Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 35 added, 0 removed)
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,1000 +8,827 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 64 +== 1.3 Specification == 63 63 64 64 65 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 68 68 69 69 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 72 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 74 +(% style="color:#037691" %)**NB-IoT Spec:** 75 75 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 76 76 77 -**LSE01 v1.0 :** Release 78 78 79 79 85 +Probe(% style="color:#037691" %)** Specification:** 80 80 81 - =2. ConfigureLSE01toconnecttoLoRaWANnetwork=87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 - ==2.1How it works ==89 +[[image:image-20220708101224-1.png]] 84 84 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 92 92 93 +== 1.4 Applications == 93 93 95 +* Smart Agriculture 94 94 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 96 96 97 - Followingisan examplefor how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.100 +== 1.5 Pin Definitions == 98 98 99 99 100 -[[image:165 4503992078-669.png]]103 +[[image:1657246476176-652.png]] 101 101 102 102 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 104 107 += 2. Use NSE01 to communicate with IoT Server = 105 105 106 - **Step1**:Createa device in TTN withthe OTAAkeysfrom LSE01.109 +== 2.1 How it works == 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 110 -[[image:image-20220606163732-6.jpeg]] 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 113 113 114 -**Add APP EUI in the application** 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 119 +))) 115 115 121 +[[image:image-20220708101605-2.png]] 116 116 117 -[[image:1654504596150-405.png]] 123 +((( 124 + 125 +))) 118 118 119 119 120 120 121 - **AddAPPKEYandDEVEUI**129 +== 2.2 Configure the NSE01 == 122 122 123 -[[image:1654504683289-357.png]] 124 124 132 +=== 2.2.1 Test Requirement === 125 125 126 126 127 - **Step2**:PoweronLSE01135 +To use NSE01 in your city, make sure meet below requirements: 128 128 137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 129 129 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 143 +))) 131 131 132 -[[image:image-20220606163915-7.png]] 133 133 146 +[[image:1657249419225-449.png]] 134 134 135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 136 136 137 -[[image:1654504778294-788.png]] 138 138 150 +=== 2.2.2 Insert SIM card === 139 139 152 +Insert the NB-IoT Card get from your provider. 140 140 154 +User need to take out the NB-IoT module and insert the SIM card like below: 141 141 142 -1. 143 -11. Uplink Payload 144 -111. MOD=0(Default Mode) 145 145 146 - LSE01 will uplink payload via LoRaWAN with below payload format:157 +[[image:1657249468462-536.png]] 147 147 148 148 149 -Uplink payload includes in total 11 bytes. 150 - 151 151 152 -|((( 153 -**Size** 161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 154 154 155 -**(bytes)** 156 -)))|**2**|**2**|**2**|**2**|**2**|**1** 157 -|**Value**|[[BAT>>path:#bat]]|((( 158 -Temperature 159 - 160 -(Reserve, Ignore now) 161 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 162 -MOD & Digital Interrupt 163 - 164 -(Optional) 163 +((( 164 +((( 165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 165 165 ))) 166 - 167 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 168 - 169 - 170 -1. 171 -11. 172 -111. MOD=1(Original value) 173 - 174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 175 - 176 -|((( 177 -**Size** 178 - 179 -**(bytes)** 180 -)))|**2**|**2**|**2**|**2**|**2**|**1** 181 -|**Value**|[[BAT>>path:#bat]]|((( 182 -Temperature 183 - 184 -(Reserve, Ignore now) 185 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 186 -MOD & Digital Interrupt 187 - 188 -(Optional) 189 189 ))) 190 190 191 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 192 192 193 -1. 194 -11. 195 -111. Battery Info 170 +**Connection:** 196 196 197 - Checkthettery voltage forLSE01.172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 198 198 199 - Ex1:0x0B45=2885mV174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 200 200 201 - Ex2:0x0B49=2889mV176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 202 202 203 203 179 +In the PC, use below serial tool settings: 204 204 205 -1. 206 -11. 207 -111. Soil Moisture 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 208 208 209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 210 210 211 - For example,if the data youget fromthe register is0x050xDC, the moisture content in the soil is191 +[[image:image-20220708110657-3.png]] 212 212 213 - **05DC(H)=1500(D)/100=15%.**193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 214 214 215 215 216 -1. 217 -11. 218 -111. Soil Temperature 219 219 220 - Get the temperature in the soil.The value range of the register is -4000-+800(Decimal), divide thisvalueby 100 toget the temperature in the soil.Forexample,ifthedatayou get from the register is 0x09 0xEC, the temperature content in the soil is197 +=== 2.2.4 Use CoAP protocol to uplink data === 221 221 222 - **Example**:199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 223 223 224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 225 225 226 - IfpayloadisFF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C202 +**Use below commands:** 227 227 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 228 228 229 -1. 230 -11. 231 -111. Soil Conductivity (EC) 208 +For parameter description, please refer to AT command set 232 232 233 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0 -20000(Decimal)( Canbegreater than 20000).210 +[[image:1657249793983-486.png]] 234 234 235 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 236 236 213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 237 237 238 - Generally, the EC value ofirrigation water is less than800uS / cm.215 +[[image:1657249831934-534.png]] 239 239 240 -1. 241 -11. 242 -111. MOD 243 243 244 -Firmware version at least v2.1 supports changing mode. 245 245 246 - Forexample,bytes[10]=90219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 247 247 248 - mod=(bytes[10]>>7)&0x01=1.221 +This feature is supported since firmware version v1.0.1 249 249 250 250 251 -Downlink Command: 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 252 252 253 - If payload = 0x0A00, workmode=0228 +[[image:1657249864775-321.png]] 254 254 255 -If** **payload =** **0x0A01, workmode=1 256 256 231 +[[image:1657249930215-289.png]] 257 257 258 -1. 259 -11. 260 -111. Decode payload in The Things Network 261 261 262 -While using TTN network, you can add the payload format to decode the payload. 263 263 235 +=== 2.2.6 Use MQTT protocol to uplink data === 264 264 265 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]237 +This feature is supported since firmware version v110 266 266 267 -The payload decoder function for TTN is here: 268 268 269 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 270 270 248 +[[image:1657249978444-674.png]] 271 271 272 -1. 273 -11. Uplink Interval 274 274 275 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:251 +[[image:1657249990869-686.png]] 276 276 277 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 278 278 279 -1. 280 -11. Downlink Payload 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 281 281 282 -By default, LSE50 prints the downlink payload to console port. 283 283 284 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 285 -|TDC (Transmit Time Interval)|Any|01|4 286 -|RESET|Any|04|2 287 -|AT+CFM|Any|05|4 288 -|INTMOD|Any|06|4 289 -|MOD|Any|0A|2 290 290 291 - **Examples**260 +=== 2.2.7 Use TCP protocol to uplink data === 292 292 262 +This feature is supported since firmware version v110 293 293 294 -**Set TDC** 295 295 296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 297 297 298 - Payload:010 001E TDC=30S268 +[[image:1657250217799-140.png]] 299 299 300 -Payload: 01 00 00 3C TDC=60S 301 301 271 +[[image:1657250255956-604.png]] 302 302 303 -**Reset** 304 304 305 -If payload = 0x04FF, it will reset the LSE01 306 306 275 +=== 2.2.8 Change Update Interval === 307 307 308 -** CFM**277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 309 309 310 - DownlinkPayload:05000001, SetAT+CFM=1 or05000000,setAT+CFM=0279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 311 311 312 -1. 313 -11. Show Data in DataCake IoT Server 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 314 314 315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 316 316 317 317 318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 319 319 320 - **Step2**:To configure the Applicationto forward data to DATACAKEyou will need todintegration. To add the DATACAKE integration, perform the following steps:291 +== 2.3 Uplink Payload == 321 321 293 +In this mode, uplink payload includes in total 18 bytes 322 322 323 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 324 324 301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 325 325 326 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 327 327 304 +[[image:image-20220708111918-4.png]] 328 328 329 329 307 +The payload is ASCII string, representative same HEX: 330 330 309 +0x72403155615900640c7817075e0a8c02f900 where: 331 331 332 -Step 3: Create an account or log in Datacake. 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 333 333 334 -Step 4: Search the LSE01 and add DevEUI. 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 335 335 336 336 337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 338 338 339 339 324 +== 2.4 Payload Explanation and Sensor Interface == 340 340 341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 342 342 327 +=== 2.4.1 Device ID === 343 343 344 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]329 +By default, the Device ID equal to the last 6 bytes of IMEI. 345 345 331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 346 346 333 +**Example:** 347 347 348 -1. 349 -11. Frequency Plans 335 +AT+DEUI=A84041F15612 350 350 351 -The LSE01 uses OTAA mode and below frequency plans by default.Ifuserwanttouse itwithdifferentfrequency plan, pleaserefertheATcommandsets.337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 352 352 353 -1. 354 -11. 355 -111. EU863-870 (EU868) 356 356 357 -Uplink: 358 358 359 - 868.1- SF7BW125toSF12BW125341 +=== 2.4.2 Version Info === 360 360 361 - 868.3 -SF7BW125toSF12BW125andSF7BW250343 +Specify the software version: 0x64=100, means firmware version 1.00. 362 362 363 - 868.5-SF7BW125toSF12BW125345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 364 364 365 -867.1 - SF7BW125 to SF12BW125 366 366 367 -867.3 - SF7BW125 to SF12BW125 368 368 369 - 867.5- SF7BW125toSF12BW125349 +=== 2.4.3 Battery Info === 370 370 371 -867.7 - SF7BW125 to SF12BW125 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 372 372 373 -867.9 - SF7BW125 to SF12BW125 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 374 374 375 -868.8 - FSK 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 376 376 377 377 378 -Downlink: 379 379 380 - Uplink channels1-9(RX1)365 +=== 2.4.4 Signal Strength === 381 381 382 - 869.525 - SF9BW125 (RX2 downlinkonly)367 +NB-IoT Network signal Strength. 383 383 369 +**Ex1: 0x1d = 29** 384 384 385 -1. 386 -11. 387 -111. US902-928(US915) 371 +(% style="color:blue" %)**0**(%%) -113dBm or less 388 388 389 - UsedinUSA,CanadaandSouthAmerica.Defaultuse CHE=2373 +(% style="color:blue" %)**1**(%%) -111dBm 390 390 391 - Uplink:375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 392 392 393 - 903.9-SF7BW125toSF10BW125377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 394 394 395 -9 04.1-SF7BW125toSF10BW125379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 396 396 397 -904.3 - SF7BW125 to SF10BW125 398 398 399 -904.5 - SF7BW125 to SF10BW125 400 400 401 - 904.7-SF7BW125toSF10BW125383 +=== 2.4.5 Soil Moisture === 402 402 403 -904.9 - SF7BW125 to SF10BW125 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 404 404 405 -905.1 - SF7BW125 to SF10BW125 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 406 406 407 -905.3 - SF7BW125 to SF10BW125 393 +((( 394 + 395 +))) 408 408 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 409 409 410 -Downlink: 411 411 412 -923.3 - SF7BW500 to SF12BW500 413 413 414 - 923.9-SF7BW500toSF12BW500403 +=== 2.4.6 Soil Temperature === 415 415 416 -924.5 - SF7BW500 to SF12BW500 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 417 417 418 -925.1 - SF7BW500 to SF12BW500 409 +((( 410 +**Example**: 411 +))) 419 419 420 -925.7 - SF7BW500 to SF12BW500 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 421 421 422 -926.3 - SF7BW500 to SF12BW500 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 423 423 424 -926.9 - SF7BW500 to SF12BW500 425 425 426 -927.5 - SF7BW500 to SF12BW500 427 427 428 - 923.3-SF12BW500(RX2 downlinkonly)423 +=== 2.4.7 Soil Conductivity (EC) === 429 429 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 430 430 431 - 1.432 - 11.433 - 111. CN470-510 (CN470)429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 434 434 435 -Used in China, Default use CHE=1 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 436 436 437 -Uplink: 437 +((( 438 + 439 +))) 438 438 439 -486.3 - SF7BW125 to SF12BW125 441 +((( 442 + 443 +))) 440 440 441 -4 86.5-SF7BW125toSF12BW125445 +=== 2.4.8 Digital Interrupt === 442 442 443 - 486.7-SF7BW125toSF12BW125447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 444 444 445 - 486.9- SF7BW125 toSF12BW125449 +The command is: 446 446 447 - 487.1-SF7BW125to SF12BW125451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 448 448 449 -487.3 - SF7BW125 to SF12BW125 450 450 451 - 487.5-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 452 452 453 -487.7 - SF7BW125 to SF12BW125 454 454 457 +Example: 455 455 456 - Downlink:459 +0x(00): Normal uplink packet. 457 457 458 - 506.7 - SF7BW125toSF12BW125461 +0x(01): Interrupt Uplink Packet. 459 459 460 -506.9 - SF7BW125 to SF12BW125 461 461 462 -507.1 - SF7BW125 to SF12BW125 463 463 464 - 507.3- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 465 465 466 - 507.5-SF7BW125 toSF12BW125467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 467 467 468 -507.7 - SF7BW125 to SF12BW125 469 469 470 -5 07.9-SF7BW125toSF12BW125470 +The 5V output time can be controlled by AT Command. 471 471 472 - 508.1- SF7BW125toSF12BW125472 +(% style="color:blue" %)**AT+5VT=1000** 473 473 474 -50 5.3-SF12BW125(RX2downlinkonly)474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 475 475 476 476 477 -1. 478 -11. 479 -111. AU915-928(AU915) 480 480 481 -D efaultuse CHE=2478 +== 2.5 Downlink Payload == 482 482 483 - Uplink:480 +By default, NSE01 prints the downlink payload to console port. 484 484 485 - 916.8-SF7BW125 to SF12BW125482 +[[image:image-20220708133731-5.png]] 486 486 487 -917.0 - SF7BW125 to SF12BW125 488 488 489 -917.2 - SF7BW125 to SF12BW125 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 490 490 491 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 + 491 +))) 492 492 493 -917.6 - SF7BW125 to SF12BW125 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 494 494 495 -917.8 - SF7BW125 to SF12BW125 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 496 496 497 -918.0 - SF7BW125 to SF12BW125 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 498 498 499 -918.2 - SF7BW125 to SF12BW125 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 500 500 509 +((( 510 + 511 +))) 501 501 502 -Downlink: 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 503 503 504 -923.3 - SF7BW500 to SF12BW500 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 505 505 506 -923.9 - SF7BW500 to SF12BW500 507 507 508 - 924.5-SF7BW500toSF12BW500522 +* (% style="color:blue" %)**INTMOD** 509 509 510 - 925.1-SF7BW500 toSF12BW500524 +Downlink Payload: 06000003, Set AT+INTMOD=3 511 511 512 -925.7 - SF7BW500 to SF12BW500 513 513 514 -926.3 - SF7BW500 to SF12BW500 515 515 516 - 926.9-SF7BW500toSF12BW500528 +== 2.6 LED Indicator == 517 517 518 -927.5 - SF7BW500 to SF12BW500 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 519 519 520 -923.3 - SF12BW500(RX2 downlink only) 521 521 522 -1. 523 -11. 524 -111. AS920-923 & AS923-925 (AS923) 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 525 525 526 -**Default Uplink channel:** 527 527 528 -923.2 - SF7BW125 to SF10BW125 529 529 530 -923.4 - SF7BW125 to SF10BW125 531 531 543 +== 2.7 Installation in Soil == 532 532 533 -** Additional UplinkChannel**:545 +__**Measurement the soil surface**__ 534 534 535 - (OTAAmode,channel addedbyJoinAccept message)547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 536 536 537 - **AS920~~AS923for Japan, Malaysia, Singapore**:549 +[[image:1657259653666-883.png]] 538 538 539 -922.2 - SF7BW125 to SF10BW125 540 540 541 -922.4 - SF7BW125 to SF10BW125 552 +((( 553 + 542 542 543 -922.6 - SF7BW125 to SF10BW125 544 - 545 -922.8 - SF7BW125 to SF10BW125 546 - 547 -923.0 - SF7BW125 to SF10BW125 548 - 549 -922.0 - SF7BW125 to SF10BW125 550 - 551 - 552 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 553 - 554 -923.6 - SF7BW125 to SF10BW125 555 - 556 -923.8 - SF7BW125 to SF10BW125 557 - 558 -924.0 - SF7BW125 to SF10BW125 559 - 560 -924.2 - SF7BW125 to SF10BW125 561 - 562 -924.4 - SF7BW125 to SF10BW125 563 - 564 -924.6 - SF7BW125 to SF10BW125 565 - 566 - 567 - 568 -**Downlink:** 569 - 570 -Uplink channels 1-8 (RX1) 571 - 572 -923.2 - SF10BW125 (RX2) 573 - 574 - 575 -1. 576 -11. 577 -111. KR920-923 (KR920) 578 - 579 -Default channel: 580 - 581 -922.1 - SF7BW125 to SF12BW125 582 - 583 -922.3 - SF7BW125 to SF12BW125 584 - 585 -922.5 - SF7BW125 to SF12BW125 586 - 587 - 588 -Uplink: (OTAA mode, channel added by JoinAccept message) 589 - 590 -922.1 - SF7BW125 to SF12BW125 591 - 592 -922.3 - SF7BW125 to SF12BW125 593 - 594 -922.5 - SF7BW125 to SF12BW125 595 - 596 -922.7 - SF7BW125 to SF12BW125 597 - 598 -922.9 - SF7BW125 to SF12BW125 599 - 600 -923.1 - SF7BW125 to SF12BW125 601 - 602 -923.3 - SF7BW125 to SF12BW125 603 - 604 - 605 -Downlink: 606 - 607 -Uplink channels 1-7(RX1) 608 - 609 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 610 - 611 - 612 -1. 613 -11. 614 -111. IN865-867 (IN865) 615 - 616 -Uplink: 617 - 618 -865.0625 - SF7BW125 to SF12BW125 619 - 620 -865.4025 - SF7BW125 to SF12BW125 621 - 622 -865.9850 - SF7BW125 to SF12BW125 623 - 624 - 625 -Downlink: 626 - 627 -Uplink channels 1-3 (RX1) 628 - 629 -866.550 - SF10BW125 (RX2) 630 - 631 - 632 -1. 633 -11. LED Indicator 634 - 635 -The LSE01 has an internal LED which is to show the status of different state. 636 - 637 - 638 -* Blink once when device power on. 639 -* Solid ON for 5 seconds once device successful Join the network. 640 -* Blink once when device transmit a packet. 641 - 642 -1. 643 -11. Installation in Soil 644 - 645 -**Measurement the soil surface** 646 - 647 - 648 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 649 - 650 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 651 - 652 - 653 - 654 - 655 - 656 - 657 - 658 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 659 - 660 - 661 - 555 +((( 662 662 Dig a hole with diameter > 20CM. 557 +))) 663 663 559 +((( 664 664 Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 665 665 564 +[[image:1654506665940-119.png]] 666 666 566 +((( 567 + 568 +))) 667 667 668 668 669 -1. 670 -11. Firmware Change Log 571 +== 2.8 Firmware Change Log == 671 671 672 -**Firmware download link:** 673 673 674 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]574 +Download URL & Firmware Change log 675 675 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 676 676 677 -**Firmware Upgrade Method:** 678 678 679 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 680 680 681 681 682 -**V1.0.** 683 683 684 - Release583 +== 2.9 Battery Analysis == 685 685 585 +=== 2.9.1 Battery Type === 686 686 687 687 688 -1. 689 -11. Battery Analysis 690 -111. Battery Type 588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 691 691 692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 693 693 591 +The battery is designed to last for several years depends on the actually use environment and update interval. 694 694 695 -The battery is designed to last for more than 5 years for the LSN50. 696 696 697 - 698 698 The battery related documents as below: 699 699 700 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],701 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/ downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]702 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 703 703 704 - |(((705 - JST-XH-2P connector600 +((( 601 +[[image:image-20220708140453-6.png]] 706 706 ))) 707 707 708 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 709 709 710 710 606 +=== 2.9.2 Power consumption Analyze === 711 711 712 - 1.713 - 11.714 - 111. Battery Note608 +((( 609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 610 +))) 715 715 716 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 717 717 613 +((( 614 +Instruction to use as below: 615 +))) 718 718 719 - 1.720 -1 1.721 - 111. Replace the battery617 +((( 618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 619 +))) 722 722 723 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 724 724 622 +((( 623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 624 +))) 725 725 726 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 626 +* ((( 627 +Product Model 628 +))) 629 +* ((( 630 +Uplink Interval 631 +))) 632 +* ((( 633 +Working Mode 634 +))) 727 727 636 +((( 637 +And the Life expectation in difference case will be shown on the right. 638 +))) 728 728 729 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)640 +[[image:image-20220708141352-7.jpeg]] 730 730 731 731 732 732 644 +=== 2.9.3 Battery Note === 733 733 646 +((( 647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 648 +))) 734 734 735 735 736 -= 3. Using the AT Commands = 737 737 738 -== 3.1AccessATCommands==652 +=== 2.9.4 Replace the battery === 739 739 654 +((( 655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 656 +))) 740 740 741 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 742 742 743 -[[image:1654501986557-872.png]] 744 744 660 += 3. Access NB-IoT Module = 745 745 746 -Or if you have below board, use below connection: 662 +((( 663 +Users can directly access the AT command set of the NB-IoT module. 664 +))) 747 747 666 +((( 667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 668 +))) 748 748 749 -[[image:165 4502005655-729.png]]670 +[[image:1657261278785-153.png]] 750 750 751 751 752 752 753 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:674 += 4. Using the AT Commands = 754 754 676 +== 4.1 Access AT Commands == 755 755 756 - [[ima ge:1654502050864-459.png]]678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 757 757 758 758 759 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]681 +AT+<CMD>? : Help on <CMD> 760 760 683 +AT+<CMD> : Run <CMD> 761 761 762 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>685 +AT+<CMD>=<value> : Set the value 763 763 764 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>687 +AT+<CMD>=? : Get the value 765 765 766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 767 767 768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 769 - 770 - 771 771 (% style="color:#037691" %)**General Commands**(%%) 772 772 773 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 774 774 775 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 776 776 777 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 778 778 779 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 780 780 700 +AT+CFG : Print all configurations 781 781 782 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 783 783 784 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 785 785 786 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 787 787 788 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 791 791 792 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 793 793 794 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 795 795 796 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 799 799 800 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 801 801 802 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 805 805 806 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 807 807 808 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 811 811 812 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 813 813 814 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 815 815 733 +AT+CLIENT : Get or Set MQTT client 816 816 817 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 818 818 819 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 822 822 823 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 824 824 825 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 826 826 827 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 828 828 829 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 830 830 831 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 832 832 833 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 836 836 837 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 838 838 839 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 842 842 843 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 757 +((( 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 759 +))) 844 844 845 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 846 - 847 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 848 - 849 - 850 -(% style="color:#037691" %)**Information** 851 - 852 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 853 - 854 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 855 - 856 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 857 - 858 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 859 - 860 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 861 - 862 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 863 - 864 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 865 - 866 - 867 -= 4. FAQ = 868 - 869 -== 4.1 How to change the LoRa Frequency Bands/Region? == 870 - 871 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 872 -When downloading the images, choose the required image file for download. 873 - 874 - 875 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 876 - 877 - 878 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 879 - 880 - 881 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 882 - 883 -[[image:image-20220606154726-3.png]] 884 - 885 -When you use the TTN network, the US915 frequency bands use are: 886 - 887 -* 903.9 - SF7BW125 to SF10BW125 888 -* 904.1 - SF7BW125 to SF10BW125 889 -* 904.3 - SF7BW125 to SF10BW125 890 -* 904.5 - SF7BW125 to SF10BW125 891 -* 904.7 - SF7BW125 to SF10BW125 892 -* 904.9 - SF7BW125 to SF10BW125 893 -* 905.1 - SF7BW125 to SF10BW125 894 -* 905.3 - SF7BW125 to SF10BW125 895 -* 904.6 - SF8BW500 896 - 897 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 898 - 899 -(% class="box infomessage" %) 900 900 ((( 901 - **AT+CHE=2**762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 902 902 ))) 903 903 904 -(% class="box infomessage" %) 905 905 ((( 906 - **ATZ**766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 907 907 ))) 908 908 909 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 910 910 911 911 912 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.771 += 6. Trouble Shooting = 913 913 914 - [[image:image-20220606154825-4.png]]773 +== 6.1 Connection problem when uploading firmware == 915 915 916 916 776 +(% class="wikigeneratedid" %) 777 +((( 778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 779 +))) 917 917 918 -= 5. Trouble Shooting = 919 919 920 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 921 921 922 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.783 +== 6.2 AT Command input doesn't work == 923 923 785 +((( 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 787 +))) 924 924 925 -== 5.2 AT Command input doesn’t work == 926 926 927 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 928 928 791 += 7. Order Info = 929 929 930 -== 5.3 Device rejoin in at the second uplink packet == 931 931 932 -(% style="color:#4f81bd" %)** Issue describe as below:**794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 933 933 934 -[[image:1654500909990-784.png]] 935 935 797 +(% class="wikigeneratedid" %) 798 +((( 799 + 800 +))) 936 936 937 - (% style="color:#4f81bd"%)**Causeforthis issue:**802 += 8. Packing Info = 938 938 939 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 804 +((( 805 + 940 940 807 +(% style="color:#037691" %)**Package Includes**: 941 941 942 -(% style="color:#4f81bd" %)**Solution: ** 943 943 944 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 812 +))) 945 945 946 -[[image:1654500929571-736.png]] 814 +((( 815 + 947 947 817 +(% style="color:#037691" %)**Dimension and weight**: 948 948 949 -= 6. Order Info = 950 950 951 - 952 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 953 - 954 - 955 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 956 - 957 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 958 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 959 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 960 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 961 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 962 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 963 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 964 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 965 - 966 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 967 - 968 -* (% style="color:red" %)**4**(%%): 4000mAh battery 969 -* (% style="color:red" %)**8**(%%): 8500mAh battery 970 - 971 -= 7. Packing Info = 972 - 973 -((( 974 -**Package Includes**: 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 975 975 ))) 976 976 977 -* ((( 978 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 979 -))) 980 - 981 981 ((( 982 982 983 -))) 984 984 985 -((( 986 -**Dimension and weight**: 987 -))) 988 988 989 -* ((( 990 -Device Size: cm 828 + 991 991 ))) 992 -* ((( 993 -Device Weight: g 994 -))) 995 -* ((( 996 -Package Size / pcs : cm 997 -))) 998 -* ((( 999 -Weight / pcs : g 1000 -))) 1001 1001 1002 -= 8. Support =831 += 9. Support = 1003 1003 1004 1004 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1005 1005 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1006 - 1007 -
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content