Last modified by Mengting Qiu on 2024/04/02 16:44

From version 20.2
edited by Xiaoling
on 2022/06/06 16:39
Change comment: There is no comment for this version
To version 68.1
edited by Xiaoling
on 2022/07/09 08:40
Change comment: Uploaded new attachment "image-20220709084038-1.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:1657271519014-786.png]]
3 3  
4 4  
5 5  
... ... @@ -8,1000 +8,910 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
13 +**Table of Contents:**
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
42 42  
43 -== 1.2 ​Features ==
30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
56 56  
57 -== 1.3 Specification ==
34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*.
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
36 +~* Actually lifetime depends on network coverage and uplink interval and other factors
60 60  
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
72 -
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
75 -
76 -
77 -**LSE01 v1.0 :**  Release
78 -
79 -
80 -
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 -
83 -== 2.1 How it works ==
84 -
85 85  (((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
39 +
87 87  )))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
42 +
91 91  )))
92 92  
45 +[[image:1654503236291-817.png]]
93 93  
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
48 +[[image:1657245163077-232.png]]
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
99 99  
100 -[[image:1654503992078-669.png]]
52 +== 1.2 ​ Features ==
101 101  
54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
55 +* Monitor Soil Moisture
56 +* Monitor Soil Temperature
57 +* Monitor Soil Conductivity
58 +* AT Commands to change parameters
59 +* Uplink on periodically
60 +* Downlink to change configure
61 +* IP66 Waterproof Enclosure
62 +* Ultra-Low Power consumption
63 +* AT Commands to change parameters
64 +* Micro SIM card slot for NB-IoT SIM
65 +* 8500mAh Battery for long term use
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 104  
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
69 +== 1.3  Specification ==
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
72 +(% style="color:#037691" %)**Common DC Characteristics:**
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
74 +* Supply Voltage: 2.1v ~~ 3.6v
75 +* Operating Temperature: -40 ~~ 85°C
113 113  
114 -**Add APP EUI in the application**
77 +(% style="color:#037691" %)**NB-IoT Spec:**
115 115  
79 +* - B1 @H-FDD: 2100MHz
80 +* - B3 @H-FDD: 1800MHz
81 +* - B8 @H-FDD: 900MHz
82 +* - B5 @H-FDD: 850MHz
83 +* - B20 @H-FDD: 800MHz
84 +* - B28 @H-FDD: 700MHz
116 116  
117 -[[image:1654504596150-405.png]]
86 +Probe(% style="color:#037691" %)** Specification:**
118 118  
88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
119 119  
90 +[[image:image-20220708101224-1.png]]
120 120  
121 -**Add APP KEY and DEV EUI**
122 122  
123 -[[image:1654504683289-357.png]]
124 124  
94 +== ​1.4  Applications ==
125 125  
96 +* Smart Agriculture
126 126  
127 -**Step 2**: Power on LSE01
98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 +​
128 128  
101 +== 1.5  Pin Definitions ==
129 129  
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
131 131  
132 -[[image:image-20220606163915-7.png]]
104 +[[image:1657246476176-652.png]]
133 133  
134 134  
135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
136 136  
137 -[[image:1654504778294-788.png]]
108 += 2.  Use NSE01 to communicate with IoT Server =
138 138  
110 +== 2.1  How it works ==
139 139  
140 140  
113 +(((
114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
115 +)))
141 141  
142 -1.
143 -11. ​Uplink Payload
144 -111. MOD=0(Default Mode)
145 145  
146 -LSE01 will uplink payload via LoRaWAN with below payload format: 
118 +(((
119 +The diagram below shows the working flow in default firmware of NSE01:
120 +)))
147 147  
122 +[[image:image-20220708101605-2.png]]
148 148  
149 -Uplink payload includes in total 11 bytes.
124 +(((
150 150  
151 -
152 -|(((
153 -**Size**
154 -
155 -**(bytes)**
156 -)))|**2**|**2**|**2**|**2**|**2**|**1**
157 -|**Value**|[[BAT>>path:#bat]]|(((
158 -Temperature
159 -
160 -(Reserve, Ignore now)
161 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
162 -MOD & Digital Interrupt
163 -
164 -(Optional)
165 165  )))
166 166  
167 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
168 168  
169 169  
170 -1.
171 -11.
172 -111. MOD=1(Original value)
130 +== 2.2 ​ Configure the NSE01 ==
173 173  
174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
175 175  
176 -|(((
177 -**Size**
133 +=== 2.2.1 Test Requirement ===
178 178  
179 -**(bytes)**
180 -)))|**2**|**2**|**2**|**2**|**2**|**1**
181 -|**Value**|[[BAT>>path:#bat]]|(((
182 -Temperature
183 183  
184 -(Reserve, Ignore now)
185 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
186 -MOD & Digital Interrupt
187 -
188 -(Optional)
136 +(((
137 +To use NSE01 in your city, make sure meet below requirements:
189 189  )))
190 190  
191 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
140 +* Your local operator has already distributed a NB-IoT Network there.
141 +* The local NB-IoT network used the band that NSE01 supports.
142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
192 192  
193 -1.
194 -11.
195 -111. Battery Info
144 +(((
145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
146 +)))
196 196  
197 -Check the battery voltage for LSE01.
198 198  
199 -Ex1: 0x0B45 = 2885mV
149 +[[image:1657249419225-449.png]]
200 200  
201 -Ex2: 0x0B49 = 2889mV
202 202  
203 203  
153 +=== 2.2.2 Insert SIM card ===
204 204  
205 -1.
206 -11.
207 -111. Soil Moisture
155 +(((
156 +Insert the NB-IoT Card get from your provider.
157 +)))
208 208  
209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
159 +(((
160 +User need to take out the NB-IoT module and insert the SIM card like below:
161 +)))
210 210  
211 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
212 212  
213 -**05DC(H) = 1500(D) /100 = 15%.**
164 +[[image:1657249468462-536.png]]
214 214  
215 215  
216 -1.
217 -11.
218 -111. Soil Temperature
219 219  
220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
168 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
221 221  
222 -**Example**:
170 +(((
171 +(((
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 +)))
174 +)))
223 223  
224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
225 225  
226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
177 +**Connection:**
227 227  
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
228 228  
229 -1.
230 -11.
231 -111. Soil Conductivity (EC)
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
232 232  
233 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
234 234  
235 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
236 236  
186 +In the PC, use below serial tool settings:
237 237  
238 -Generally, the EC value of irrigation water is less than 800uS / cm.
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
239 239  
240 -1.
241 -11.
242 -111. MOD
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
243 243  
244 -Firmware version at least v2.1 supports changing mode.
198 +[[image:image-20220708110657-3.png]]
245 245  
246 -For example, bytes[10]=90
200 +(((
201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
202 +)))
247 247  
248 -mod=(bytes[10]>>7)&0x01=1.
249 249  
250 250  
251 -Downlink Command:
206 +=== 2.2.4 Use CoAP protocol to uplink data ===
252 252  
253 -If payload = 0x0A00, workmode=0
208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
254 254  
255 -If** **payload =** **0x0A01, workmode=1
256 256  
211 +**Use below commands:**
257 257  
258 -1.
259 -11.
260 -111. ​Decode payload in The Things Network
213 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
261 261  
262 -While using TTN network, you can add the payload format to decode the payload.
217 +For parameter description, please refer to AT command set
263 263  
219 +[[image:1657249793983-486.png]]
264 264  
265 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
266 266  
267 -The payload decoder function for TTN is here:
222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
268 268  
269 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
224 +[[image:1657249831934-534.png]]
270 270  
271 271  
272 -1.
273 -11. Uplink Interval
274 274  
275 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
276 276  
277 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
230 +This feature is supported since firmware version v1.0.1
278 278  
279 -1.
280 -11. ​Downlink Payload
281 281  
282 -By default, LSE50 prints the downlink payload to console port.
233 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
235 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
283 283  
284 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
285 -|TDC (Transmit Time Interval)|Any|01|4
286 -|RESET|Any|04|2
287 -|AT+CFM|Any|05|4
288 -|INTMOD|Any|06|4
289 -|MOD|Any|0A|2
237 +[[image:1657249864775-321.png]]
290 290  
291 -**Examples**
292 292  
240 +[[image:1657249930215-289.png]]
293 293  
294 -**Set TDC**
295 295  
296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
297 297  
298 -Payload:    01 00 00 1E    TDC=30S
244 +=== 2.2.6 Use MQTT protocol to uplink data ===
299 299  
300 -Payload:    01 00 00 3C    TDC=60S
246 +This feature is supported since firmware version v110
301 301  
302 302  
303 -**Reset**
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
304 304  
305 -If payload = 0x04FF, it will reset the LSE01
257 +[[image:1657249978444-674.png]]
306 306  
307 307  
308 -**CFM**
260 +[[image:1657249990869-686.png]]
309 309  
310 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
311 311  
312 -1.
313 -11. ​Show Data in DataCake IoT Server
263 +(((
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 +)))
314 314  
315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
316 316  
317 317  
318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
269 +=== 2.2.7 Use TCP protocol to uplink data ===
319 319  
320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
271 +This feature is supported since firmware version v110
321 321  
322 322  
323 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
274 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
324 324  
277 +[[image:1657250217799-140.png]]
325 325  
326 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
327 327  
280 +[[image:1657250255956-604.png]]
328 328  
329 329  
330 330  
284 +=== 2.2.8 Change Update Interval ===
331 331  
332 -Step 3: Create an account or log in Datacake.
286 +User can use below command to change the (% style="color:green" %)**uplink interval**.
333 333  
334 -Step 4: Search the LSE01 and add DevEUI.
288 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
335 335  
290 +(((
291 +(% style="color:red" %)**NOTE:**
292 +)))
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
294 +(((
295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 +)))
338 338  
339 339  
340 340  
341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
300 +== 2.3  Uplink Payload ==
342 342  
302 +In this mode, uplink payload includes in total 18 bytes
343 343  
344 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 +|=(% style="width: 60px;" %)(((
306 +**Size(bytes)**
307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
345 345  
310 +(((
311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
312 +)))
346 346  
347 347  
348 -1.
349 -11. Frequency Plans
315 +[[image:image-20220708111918-4.png]]
350 350  
351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
352 352  
353 -1.
354 -11.
355 -111. EU863-870 (EU868)
318 +The payload is ASCII string, representative same HEX:
356 356  
357 -Uplink:
320 +0x72403155615900640c7817075e0a8c02f900 where:
358 358  
359 -868.1 - SF7BW125 to SF12BW125
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
360 360  
361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
362 362  
363 -868.5 - SF7BW125 to SF12BW125
364 364  
365 -867.1 - SF7BW125 to SF12BW125
366 366  
367 -867.3 - SF7BW125 to SF12BW125
334 +== 2.4  Payload Explanation and Sensor Interface ==
368 368  
369 -867.5 - SF7BW125 to SF12BW125
370 370  
371 -867.7 - SF7BW125 to SF12BW125
337 +=== 2.4.1  Device ID ===
372 372  
373 -867.9 - SF7BW125 to SF12BW125
339 +(((
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
341 +)))
374 374  
375 -868.8 - FSK
343 +(((
344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
345 +)))
376 376  
347 +(((
348 +**Example:**
349 +)))
377 377  
378 -Downlink:
351 +(((
352 +AT+DEUI=A84041F15612
353 +)))
379 379  
380 -Uplink channels 1-9 (RX1)
355 +(((
356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 +)))
381 381  
382 -869.525 - SF9BW125 (RX2 downlink only)
383 383  
384 384  
385 -1.
386 -11.
387 -111. US902-928(US915)
361 +=== 2.4.2  Version Info ===
388 388  
389 -Used in USA, Canada and South America. Default use CHE=2
363 +(((
364 +Specify the software version: 0x64=100, means firmware version 1.00.
365 +)))
390 390  
391 -Uplink:
367 +(((
368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 +)))
392 392  
393 -903.9 - SF7BW125 to SF10BW125
394 394  
395 -904.1 - SF7BW125 to SF10BW125
396 396  
397 -904.3 - SF7BW125 to SF10BW125
373 +=== 2.4.3  Battery Info ===
398 398  
399 -904.5 - SF7BW125 to SF10BW125
375 +(((
376 +Check the battery voltage for LSE01.
377 +)))
400 400  
401 -904.7 - SF7BW125 to SF10BW125
379 +(((
380 +Ex1: 0x0B45 = 2885mV
381 +)))
402 402  
403 -904.9 - SF7BW125 to SF10BW125
383 +(((
384 +Ex2: 0x0B49 = 2889mV
385 +)))
404 404  
405 -905.1 - SF7BW125 to SF10BW125
406 406  
407 -905.3 - SF7BW125 to SF10BW125
408 408  
389 +=== 2.4.4  Signal Strength ===
409 409  
410 -Downlink:
391 +(((
392 +NB-IoT Network signal Strength.
393 +)))
411 411  
412 -923.3 - SF7BW500 to SF12BW500
395 +(((
396 +**Ex1: 0x1d = 29**
397 +)))
413 413  
414 -923.9 - SF7BW500 to SF12BW500
399 +(((
400 +(% style="color:blue" %)**0**(%%)  -113dBm or less
401 +)))
415 415  
416 -924.5 - SF7BW500 to SF12BW500
403 +(((
404 +(% style="color:blue" %)**1**(%%)  -111dBm
405 +)))
417 417  
418 -925.1 - SF7BW500 to SF12BW500
407 +(((
408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
409 +)))
419 419  
420 -925.7 - SF7BW500 to SF12BW500
411 +(((
412 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
413 +)))
421 421  
422 -926.3 - SF7BW500 to SF12BW500
415 +(((
416 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 +)))
423 423  
424 -926.9 - SF7BW500 to SF12BW500
425 425  
426 -927.5 - SF7BW500 to SF12BW500
427 427  
428 -923.3 - SF12BW500(RX2 downlink only)
421 +=== 2.4.5  Soil Moisture ===
429 429  
423 +(((
424 +(((
425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
426 +)))
427 +)))
430 430  
431 -1.
432 -11.
433 -111. CN470-510 (CN470)
429 +(((
430 +(((
431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
432 +)))
433 +)))
434 434  
435 -Used in China, Default use CHE=1
435 +(((
436 +
437 +)))
436 436  
437 -Uplink:
439 +(((
440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
441 +)))
438 438  
439 -486.3 - SF7BW125 to SF12BW125
440 440  
441 -486.5 - SF7BW125 to SF12BW125
442 442  
443 -486.7 - SF7BW125 to SF12BW125
445 +=== 2.4. Soil Temperature ===
444 444  
445 -486.9 - SF7BW125 to SF12BW125
447 +(((
448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
449 +)))
446 446  
447 -487.1 - SF7BW125 to SF12BW125
451 +(((
452 +**Example**:
453 +)))
448 448  
449 -487.3 - SF7BW125 to SF12BW125
455 +(((
456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
457 +)))
450 450  
451 -487.5 - SF7BW125 to SF12BW125
459 +(((
460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
461 +)))
452 452  
453 -487.7 - SF7BW125 to SF12BW125
454 454  
455 455  
456 -Downlink:
465 +=== 2.4.7  Soil Conductivity (EC) ===
457 457  
458 -506.7 - SF7BW125 to SF12BW125
467 +(((
468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
469 +)))
459 459  
460 -506.9 - SF7BW125 to SF12BW125
471 +(((
472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
473 +)))
461 461  
462 -507.1 - SF7BW125 to SF12BW125
475 +(((
476 +Generally, the EC value of irrigation water is less than 800uS / cm.
477 +)))
463 463  
464 -507.3 - SF7BW125 to SF12BW125
479 +(((
480 +
481 +)))
465 465  
466 -507.5 - SF7BW125 to SF12BW125
483 +(((
484 +
485 +)))
467 467  
468 -507.7 - SF7BW125 to SF12BW125
487 +=== 2.4.8  Digital Interrupt ===
469 469  
470 -507.9 - SF7BW125 to SF12BW125
489 +(((
490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
491 +)))
471 471  
472 -508.1 - SF7BW125 to SF12BW125
493 +(((
494 +The command is:
495 +)))
473 473  
474 -505.3 - SF12BW125 (RX2 downlink only)
497 +(((
498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 +)))
475 475  
476 476  
477 -1.
478 -11.
479 -111. AU915-928(AU915)
502 +(((
503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
504 +)))
480 480  
481 -Default use CHE=2
482 482  
483 -Uplink:
507 +(((
508 +Example:
509 +)))
484 484  
485 -916.8 - SF7BW125 to SF12BW125
511 +(((
512 +0x(00): Normal uplink packet.
513 +)))
486 486  
487 -917.0 - SF7BW125 to SF12BW125
515 +(((
516 +0x(01): Interrupt Uplink Packet.
517 +)))
488 488  
489 -917.2 - SF7BW125 to SF12BW125
490 490  
491 -917.4 - SF7BW125 to SF12BW125
492 492  
493 -917.6 - SF7BW125 to SF12BW125
521 +=== 2.4.9  ​+5V Output ===
494 494  
495 -917.8 - SF7BW125 to SF12BW125
523 +(((
524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 +)))
496 496  
497 -918.0 - SF7BW125 to SF12BW125
498 498  
499 -918.2 - SF7BW125 to SF12BW125
528 +(((
529 +The 5V output time can be controlled by AT Command.
530 +)))
500 500  
532 +(((
533 +(% style="color:blue" %)**AT+5VT=1000**
534 +)))
501 501  
502 -Downlink:
536 +(((
537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 +)))
503 503  
504 -923.3 - SF7BW500 to SF12BW500
505 505  
506 -923.9 - SF7BW500 to SF12BW500
507 507  
508 -924.5 - SF7BW500 to SF12BW500
542 +== 2.5  Downlink Payload ==
509 509  
510 -925.1 - SF7BW500 to SF12BW500
544 +By default, NSE01 prints the downlink payload to console port.
511 511  
512 -925.7 - SF7BW500 to SF12BW500
546 +[[image:image-20220708133731-5.png]]
513 513  
514 -926.3 - SF7BW500 to SF12BW500
515 515  
516 -926.9 - SF7BW500 to SF12BW500
549 +(((
550 +(% style="color:blue" %)**Examples:**
551 +)))
517 517  
518 -927.5 - SF7BW500 to SF12BW500
553 +(((
554 +
555 +)))
519 519  
520 -923.3 - SF12BW500(RX2 downlink only)
557 +* (((
558 +(% style="color:blue" %)**Set TDC**
559 +)))
521 521  
522 -1.
523 -11.
524 -111. AS920-923 & AS923-925 (AS923)
561 +(((
562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
563 +)))
525 525  
526 -**Default Uplink channel:**
565 +(((
566 +Payload:    01 00 00 1E    TDC=30S
567 +)))
527 527  
528 -923.2 - SF7BW125 to SF10BW125
569 +(((
570 +Payload:    01 00 00 3C    TDC=60S
571 +)))
529 529  
530 -923.4 - SF7BW125 to SF10BW125
573 +(((
574 +
575 +)))
531 531  
577 +* (((
578 +(% style="color:blue" %)**Reset**
579 +)))
532 532  
533 -**Additional Uplink Channel**:
581 +(((
582 +If payload = 0x04FF, it will reset the NSE01
583 +)))
534 534  
535 -(OTAA mode, channel added by JoinAccept message)
536 536  
537 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
586 +* (% style="color:blue" %)**INTMOD**
538 538  
539 -922.2 - SF7BW125 to SF10BW125
588 +(((
589 +Downlink Payload: 06000003, Set AT+INTMOD=3
590 +)))
540 540  
541 -922.4 - SF7BW125 to SF10BW125
542 542  
543 -922.6 - SF7BW125 to SF10BW125
544 544  
545 -922.8 - SF7BW125 to SF10BW125
594 +== 2. ​LED Indicator ==
546 546  
547 -923.0 - SF7BW125 to SF10BW125
596 +(((
597 +The NSE01 has an internal LED which is to show the status of different state.
548 548  
549 -922.0 - SF7BW125 to SF10BW125
550 550  
600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
601 +* Then the LED will be on for 1 second means device is boot normally.
602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
603 +* For each uplink probe, LED will be on for 500ms.
604 +)))
551 551  
552 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
553 553  
554 -923.6 - SF7BW125 to SF10BW125
555 555  
556 -923.8 - SF7BW125 to SF10BW125
557 557  
558 -924.0 - SF7BW125 to SF10BW125
609 +== 2.7  Installation in Soil ==
559 559  
560 -924.2 - SF7BW125 to SF10BW125
611 +__**Measurement the soil surface**__
561 561  
562 -924.4 - SF7BW125 to SF10BW125
613 +(((
614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
615 +)))
563 563  
564 -924.6 - SF7BW125 to SF10BW125
617 +[[image:1657259653666-883.png]] ​
565 565  
566 566  
620 +(((
621 +
567 567  
568 -**Downlink:**
569 -
570 -Uplink channels 1-8 (RX1)
571 -
572 -923.2 - SF10BW125 (RX2)
573 -
574 -
575 -1.
576 -11.
577 -111. KR920-923 (KR920)
578 -
579 -Default channel:
580 -
581 -922.1 - SF7BW125 to SF12BW125
582 -
583 -922.3 - SF7BW125 to SF12BW125
584 -
585 -922.5 - SF7BW125 to SF12BW125
586 -
587 -
588 -Uplink: (OTAA mode, channel added by JoinAccept message)
589 -
590 -922.1 - SF7BW125 to SF12BW125
591 -
592 -922.3 - SF7BW125 to SF12BW125
593 -
594 -922.5 - SF7BW125 to SF12BW125
595 -
596 -922.7 - SF7BW125 to SF12BW125
597 -
598 -922.9 - SF7BW125 to SF12BW125
599 -
600 -923.1 - SF7BW125 to SF12BW125
601 -
602 -923.3 - SF7BW125 to SF12BW125
603 -
604 -
605 -Downlink:
606 -
607 -Uplink channels 1-7(RX1)
608 -
609 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
610 -
611 -
612 -1.
613 -11.
614 -111. IN865-867 (IN865)
615 -
616 -Uplink:
617 -
618 -865.0625 - SF7BW125 to SF12BW125
619 -
620 -865.4025 - SF7BW125 to SF12BW125
621 -
622 -865.9850 - SF7BW125 to SF12BW125
623 -
624 -
625 -Downlink:
626 -
627 -Uplink channels 1-3 (RX1)
628 -
629 -866.550 - SF10BW125 (RX2)
630 -
631 -
632 -1.
633 -11. LED Indicator
634 -
635 -The LSE01 has an internal LED which is to show the status of different state.
636 -
637 -
638 -* Blink once when device power on.
639 -* Solid ON for 5 seconds once device successful Join the network.
640 -* Blink once when device transmit a packet.
641 -
642 -1.
643 -11. Installation in Soil
644 -
645 -**Measurement the soil surface**
646 -
647 -
648 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
649 -
650 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
651 -
652 -
653 -
654 -
655 -
656 -
657 -
658 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
659 -
660 -
661 -
623 +(((
662 662  Dig a hole with diameter > 20CM.
625 +)))
663 663  
627 +(((
664 664  Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 +)))
630 +)))
665 665  
632 +[[image:1654506665940-119.png]]
666 666  
634 +(((
635 +
636 +)))
667 667  
668 668  
669 -1.
670 -11. ​Firmware Change Log
639 +== 2.8  ​Firmware Change Log ==
671 671  
672 -**Firmware download link:**
673 673  
674 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
642 +Download URL & Firmware Change log
675 675  
644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
676 676  
677 -**Firmware Upgrade Method:**
678 678  
679 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
680 680  
681 681  
682 -**V1.0.**
683 683  
684 -Release
651 +== 2.9  ​Battery Analysis ==
685 685  
653 +=== 2.9.1  ​Battery Type ===
686 686  
687 687  
688 -1.
689 -11. ​Battery Analysis
690 -111. ​Battery Type
656 +(((
657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
658 +)))
691 691  
692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
693 693  
661 +(((
662 +The battery is designed to last for several years depends on the actually use environment and update interval. 
663 +)))
694 694  
695 -The battery is designed to last for more than 5 years for the LSN50.
696 696  
697 -
666 +(((
698 698  The battery related documents as below:
668 +)))
699 699  
700 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
701 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
702 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
703 703  
704 -|(((
705 -JST-XH-2P connector
674 +(((
675 +[[image:image-20220708140453-6.png]]
706 706  )))
707 707  
708 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
709 709  
710 710  
680 +=== 2.9.2  Power consumption Analyze ===
711 711  
712 -1.
713 -11.
714 -111. ​Battery Note
682 +(((
683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
684 +)))
715 715  
716 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
717 717  
687 +(((
688 +Instruction to use as below:
689 +)))
718 718  
719 -1.
720 -11.
721 -111. ​Replace the battery
691 +(((
692 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
693 +)))
722 722  
723 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
724 724  
696 +(((
697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
698 +)))
725 725  
726 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
700 +* (((
701 +Product Model
702 +)))
703 +* (((
704 +Uplink Interval
705 +)))
706 +* (((
707 +Working Mode
708 +)))
727 727  
710 +(((
711 +And the Life expectation in difference case will be shown on the right.
712 +)))
728 728  
729 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
714 +[[image:image-20220708141352-7.jpeg]]
730 730  
731 731  
732 732  
718 +=== 2.9.3  ​Battery Note ===
733 733  
720 +(((
721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
722 +)))
734 734  
735 735  
736 -= 3. ​Using the AT Commands =
737 737  
738 -== 3.1 Access AT Commands ==
726 +=== 2.9.4  Replace the battery ===
739 739  
728 +(((
729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
730 +)))
740 740  
741 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
742 742  
743 -[[image:1654501986557-872.png]]
744 744  
734 += 3. ​ Access NB-IoT Module =
745 745  
746 -Or if you have below board, use below connection:
736 +(((
737 +Users can directly access the AT command set of the NB-IoT module.
738 +)))
747 747  
740 +(((
741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
742 +)))
748 748  
749 -[[image:1654502005655-729.png]]
744 +[[image:1657261278785-153.png]]
750 750  
751 751  
752 752  
753 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
748 += 4.  Using the AT Commands =
754 754  
750 +== 4.1  Access AT Commands ==
755 755  
756 - [[image:1654502050864-459.png]]
752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
757 757  
758 758  
759 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
755 +AT+<CMD>?  : Help on <CMD>
760 760  
757 +AT+<CMD>         : Run <CMD>
761 761  
762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
759 +AT+<CMD>=<value> : Set the value
763 763  
764 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
761 +AT+<CMD>=?  : Get the value
765 765  
766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
767 767  
768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
769 -
770 -
771 771  (% style="color:#037691" %)**General Commands**(%%)      
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
766 +AT  : Attention       
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
768 +AT?  : Short Help     
776 776  
777 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
770 +ATZ  : MCU Reset    
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
772 +AT+TDC  : Application Data Transmission Interval
780 780  
774 +AT+CFG  : Print all configurations
781 781  
782 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
776 +AT+CFGMOD           : Working mode selection
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
778 +AT+INTMOD            : Set the trigger interrupt mode
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
780 +AT+5VT  : Set extend the time of 5V power  
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
782 +AT+PRO  : Choose agreement
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
784 +AT+WEIGRE  : Get weight or set weight to 0
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
786 +AT+WEIGAP  : Get or Set the GapValue of weight
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
788 +AT+RXDL  : Extend the sending and receiving time
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
790 +AT+CNTFAC  : Get or set counting parameters
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
792 +AT+SERVADDR  : Server Address
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
795 +(% style="color:#037691" %)**COAP Management**      
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
797 +AT+URI            : Resource parameters
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
800 +(% style="color:#037691" %)**UDP Management**
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
802 +AT+CFM          : Upload confirmation mode (only valid for UDP)
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
805 +(% style="color:#037691" %)**MQTT Management**
815 815  
807 +AT+CLIENT               : Get or Set MQTT client
816 816  
817 -(% style="color:#037691" %)**LoRa Network Management**
809 +AT+UNAME  : Get or Set MQTT Username
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
811 +AT+PWD                  : Get or Set MQTT password
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
813 +AT+PUBTOPI : Get or Set MQTT publish topic
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
815 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
818 +(% style="color:#037691" %)**Information**          
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
820 +AT+FDR  : Factory Data Reset
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
822 +AT+PWOR : Serial Access Password
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
826 += ​5.  FAQ =
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
828 +== 5.1 How to Upgrade Firmware ==
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
831 +(((
832 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
833 +)))
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
835 +(((
836 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
837 +)))
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
839 +(((
840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
841 +)))
848 848  
849 849  
850 -(% style="color:#037691" %)**Information** 
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
845 +== 5.2  Can I calibrate NSE01 to different soil types? ==
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
847 +(((
848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
849 +)))
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
852 += 6.  Trouble Shooting =
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
854 +== 6.1  ​Connection problem when uploading firmware ==
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
863 863  
864 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
865 -
866 -
867 -= ​4. FAQ =
868 -
869 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
870 -
871 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
872 -When downloading the images, choose the required image file for download. ​
873 -
874 -
875 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
876 -
877 -
878 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
879 -
880 -
881 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
882 -
883 -[[image:image-20220606154726-3.png]]
884 -
885 -When you use the TTN network, the US915 frequency bands use are:
886 -
887 -* 903.9 - SF7BW125 to SF10BW125
888 -* 904.1 - SF7BW125 to SF10BW125
889 -* 904.3 - SF7BW125 to SF10BW125
890 -* 904.5 - SF7BW125 to SF10BW125
891 -* 904.7 - SF7BW125 to SF10BW125
892 -* 904.9 - SF7BW125 to SF10BW125
893 -* 905.1 - SF7BW125 to SF10BW125
894 -* 905.3 - SF7BW125 to SF10BW125
895 -* 904.6 - SF8BW500
896 -
897 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
898 -
899 -(% class="box infomessage" %)
900 900  (((
901 -**AT+CHE=2**
858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
902 902  )))
903 903  
904 -(% class="box infomessage" %)
861 +(% class="wikigeneratedid" %)
905 905  (((
906 -**ATZ**
863 +
907 907  )))
908 908  
909 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
910 910  
867 +== 6.2  AT Command input doesn't work ==
911 911  
912 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
869 +(((
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
913 913  
914 -[[image:image-20220606154825-4.png]]
872 +
873 +)))
915 915  
916 916  
876 += 7. ​ Order Info =
917 917  
918 -= 5. Trouble Shooting =
919 919  
920 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
921 921  
922 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
923 923  
882 +(% class="wikigeneratedid" %)
883 +(((
884 +
885 +)))
924 924  
925 -== 5.2 AT Command input doesn’t work ==
887 += 8.  Packing Info =
926 926  
927 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
889 +(((
890 +
928 928  
892 +(% style="color:#037691" %)**Package Includes**:
929 929  
930 -== 5.3 Device rejoin in at the second uplink packet ==
894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 +* External antenna x 1
896 +)))
931 931  
932 -(% style="color:#4f81bd" %)**Issue describe as below:**
898 +(((
899 +
933 933  
934 -[[image:1654500909990-784.png]]
901 +(% style="color:#037691" %)**Dimension and weight**:
935 935  
936 -
937 -(% style="color:#4f81bd" %)**Cause for this issue:**
938 -
939 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
940 -
941 -
942 -(% style="color:#4f81bd" %)**Solution: **
943 -
944 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
945 -
946 -[[image:1654500929571-736.png]]
947 -
948 -
949 -= 6. ​Order Info =
950 -
951 -
952 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
953 -
954 -
955 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
956 -
957 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
958 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
959 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
960 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
961 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
962 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
963 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
964 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
965 -
966 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
967 -
968 -* (% style="color:red" %)**4**(%%): 4000mAh battery
969 -* (% style="color:red" %)**8**(%%): 8500mAh battery
970 -
971 -= 7. Packing Info =
972 -
973 -(((
974 -**Package Includes**:
903 +* Size: 195 x 125 x 55 mm
904 +* Weight:   420g
975 975  )))
976 976  
977 -* (((
978 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
979 -)))
980 -
981 981  (((
982 982  
983 -)))
984 984  
985 -(((
986 -**Dimension and weight**:
987 -)))
988 988  
989 -* (((
990 -Device Size: cm
911 +
991 991  )))
992 -* (((
993 -Device Weight: g
994 -)))
995 -* (((
996 -Package Size / pcs : cm
997 -)))
998 -* (((
999 -Weight / pcs : g
1000 -)))
1001 1001  
1002 -= 8. Support =
914 += 9.  Support =
1003 1003  
1004 1004  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1005 1005  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1006 -
1007 -
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content