRa Network Management**
737 +AT+UNAME  : Get or Set MQTT Username
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
739 +AT+PWD                  : Get or Set MQTT password
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
741 +AT+PUBTOPI : Get or Set MQTT publish topic
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
743 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
746 +(% style="color:#037691" %)**Information**          
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
748 +AT+FDR  : Factory Data Reset
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
750 +AT+PWOR : Serial Access Password
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
754 += ​5.  FAQ =
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
756 +== 5.1 How to Upgrade Firmware ==
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
759 +(((
760 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
761 +)))
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
845 -
846 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
847 -
848 -
849 -(% style="color:#037691" %)**Information** 
850 -
851 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
852 -
853 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
858 -
859 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
860 -
861 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
862 -
863 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
864 -
865 -
866 -= ​4. FAQ =
867 -
868 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
869 -
870 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
871 -When downloading the images, choose the required image file for download. ​
872 -
873 -
874 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
875 -
876 -
877 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
878 -
879 -
880 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
881 -
882 -[[image:image-20220606154726-3.png]]
883 -
884 -When you use the TTN network, the US915 frequency bands use are:
885 -
886 -* 903.9 - SF7BW125 to SF10BW125
887 -* 904.1 - SF7BW125 to SF10BW125
888 -* 904.3 - SF7BW125 to SF10BW125
889 -* 904.5 - SF7BW125 to SF10BW125
890 -* 904.7 - SF7BW125 to SF10BW125
891 -* 904.9 - SF7BW125 to SF10BW125
892 -* 905.1 - SF7BW125 to SF10BW125
893 -* 905.3 - SF7BW125 to SF10BW125
894 -* 904.6 - SF8BW500
895 -
896 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
897 -
898 -(% class="box infomessage" %)
899 899  (((
900 -**AT+CHE=2**
764 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
901 901  )))
902 902  
903 -(% class="box infomessage" %)
904 904  (((
905 -**ATZ**
768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
906 906  )))
907 907  
908 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
909 909  
910 910  
911 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
773 += 6.  Trouble Shooting =
912 912  
913 -[[image:image-20220606154825-4.png]]
775 +== 6.1  ​Connection problem when uploading firmware ==
914 914  
915 915  
778 +(% class="wikigeneratedid" %)
779 +(((
780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
781 +)))
916 916  
917 -= 5. Trouble Shooting =
918 918  
919 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
920 920  
921 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
785 +== 6. AT Command input doesn't work ==
922 922  
787 +(((
788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
789 +)))
923 923  
924 -== 5.2 AT Command input doesn’t work ==
925 925  
926 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
927 927  
793 += 7. ​ Order Info =
928 928  
929 -== 5.3 Device rejoin in at the second uplink packet ==
930 930  
931 -(% style="color:#4f81bd" %)**Issue describe as below:**
796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
932 932  
933 -[[image:1654500909990-784.png]]
934 934  
799 +(% class="wikigeneratedid" %)
800 +(((
801 +
802 +)))
935 935  
936 -(% style="color:#4f81bd" %)**Cause for this issue:**
804 += 8 Packing Info =
937 937  
938 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
806 +(((
807 +
939 939  
809 +(% style="color:#037691" %)**Package Includes**:
940 940  
941 -(% style="color:#4f81bd" %)**Solution: **
942 942  
943 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
813 +* External antenna x 1
814 +)))
944 944  
945 -[[image:1654500929571-736.png]]
816 +(((
817 +
946 946  
819 +(% style="color:#037691" %)**Dimension and weight**:
947 947  
948 -= 6. ​Order Info =
949 949  
950 -
951 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
952 -
953 -
954 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
955 -
956 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
957 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
958 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
959 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
960 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
961 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
962 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
963 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
964 -
965 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
966 -
967 -* (% style="color:red" %)**4**(%%): 4000mAh battery
968 -* (% style="color:red" %)**8**(%%): 8500mAh battery
969 -
970 -= 7. Packing Info =
971 -
972 -(((
973 -**Package Includes**:
822 +* Size: 195 x 125 x 55 mm
823 +* Weight:   420g
974 974  )))
975 975  
976 -* (((
977 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
978 -)))
979 -
980 980  (((
981 981  
982 -)))
983 983  
984 -(((
985 -**Dimension and weight**:
986 -)))
987 987  
988 -* (((
989 -Device Size: cm
830 +
990 990  )))
991 -* (((
992 -Device Weight: g
993 -)))
994 -* (((
995 -Package Size / pcs : cm
996 -)))
997 -* (((
998 -Weight / pcs : g
999 -)))
1000 1000  
1001 -= 8. Support =
833 += 9.  Support =
1002 1002  
1003 1003  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1004 1004  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1005 -
1006 -
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content