Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 36 added, 0 removed)
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="848" width="848"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 ... ... @@ -8,1000 +8,910 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 13 +**Table of Contents:** 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 40 40 25 +((( 26 + 41 41 28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 42 42 43 - ==1.2Features==30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 56 56 57 - ==1.3Specification==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 58 58 59 - MeasureVolume:Base onthe centrapinof theprobe,acylinderwith 7cm diameter and10cmheight.36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 - 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 - 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 75 - 76 - 77 -**LSE01 v1.0 :** Release 78 - 79 - 80 - 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 - 83 -== 2.1 How it works == 84 - 85 85 ((( 86 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 87 87 ))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 42 + 91 91 ))) 92 92 45 +[[image:1654503236291-817.png]] 93 93 94 94 95 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==48 +[[image:1657245163077-232.png]] 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 99 99 100 - [[image:1654503992078-669.png]]52 +== 1.2 Features == 101 101 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 102 102 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 104 105 105 106 - **Step1**:Create a devicein TTN with the OTAA keys fromLSE01.69 +== 1.3 Specification == 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 110 - [[image:image-20220606163732-6.jpeg]]72 +(% style="color:#037691" %)**Common DC Characteristics:** 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 113 113 114 - **AddAPP EUI intheapplication**77 +(% style="color:#037691" %)**NB-IoT Spec:** 115 115 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 116 116 117 - [[image:1654504596150-405.png]]86 +Probe(% style="color:#037691" %)** Specification:** 118 118 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 119 119 90 +[[image:image-20220708101224-1.png]] 120 120 121 -**Add APP KEY and DEV EUI** 122 122 123 -[[image:1654504683289-357.png]] 124 124 94 +== 1.4 Applications == 125 125 96 +* Smart Agriculture 126 126 127 -**Step 2**: Power on LSE01 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 128 128 101 +== 1.5 Pin Definitions == 129 129 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 131 131 132 -[[image: image-20220606163915-7.png]]104 +[[image:1657246476176-652.png]] 133 133 134 134 135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 136 137 - [[image:1654504778294-788.png]]108 += 2. Use NSE01 to communicate with IoT Server = 138 138 110 +== 2.1 How it works == 139 139 140 140 113 +((( 114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 115 +))) 141 141 142 -1. 143 -11. Uplink Payload 144 -111. MOD=0(Default Mode) 145 145 146 -LSE01 will uplink payload via LoRaWAN with below payload format: 118 +((( 119 +The diagram below shows the working flow in default firmware of NSE01: 120 +))) 147 147 122 +[[image:image-20220708101605-2.png]] 148 148 149 - Uplink payload includes in total 11 bytes.124 +((( 150 150 151 - 152 -|((( 153 -**Size** 154 - 155 -**(bytes)** 156 -)))|**2**|**2**|**2**|**2**|**2**|**1** 157 -|**Value**|[[BAT>>path:#bat]]|((( 158 -Temperature 159 - 160 -(Reserve, Ignore now) 161 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 162 -MOD & Digital Interrupt 163 - 164 -(Optional) 165 165 ))) 166 166 167 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 168 168 169 169 170 -1. 171 -11. 172 -111. MOD=1(Original value) 130 +== 2.2 Configure the NSE01 == 173 173 174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 175 175 176 -|((( 177 -**Size** 133 +=== 2.2.1 Test Requirement === 178 178 179 -**(bytes)** 180 -)))|**2**|**2**|**2**|**2**|**2**|**1** 181 -|**Value**|[[BAT>>path:#bat]]|((( 182 -Temperature 183 183 184 -(Reserve, Ignore now) 185 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 186 -MOD & Digital Interrupt 187 - 188 -(Optional) 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 189 189 ))) 190 190 191 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 192 192 193 - 1.194 -11. 195 - 111. Battery Info144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 146 +))) 196 196 197 -Check the battery voltage for LSE01. 198 198 199 - Ex1:0x0B45=2885mV149 +[[image:1657249419225-449.png]] 200 200 201 -Ex2: 0x0B49 = 2889mV 202 202 203 203 153 +=== 2.2.2 Insert SIM card === 204 204 205 - 1.206 - 11.207 - 111. Soil Moisture155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 208 208 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 210 210 211 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is 212 212 213 - **05DC(H) =1500(D) /100 = 15%.**164 +[[image:1657249468462-536.png]] 214 214 215 215 216 -1. 217 -11. 218 -111. Soil Temperature 219 219 220 - Get the temperature in the soil.Thevalue rangeof the register is -4000 - +800(Decimal), dividethisvalueby100togetthe temperature in the soil.For example, ifthe data you get from the register is 0x09 0xEC, the temperaturecontentinthesoil is168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 221 221 222 -**Example**: 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 223 223 224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 225 225 226 - If payloadis FF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C177 +**Connection:** 227 227 179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 228 228 229 -1. 230 -11. 231 -111. Soil Conductivity (EC) 181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 232 232 233 - Obtainsolublesaltconcentration in soilsolubleion concentration inliquid fertilizerorplantingmedium,.Thevaluerange of the register is 0-20000(Decimal)( Can be greater than 20000).183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 234 234 235 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 236 236 186 +In the PC, use below serial tool settings: 237 237 238 -Generally, the EC value of irrigation water is less than 800uS / cm. 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 239 239 240 - 1.241 -11. 242 - 111. MOD194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 243 243 244 - Firmwareversionat least v2.1supports changing mode.198 +[[image:image-20220708110657-3.png]] 245 245 246 -For example, bytes[10]=90 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 247 247 248 -mod=(bytes[10]>>7)&0x01=1. 249 249 250 250 251 - DownlinkCommand:206 +=== 2.2.4 Use CoAP protocol to uplink data === 252 252 253 - Ifpayload=0x0A00,workmode=0208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 254 254 255 -If** **payload =** **0x0A01, workmode=1 256 256 211 +**Use below commands:** 257 257 258 -1 .259 -1 1.260 - 111.DecodepayloadinTheThingsNetwork213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 261 261 262 - While using TTN network,you canaddthe payloadformattodecodethepayload.217 +For parameter description, please refer to AT command set 263 263 219 +[[image:1657249793983-486.png]] 264 264 265 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 266 266 267 - Thepayload decoderfunctionforTTN ishere:222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 268 268 269 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]224 +[[image:1657249831934-534.png]] 270 270 271 271 272 -1. 273 -11. Uplink Interval 274 274 275 - TheLSE01bydefault uplinkthe sensordatavery 20 minutes.Usercan changethis interval by AT Commandor LoRaWAN DownlinkCommand. See this link:228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 276 276 277 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]230 +This feature is supported since firmware version v1.0.1 278 278 279 -1. 280 -11. Downlink Payload 281 281 282 -By default, LSE50 prints the downlink payload to console port. 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 283 283 284 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 285 -|TDC (Transmit Time Interval)|Any|01|4 286 -|RESET|Any|04|2 287 -|AT+CFM|Any|05|4 288 -|INTMOD|Any|06|4 289 -|MOD|Any|0A|2 237 +[[image:1657249864775-321.png]] 290 290 291 -**Examples** 292 292 240 +[[image:1657249930215-289.png]] 293 293 294 -**Set TDC** 295 295 296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 297 297 298 - Payload:0100001ETDC=30S244 +=== 2.2.6 Use MQTT protocol to uplink data === 299 299 300 - Payload:0100003C TDC=60S246 +This feature is supported since firmware version v110 301 301 302 302 303 -**Reset** 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 304 304 305 - If payload = 0x04FF,it will reset the LSE01257 +[[image:1657249978444-674.png]] 306 306 307 307 308 - **CFM**260 +[[image:1657249990869-686.png]] 309 309 310 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 311 311 312 -1. 313 -11. Show Data in DataCake IoT Server 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 314 314 315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 316 316 317 317 318 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.269 +=== 2.2.7 Use TCP protocol to uplink data === 319 319 320 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:271 +This feature is supported since firmware version v110 321 321 322 322 323 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 324 324 277 +[[image:1657250217799-140.png]] 325 325 326 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 327 327 280 +[[image:1657250255956-604.png]] 328 328 329 329 330 330 284 +=== 2.2.8 Change Update Interval === 331 331 332 - Step3:Create anaccountorlog inDatacake.286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 333 333 334 - Step4:Search theLSE01andaddDevEUI.288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 335 335 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 336 336 337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 338 338 339 339 340 340 341 - Afteradded,the sensordata arrive TTN, it will alsorrive andshow in Mydevices.300 +== 2.3 Uplink Payload == 342 342 302 +In this mode, uplink payload includes in total 18 bytes 343 343 344 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 345 345 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 346 346 347 347 348 -1. 349 -11. Frequency Plans 315 +[[image:image-20220708111918-4.png]] 350 350 351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 352 352 353 -1. 354 -11. 355 -111. EU863-870 (EU868) 318 +The payload is ASCII string, representative same HEX: 356 356 357 - Uplink:320 +0x72403155615900640c7817075e0a8c02f900 where: 358 358 359 -868.1 - SF7BW125 to SF12BW125 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 360 360 361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 362 362 363 -868.5 - SF7BW125 to SF12BW125 364 364 365 -867.1 - SF7BW125 to SF12BW125 366 366 367 - 867.3- SF7BW125to SF12BW125334 +== 2.4 Payload Explanation and Sensor Interface == 368 368 369 -867.5 - SF7BW125 to SF12BW125 370 370 371 - 867.7- SF7BW125toSF12BW125337 +=== 2.4.1 Device ID === 372 372 373 -867.9 - SF7BW125 to SF12BW125 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 374 374 375 -868.8 - FSK 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 376 376 347 +((( 348 +**Example:** 349 +))) 377 377 378 -Downlink: 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 379 379 380 -Uplink channels 1-9 (RX1) 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 381 381 382 -869.525 - SF9BW125 (RX2 downlink only) 383 383 384 384 385 -1. 386 -11. 387 -111. US902-928(US915) 361 +=== 2.4.2 Version Info === 388 388 389 -Used in USA, Canada and South America. Default use CHE=2 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 390 390 391 -Uplink: 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 392 392 393 -903.9 - SF7BW125 to SF10BW125 394 394 395 -904.1 - SF7BW125 to SF10BW125 396 396 397 - 904.3- SF7BW125toSF10BW125373 +=== 2.4.3 Battery Info === 398 398 399 -904.5 - SF7BW125 to SF10BW125 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 400 400 401 -904.7 - SF7BW125 to SF10BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 402 402 403 -904.9 - SF7BW125 to SF10BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 404 404 405 -905.1 - SF7BW125 to SF10BW125 406 406 407 -905.3 - SF7BW125 to SF10BW125 408 408 389 +=== 2.4.4 Signal Strength === 409 409 410 -Downlink: 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 411 411 412 -923.3 - SF7BW500 to SF12BW500 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 413 413 414 -923.9 - SF7BW500 to SF12BW500 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 415 415 416 -924.5 - SF7BW500 to SF12BW500 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 417 417 418 -925.1 - SF7BW500 to SF12BW500 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 419 419 420 -925.7 - SF7BW500 to SF12BW500 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 421 421 422 -926.3 - SF7BW500 to SF12BW500 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 423 423 424 -926.9 - SF7BW500 to SF12BW500 425 425 426 -927.5 - SF7BW500 to SF12BW500 427 427 428 - 923.3- SF12BW500(RX2downlinkonly)421 +=== 2.4.5 Soil Moisture === 429 429 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 430 430 431 -1. 432 -11. 433 -111. CN470-510 (CN470) 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 434 434 435 -Used in China, Default use CHE=1 435 +((( 436 + 437 +))) 436 436 437 -Uplink: 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 438 438 439 -486.3 - SF7BW125 to SF12BW125 440 440 441 -486.5 - SF7BW125 to SF12BW125 442 442 443 -4 86.7-SF7BW125toSF12BW125445 +=== 2.4.6 Soil Temperature === 444 444 445 -486.9 - SF7BW125 to SF12BW125 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 446 446 447 -487.1 - SF7BW125 to SF12BW125 451 +((( 452 +**Example**: 453 +))) 448 448 449 -487.3 - SF7BW125 to SF12BW125 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 450 450 451 -487.5 - SF7BW125 to SF12BW125 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 452 452 453 -487.7 - SF7BW125 to SF12BW125 454 454 455 455 456 - Downlink:465 +=== 2.4.7 Soil Conductivity (EC) === 457 457 458 -506.7 - SF7BW125 to SF12BW125 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 459 459 460 -506.9 - SF7BW125 to SF12BW125 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 461 461 462 -507.1 - SF7BW125 to SF12BW125 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 463 463 464 -507.3 - SF7BW125 to SF12BW125 479 +((( 480 + 481 +))) 465 465 466 -507.5 - SF7BW125 to SF12BW125 483 +((( 484 + 485 +))) 467 467 468 - 507.7- SF7BW125toSF12BW125487 +=== 2.4.8 Digital Interrupt === 469 469 470 -507.9 - SF7BW125 to SF12BW125 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 471 471 472 -508.1 - SF7BW125 to SF12BW125 493 +((( 494 +The command is: 495 +))) 473 473 474 -505.3 - SF12BW125 (RX2 downlink only) 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 475 475 476 476 477 - 1.478 - 11.479 - 111. AU915-928(AU915)502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 480 480 481 -Default use CHE=2 482 482 483 -Uplink: 507 +((( 508 +Example: 509 +))) 484 484 485 -916.8 - SF7BW125 to SF12BW125 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 486 486 487 -917.0 - SF7BW125 to SF12BW125 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 488 488 489 -917.2 - SF7BW125 to SF12BW125 490 490 491 -917.4 - SF7BW125 to SF12BW125 492 492 493 - 917.6- SF7BW125 toSF12BW125521 +=== 2.4.9 +5V Output === 494 494 495 -917.8 - SF7BW125 to SF12BW125 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 496 496 497 -918.0 - SF7BW125 to SF12BW125 498 498 499 -918.2 - SF7BW125 to SF12BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 500 500 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 501 501 502 -Downlink: 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 503 503 504 -923.3 - SF7BW500 to SF12BW500 505 505 506 -923.9 - SF7BW500 to SF12BW500 507 507 508 - 924.5-SF7BW500 toSF12BW500542 +== 2.5 Downlink Payload == 509 509 510 - 925.1-SF7BW500toSF12BW500544 +By default, NSE01 prints the downlink payload to console port. 511 511 512 - 925.7-SF7BW500 to SF12BW500546 +[[image:image-20220708133731-5.png]] 513 513 514 -926.3 - SF7BW500 to SF12BW500 515 515 516 -926.9 - SF7BW500 to SF12BW500 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 517 517 518 -927.5 - SF7BW500 to SF12BW500 553 +((( 554 + 555 +))) 519 519 520 -923.3 - SF12BW500(RX2 downlink only) 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 521 521 522 - 1.523 -11. 524 - 111. AS920-923 & AS923-925 (AS923)561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 525 525 526 -**Default Uplink channel:** 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 527 527 528 -923.2 - SF7BW125 to SF10BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 529 529 530 -923.4 - SF7BW125 to SF10BW125 573 +((( 574 + 575 +))) 531 531 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 532 532 533 -**Additional Uplink Channel**: 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 534 534 535 -(OTAA mode, channel added by JoinAccept message) 536 536 537 -* *AS920~~AS923forJapan, Malaysia, Singapore**:586 +* (% style="color:blue" %)**INTMOD** 538 538 539 -922.2 - SF7BW125 to SF10BW125 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 540 540 541 -922.4 - SF7BW125 to SF10BW125 542 542 543 -922.6 - SF7BW125 to SF10BW125 544 544 545 - 922.8-SF7BW125toSF10BW125594 +== 2.6 LED Indicator == 546 546 547 -923.0 - SF7BW125 to SF10BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 548 548 549 -922.0 - SF7BW125 to SF10BW125 550 550 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 551 551 552 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 553 553 554 -923.6 - SF7BW125 to SF10BW125 555 555 556 -923.8 - SF7BW125 to SF10BW125 557 557 558 - 924.0 - SF7BW125to SF10BW125609 +== 2.7 Installation in Soil == 559 559 560 - 924.2- SF7BW125toSF10BW125611 +__**Measurement the soil surface**__ 561 561 562 -924.4 - SF7BW125 to SF10BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 563 563 564 - 924.6- SF7BW125to SF10BW125617 +[[image:1657259653666-883.png]] 565 565 566 566 620 +((( 621 + 567 567 568 -**Downlink:** 569 - 570 -Uplink channels 1-8 (RX1) 571 - 572 -923.2 - SF10BW125 (RX2) 573 - 574 - 575 -1. 576 -11. 577 -111. KR920-923 (KR920) 578 - 579 -Default channel: 580 - 581 -922.1 - SF7BW125 to SF12BW125 582 - 583 -922.3 - SF7BW125 to SF12BW125 584 - 585 -922.5 - SF7BW125 to SF12BW125 586 - 587 - 588 -Uplink: (OTAA mode, channel added by JoinAccept message) 589 - 590 -922.1 - SF7BW125 to SF12BW125 591 - 592 -922.3 - SF7BW125 to SF12BW125 593 - 594 -922.5 - SF7BW125 to SF12BW125 595 - 596 -922.7 - SF7BW125 to SF12BW125 597 - 598 -922.9 - SF7BW125 to SF12BW125 599 - 600 -923.1 - SF7BW125 to SF12BW125 601 - 602 -923.3 - SF7BW125 to SF12BW125 603 - 604 - 605 -Downlink: 606 - 607 -Uplink channels 1-7(RX1) 608 - 609 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 610 - 611 - 612 -1. 613 -11. 614 -111. IN865-867 (IN865) 615 - 616 -Uplink: 617 - 618 -865.0625 - SF7BW125 to SF12BW125 619 - 620 -865.4025 - SF7BW125 to SF12BW125 621 - 622 -865.9850 - SF7BW125 to SF12BW125 623 - 624 - 625 -Downlink: 626 - 627 -Uplink channels 1-3 (RX1) 628 - 629 -866.550 - SF10BW125 (RX2) 630 - 631 - 632 -1. 633 -11. LED Indicator 634 - 635 -The LSE01 has an internal LED which is to show the status of different state. 636 - 637 - 638 -* Blink once when device power on. 639 -* Solid ON for 5 seconds once device successful Join the network. 640 -* Blink once when device transmit a packet. 641 - 642 -1. 643 -11. Installation in Soil 644 - 645 -**Measurement the soil surface** 646 - 647 - 648 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 649 - 650 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 651 - 652 - 653 - 654 - 655 - 656 - 657 - 658 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 659 - 660 - 661 - 623 +((( 662 662 Dig a hole with diameter > 20CM. 625 +))) 663 663 627 +((( 664 664 Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 665 665 632 +[[image:1654506665940-119.png]] 666 666 634 +((( 635 + 636 +))) 667 667 668 668 669 -1. 670 -11. Firmware Change Log 639 +== 2.8 Firmware Change Log == 671 671 672 -**Firmware download link:** 673 673 674 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]642 +Download URL & Firmware Change log 675 675 644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 676 676 677 -**Firmware Upgrade Method:** 678 678 679 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 680 680 681 681 682 -**V1.0.** 683 683 684 - Release651 +== 2.9 Battery Analysis == 685 685 653 +=== 2.9.1 Battery Type === 686 686 687 687 688 - 1.689 -1 1.Battery Analysis690 - 111. Battery Type656 +((( 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 658 +))) 691 691 692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 693 693 661 +((( 662 +The battery is designed to last for several years depends on the actually use environment and update interval. 663 +))) 694 694 695 -The battery is designed to last for more than 5 years for the LSN50. 696 696 697 - 666 +((( 698 698 The battery related documents as below: 668 +))) 699 699 700 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],701 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]702 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 703 703 704 - |(((705 - JST-XH-2P connector674 +((( 675 +[[image:image-20220708140453-6.png]] 706 706 ))) 707 707 708 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 709 709 710 710 680 +=== 2.9.2 Power consumption Analyze === 711 711 712 - 1.713 - 11.714 - 111. Battery Note682 +((( 683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 +))) 715 715 716 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 717 717 687 +((( 688 +Instruction to use as below: 689 +))) 718 718 719 - 1.720 -1 1.721 - 111. Replace the battery691 +((( 692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 693 +))) 722 722 723 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 724 724 696 +((( 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 698 +))) 725 725 726 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 700 +* ((( 701 +Product Model 702 +))) 703 +* ((( 704 +Uplink Interval 705 +))) 706 +* ((( 707 +Working Mode 708 +))) 727 727 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 728 728 729 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)714 +[[image:image-20220708141352-7.jpeg]] 730 730 731 731 732 732 718 +=== 2.9.3 Battery Note === 733 733 720 +((( 721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 +))) 734 734 735 735 736 -= 3. Using the AT Commands = 737 737 738 -== 3.1AccessATCommands==726 +=== 2.9.4 Replace the battery === 739 739 728 +((( 729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 730 +))) 740 740 741 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 742 742 743 -[[image:1654501986557-872.png]] 744 744 734 += 3. Access NB-IoT Module = 745 745 746 -Or if you have below board, use below connection: 736 +((( 737 +Users can directly access the AT command set of the NB-IoT module. 738 +))) 747 747 740 +((( 741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 742 +))) 748 748 749 -[[image:165 4502005655-729.png]]744 +[[image:1657261278785-153.png]] 750 750 751 751 752 752 753 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:748 += 4. Using the AT Commands = 754 754 750 +== 4.1 Access AT Commands == 755 755 756 - [[ima ge:1654502050864-459.png]]752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 757 757 758 758 759 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]755 +AT+<CMD>? : Help on <CMD> 760 760 757 +AT+<CMD> : Run <CMD> 761 761 762 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>759 +AT+<CMD>=<value> : Set the value 763 763 764 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>761 +AT+<CMD>=? : Get the value 765 765 766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 767 767 768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 769 - 770 - 771 771 (% style="color:#037691" %)**General Commands**(%%) 772 772 773 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 774 774 775 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 776 776 777 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 778 778 779 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 780 780 774 +AT+CFG : Print all configurations 781 781 782 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 799 799 800 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 801 801 802 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 805 805 806 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 807 807 808 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 811 811 812 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 813 813 814 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 815 815 807 +AT+CLIENT : Get or Set MQTT client 816 816 817 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 824 824 825 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 826 826 827 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 836 836 837 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 838 838 839 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 835 +((( 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 837 +))) 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 839 +((( 840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 841 +))) 848 848 849 849 850 -(% style="color:#037691" %)**Information** 851 851 852 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket845 +== 5.2 Can I calibrate NSE01 to different soil types? == 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 857 857 858 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset852 += 6. Trouble Shooting = 859 859 860 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort854 +== 6.1 Connection problem when uploading firmware == 861 861 862 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 865 - 866 - 867 -= 4. FAQ = 868 - 869 -== 4.1 How to change the LoRa Frequency Bands/Region? == 870 - 871 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 872 -When downloading the images, choose the required image file for download. 873 - 874 - 875 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 876 - 877 - 878 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 879 - 880 - 881 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 882 - 883 -[[image:image-20220606154726-3.png]] 884 - 885 -When you use the TTN network, the US915 frequency bands use are: 886 - 887 -* 903.9 - SF7BW125 to SF10BW125 888 -* 904.1 - SF7BW125 to SF10BW125 889 -* 904.3 - SF7BW125 to SF10BW125 890 -* 904.5 - SF7BW125 to SF10BW125 891 -* 904.7 - SF7BW125 to SF10BW125 892 -* 904.9 - SF7BW125 to SF10BW125 893 -* 905.1 - SF7BW125 to SF10BW125 894 -* 905.3 - SF7BW125 to SF10BW125 895 -* 904.6 - SF8BW500 896 - 897 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 898 - 899 -(% class="box infomessage" %) 900 900 ((( 901 -** AT+CHE=2**858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 902 902 ))) 903 903 904 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 905 905 ((( 906 - **ATZ**863 + 907 907 ))) 908 908 909 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 910 910 867 +== 6.2 AT Command input doesn't work == 911 911 912 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 913 913 914 -[[image:image-20220606154825-4.png]] 872 + 873 +))) 915 915 916 916 876 += 7. Order Info = 917 917 918 -= 5. Trouble Shooting = 919 919 920 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 921 921 922 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 923 923 882 +(% class="wikigeneratedid" %) 883 +((( 884 + 885 +))) 924 924 925 -= =5.2AT Commandinputdoesn’t work==887 += 8. Packing Info = 926 926 927 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 +((( 890 + 928 928 892 +(% style="color:#037691" %)**Package Includes**: 929 929 930 -== 5.3 Device rejoin in at the second uplink packet == 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 896 +))) 931 931 932 -(% style="color:#4f81bd" %)**Issue describe as below:** 898 +((( 899 + 933 933 934 - [[image:1654500909990-784.png]]901 +(% style="color:#037691" %)**Dimension and weight**: 935 935 936 - 937 -(% style="color:#4f81bd" %)**Cause for this issue:** 938 - 939 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 940 - 941 - 942 -(% style="color:#4f81bd" %)**Solution: ** 943 - 944 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 945 - 946 -[[image:1654500929571-736.png]] 947 - 948 - 949 -= 6. Order Info = 950 - 951 - 952 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 953 - 954 - 955 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 956 - 957 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 958 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 959 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 960 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 961 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 962 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 963 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 964 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 965 - 966 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 967 - 968 -* (% style="color:red" %)**4**(%%): 4000mAh battery 969 -* (% style="color:red" %)**8**(%%): 8500mAh battery 970 - 971 -= 7. Packing Info = 972 - 973 -((( 974 -**Package Includes**: 903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 975 975 ))) 976 976 977 -* ((( 978 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 979 -))) 980 - 981 981 ((( 982 982 983 -))) 984 984 985 -((( 986 -**Dimension and weight**: 987 -))) 988 988 989 -* ((( 990 -Device Size: cm 911 + 991 991 ))) 992 -* ((( 993 -Device Weight: g 994 -))) 995 -* ((( 996 -Package Size / pcs : cm 997 -))) 998 -* ((( 999 -Weight / pcs : g 1000 -))) 1001 1001 1002 -= 8. Support =914 += 9. Support = 1003 1003 1004 1004 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1005 1005 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1006 - 1007 -
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content