Last modified by Mengting Qiu on 2024/04/02 16:44

From version 20.2
edited by Xiaoling
on 2022/06/06 16:39
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,731 +8,630 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
42 42  
43 -== 1.2 ​Features ==
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
56 56  
57 -== 1.3 Specification ==
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 -
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
72 -
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
75 -
76 -
77 -**LSE01 v1.0 :**  Release
78 -
79 -
80 -
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 -
83 -== 2.1 How it works ==
84 -
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
36 +
87 87  )))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
39 +[[image:1654503236291-817.png]]
92 92  
93 93  
42 +[[image:1657245163077-232.png]]
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
46 +== 1.2 ​Features ==
99 99  
100 -[[image:1654503992078-669.png]]
101 101  
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
53 +* AT Commands to change parameters
54 +* Uplink on periodically
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
62 +== 1.3  Specification ==
104 104  
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
65 +(% style="color:#037691" %)**Common DC Characteristics:**
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
70 +(% style="color:#037691" %)**NB-IoT Spec:**
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
113 113  
114 -**Add APP EUI in the application**
79 +(% style="color:#037691" %)**Probe Specification:**
115 115  
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
116 116  
117 -[[image:1654504596150-405.png]]
83 +[[image:image-20220708101224-1.png]]
118 118  
119 119  
120 120  
121 -**Add APP KEY and DEV EUI**
87 +== ​1.4  Applications ==
122 122  
123 -[[image:1654504683289-357.png]]
89 +* Smart Agriculture
124 124  
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
125 125  
94 +== 1.5  Pin Definitions ==
126 126  
127 -**Step 2**: Power on LSE01
128 128  
97 +[[image:1657246476176-652.png]]
129 129  
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
131 131  
132 -[[image:image-20220606163915-7.png]]
133 133  
101 += 2.  Use NSE01 to communicate with IoT Server =
134 134  
135 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
103 +== 2.1  How it works ==
136 136  
137 -[[image:1654504778294-788.png]]
138 138  
106 +(((
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 +)))
139 139  
140 140  
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
113 +)))
141 141  
142 -1.
143 -11. ​Uplink Payload
144 -111. MOD=0(Default Mode)
115 +[[image:image-20220708101605-2.png]]
145 145  
146 -LSE01 will uplink payload via LoRaWAN with below payload format: 
147 -
148 -
149 -Uplink payload includes in total 11 bytes.
117 +(((
150 150  
151 -
152 -|(((
153 -**Size**
154 -
155 -**(bytes)**
156 -)))|**2**|**2**|**2**|**2**|**2**|**1**
157 -|**Value**|[[BAT>>path:#bat]]|(((
158 -Temperature
159 -
160 -(Reserve, Ignore now)
161 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
162 -MOD & Digital Interrupt
163 -
164 -(Optional)
165 165  )))
166 166  
167 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
168 168  
169 169  
170 -1.
171 -11.
172 -111. MOD=1(Original value)
123 +== 2.2 ​ Configure the NSE01 ==
173 173  
174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
175 175  
176 -|(((
177 -**Size**
126 +=== 2.2.1 Test Requirement ===
178 178  
179 -**(bytes)**
180 -)))|**2**|**2**|**2**|**2**|**2**|**1**
181 -|**Value**|[[BAT>>path:#bat]]|(((
182 -Temperature
183 183  
184 -(Reserve, Ignore now)
185 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
186 -MOD & Digital Interrupt
129 +To use NSE01 in your city, make sure meet below requirements:
187 187  
188 -(Optional)
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134 +
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
189 189  )))
190 190  
191 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
192 192  
193 -1.
194 -11.
195 -111. Battery Info
140 +[[image:1657249419225-449.png]]
196 196  
197 -Check the battery voltage for LSE01.
198 198  
199 -Ex1: 0x0B45 = 2885mV
200 200  
201 -Ex2: 0x0B49 = 2889mV
144 +=== 2.2.2 Insert SIM card ===
202 202  
146 +Insert the NB-IoT Card get from your provider.
203 203  
148 +User need to take out the NB-IoT module and insert the SIM card like below:
204 204  
205 -1.
206 -11.
207 -111. Soil Moisture
208 208  
209 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
151 +[[image:1657249468462-536.png]]
210 210  
211 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
212 212  
213 -**05DC(H) = 1500(D) /100 = 15%.**
214 214  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
215 215  
216 -1.
217 -11.
218 -111. Soil Temperature
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
219 219  
220 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
221 221  
222 -**Example**:
164 +**Connection:**
223 223  
224 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
225 225  
226 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
227 227  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
228 228  
229 -1.
230 -11.
231 -111. Soil Conductivity (EC)
232 232  
233 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
173 +In the PC, use below serial tool settings:
234 234  
235 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
236 236  
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
237 237  
238 -Generally, the EC value of irrigation water is less than 800uS / cm.
185 +[[image:image-20220708110657-3.png]]
239 239  
240 -1.
241 -11.
242 -111. MOD
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
243 243  
244 -Firmware version at least v2.1 supports changing mode.
245 245  
246 -For example, bytes[10]=90
247 247  
248 -mod=(bytes[10]>>7)&0x01=1.
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
249 249  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
250 250  
251 -Downlink Command:
252 252  
253 -If payload = 0x0A00, workmode=0
196 +**Use below commands:**
254 254  
255 -If** **payload =** **0x0A01, workmode=1
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
256 256  
202 +For parameter description, please refer to AT command set
257 257  
258 -1.
259 -11.
260 -111. ​Decode payload in The Things Network
204 +[[image:1657249793983-486.png]]
261 261  
262 -While using TTN network, you can add the payload format to decode the payload.
263 263  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
264 264  
265 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
209 +[[image:1657249831934-534.png]]
266 266  
267 -The payload decoder function for TTN is here:
268 268  
269 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
270 270  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
271 271  
272 -1.
273 -11. Uplink Interval
215 +This feature is supported since firmware version v1.0.1
274 274  
275 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
276 276  
277 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
278 278  
279 -1.
280 -11. ​Downlink Payload
222 +[[image:1657249864775-321.png]]
281 281  
282 -By default, LSE50 prints the downlink payload to console port.
283 283  
284 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
285 -|TDC (Transmit Time Interval)|Any|01|4
286 -|RESET|Any|04|2
287 -|AT+CFM|Any|05|4
288 -|INTMOD|Any|06|4
289 -|MOD|Any|0A|2
225 +[[image:1657249930215-289.png]]
290 290  
291 -**Examples**
292 292  
293 293  
294 -**Set TDC**
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
295 295  
296 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
231 +This feature is supported since firmware version v110
297 297  
298 -Payload:    01 00 00 1E    TDC=30S
299 299  
300 -Payload:    01 00 00 3C    TDC=60S
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
301 301  
242 +[[image:1657249978444-674.png]]
302 302  
303 -**Reset**
304 304  
305 -If payload = 0x04FF, it will reset the LSE01
245 +[[image:1657249990869-686.png]]
306 306  
307 307  
308 -**CFM**
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
309 309  
310 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
311 311  
312 -1.
313 -11. ​Show Data in DataCake IoT Server
314 314  
315 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
254 +=== 2.2.7 Use TCP protocol to uplink data ===
316 316  
256 +This feature is supported since firmware version v110
317 317  
318 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
319 319  
320 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
321 321  
262 +[[image:1657250217799-140.png]]
322 322  
323 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
324 324  
265 +[[image:1657250255956-604.png]]
325 325  
326 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
327 327  
328 328  
269 +=== 2.2.8 Change Update Interval ===
329 329  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
330 330  
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
331 331  
332 -Step 3: Create an account or log in Datacake.
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
333 333  
334 -Step 4: Search the LSE01 and add DevEUI.
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
335 335  
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
338 338  
285 +== 2.3  Uplink Payload ==
339 339  
287 +In this mode, uplink payload includes in total 18 bytes
340 340  
341 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
342 342  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
343 343  
344 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
345 345  
298 +[[image:image-20220708111918-4.png]]
346 346  
347 347  
348 -1.
349 -11. Frequency Plans
301 +The payload is ASCII string, representative same HEX:
350 350  
351 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
303 +0x72403155615900640c7817075e0a8c02f900 where:
352 352  
353 -1.
354 -11.
355 -111. EU863-870 (EU868)
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
356 356  
357 -Uplink:
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
358 358  
359 -868.1 - SF7BW125 to SF12BW125
315 +== 2.4  Payload Explanation and Sensor Interface ==
360 360  
361 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
362 362  
363 -868.5 - SF7BW125 to SF12BW125
318 +=== 2.4.1  Device ID ===
364 364  
365 -867.1 - SF7BW125 to SF12BW125
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
366 366  
367 -867.3 - SF7BW125 to SF12BW125
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
368 368  
369 -867.5 - SF7BW125 to SF12BW125
324 +**Example:**
370 370  
371 -867.7 - SF7BW125 to SF12BW125
326 +AT+DEUI=A84041F15612
372 372  
373 -867.9 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
374 374  
375 -868.8 - FSK
376 376  
377 377  
378 -Downlink:
332 +=== 2.4.2  Version Info ===
379 379  
380 -Uplink channels 1-9 (RX1)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
381 381  
382 -869.525 - SF9BW125 (RX2 downlink only)
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
383 383  
384 384  
385 -1.
386 -11.
387 -111. US902-928(US915)
388 388  
389 -Used in USA, Canada and South America. Default use CHE=2
340 +=== 2.4.3  Battery Info ===
390 390  
391 -Uplink:
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
392 392  
393 -903.9 - SF7BW125 to SF10BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
394 394  
395 -904.1 - SF7BW125 to SF10BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
396 396  
397 -904.3 - SF7BW125 to SF10BW125
398 398  
399 -904.5 - SF7BW125 to SF10BW125
400 400  
401 -904.7 - SF7BW125 to SF10BW125
356 +=== 2.4. Signal Strength ===
402 402  
403 -904.9 - SF7BW125 to SF10BW125
358 +NB-IoT Network signal Strength.
404 404  
405 -905.1 - SF7BW125 to SF10BW125
360 +**Ex1: 0x1d = 29**
406 406  
407 -905.3 - SF7BW125 to SF10BW125
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
408 408  
364 +(% style="color:blue" %)**1**(%%)  -111dBm
409 409  
410 -Downlink:
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
411 411  
412 -923.3 - SF7BW500 to SF12BW500
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
413 413  
414 -923.9 - SF7BW500 to SF12BW500
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
415 415  
416 -924.5 - SF7BW500 to SF12BW500
417 417  
418 -925.1 - SF7BW500 to SF12BW500
419 419  
420 -925.7 - SF7BW500 to SF12BW500
374 +=== 2.4.5  Soil Moisture ===
421 421  
422 -926.3 - SF7BW500 to SF12BW500
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
423 423  
424 -926.9 - SF7BW500 to SF12BW500
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
425 425  
426 -927.5 - SF7BW500 to SF12BW500
384 +(((
385 +
386 +)))
427 427  
428 -923.3 - SF12BW500(RX2 downlink only)
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
429 429  
430 430  
431 -1.
432 -11.
433 -111. CN470-510 (CN470)
434 434  
435 -Used in China, Default use CHE=1
394 +=== 2.4.6  Soil Temperature ===
436 436  
437 -Uplink:
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
438 438  
439 -486.3 - SF7BW125 to SF12BW125
400 +(((
401 +**Example**:
402 +)))
440 440  
441 -486.5 - SF7BW125 to SF12BW125
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
442 442  
443 -486.7 - SF7BW125 to SF12BW125
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
444 444  
445 -486.9 - SF7BW125 to SF12BW125
446 446  
447 -487.1 - SF7BW125 to SF12BW125
448 448  
449 -487.3 - SF7BW125 to SF12BW125
414 +=== 2.4. Soil Conductivity (EC) ===
450 450  
451 -487.5 - SF7BW125 to SF12BW125
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
452 452  
453 -487.7 - SF7BW125 to SF12BW125
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
454 454  
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
455 455  
456 -Downlink:
428 +(((
429 +
430 +)))
457 457  
458 -506.7 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
459 459  
460 -506.9 - SF7BW125 to SF12BW125
436 +=== 2.4.8  Digital Interrupt ===
461 461  
462 -507.1 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
463 463  
464 -507.3 - SF7BW125 to SF12BW125
440 +The command is:
465 465  
466 -507.5 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
467 467  
468 -507.7 - SF7BW125 to SF12BW125
469 469  
470 -507.9 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
471 471  
472 -508.1 - SF7BW125 to SF12BW125
473 473  
474 -505.3 - SF12BW125 (RX2 downlink only)
448 +Example:
475 475  
450 +0x(00): Normal uplink packet.
476 476  
477 -1.
478 -11.
479 -111. AU915-928(AU915)
452 +0x(01): Interrupt Uplink Packet.
480 480  
481 -Default use CHE=2
482 482  
483 -Uplink:
484 484  
485 -916.8 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
486 486  
487 -917.0 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
488 488  
489 -917.2 - SF7BW125 to SF12BW125
490 490  
491 -917.4 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
492 492  
493 -917.6 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
494 494  
495 -917.8 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
496 496  
497 -918.0 - SF7BW125 to SF12BW125
498 498  
499 -918.2 - SF7BW125 to SF12BW125
500 500  
469 +== 2.5  Downlink Payload ==
501 501  
502 -Downlink:
471 +By default, NSE01 prints the downlink payload to console port.
503 503  
504 -923.3 - SF7BW500 to SF12BW500
473 +[[image:image-20220708133731-5.png]]
505 505  
506 -923.9 - SF7BW500 to SF12BW500
507 507  
508 -924.5 - SF7BW500 to SF12BW500
509 509  
510 -925.1 - SF7BW500 to SF12BW500
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
511 511  
512 -925.7 - SF7BW500 to SF12BW500
481 +(((
482 +
483 +)))
513 513  
514 -926.3 - SF7BW500 to SF12BW500
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
515 515  
516 -926.9 - SF7BW500 to SF12BW500
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
517 517  
518 -927.5 - SF7BW500 to SF12BW500
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
519 519  
520 -923.3 - SF12BW500(RX2 downlink only)
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
521 521  
522 -1.
523 -11.
524 -111. AS920-923 & AS923-925 (AS923)
501 +(((
502 +
503 +)))
525 525  
526 -**Default Uplink channel:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
527 527  
528 -923.2 - SF7BW125 to SF10BW125
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
529 529  
530 -923.4 - SF7BW125 to SF10BW125
531 531  
514 +* (% style="color:blue" %)**INTMOD**
532 532  
533 -**Additional Uplink Channel**:
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
534 534  
535 -(OTAA mode, channel added by JoinAccept message)
536 536  
537 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
538 538  
539 -922.2 - SF7BW125 to SF10BW125
520 +== 2. ​LED Indicator ==
540 540  
541 -922.4 - SF7BW125 to SF10BW125
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
542 542  
543 -922.6 - SF7BW125 to SF10BW125
544 544  
545 -922.8 - SF7BW125 to SF10BW125
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
546 546  
547 -923.0 - SF7BW125 to SF10BW125
548 548  
549 -922.0 - SF7BW125 to SF10BW125
550 550  
551 551  
552 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
535 +== 2.7  Installation in Soil ==
553 553  
554 -923.6 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
555 555  
556 -923.8 - SF7BW125 to SF10BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
557 557  
558 -924.0 - SF7BW125 to SF10BW125
541 +[[image:1657259653666-883.png]] ​
559 559  
560 -924.2 - SF7BW125 to SF10BW125
561 561  
562 -924.4 - SF7BW125 to SF10BW125
544 +(((
545 +
563 563  
564 -924.6 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
565 565  
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
566 566  
556 +[[image:1654506665940-119.png]]
567 567  
568 -**Downlink:**
558 +(((
559 +
560 +)))
569 569  
570 -Uplink channels 1-8 (RX1)
571 571  
572 -923.2 - SF10BW125 (RX2)
563 +== 2. Firmware Change Log ==
573 573  
574 574  
575 -1.
576 -11.
577 -111. KR920-923 (KR920)
566 +Download URL & Firmware Change log
578 578  
579 -Default channel:
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
580 580  
581 -922.1 - SF7BW125 to SF12BW125
582 582  
583 -922.3 - SF7BW125 to SF12BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
584 584  
585 -922.5 - SF7BW125 to SF12BW125
586 586  
587 587  
588 -Uplink: (OTAA mode, channel added by JoinAccept message)
575 +== 2.9  ​Battery Analysis ==
589 589  
590 -922.1 - SF7BW125 to SF12BW125
577 +=== 2.9.1  Battery Type ===
591 591  
592 -922.3 - SF7BW125 to SF12BW125
593 593  
594 -922.5 - SF7BW125 to SF12BW125
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
595 595  
596 -922.7 - SF7BW125 to SF12BW125
597 597  
598 -922.9 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
599 599  
600 -923.1 - SF7BW125 to SF12BW125
601 601  
602 -923.3 - SF7BW125 to SF12BW125
586 +The battery related documents as below:
603 603  
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
604 604  
605 -Downlink:
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
606 606  
607 -Uplink channels 1-7(RX1)
608 608  
609 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
610 610  
598 +2.9.2 
611 611  
612 -1.
613 -11.
614 -111. IN865-867 (IN865)
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
615 615  
616 -Uplink:
617 617  
618 -865.0625 - SF7BW125 to SF12BW125
603 +Instruction to use as below:
619 619  
620 -865.4025 - SF7BW125 to SF12BW125
621 621  
622 -865.9850 - SF7BW125 to SF12BW125
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
623 623  
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
624 624  
625 -Downlink:
626 626  
627 -Uplink channels 1-3 (RX1)
611 +Step 2: Open it and choose
628 628  
629 -866.550 - SF10BW125 (RX2)
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
630 630  
617 +And the Life expectation in difference case will be shown on the right.
631 631  
632 -1.
633 -11. LED Indicator
634 634  
635 -The LSE01 has an internal LED which is to show the status of different state.
636 636  
621 +=== 2.9.3  ​Battery Note ===
637 637  
638 -* Blink once when device power on.
639 -* Solid ON for 5 seconds once device successful Join the network.
640 -* Blink once when device transmit a packet.
641 -
642 -1.
643 -11. Installation in Soil
644 -
645 -**Measurement the soil surface**
646 -
647 -
648 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
649 -
650 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
651 -
652 -
653 -
654 -
655 -
656 -
657 -
658 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
659 -
660 -
661 -
662 -Dig a hole with diameter > 20CM.
663 -
664 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
665 -
666 -
667 -
668 -
669 -1.
670 -11. ​Firmware Change Log
671 -
672 -**Firmware download link:**
673 -
674 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
675 -
676 -
677 -**Firmware Upgrade Method:**
678 -
679 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
680 -
681 -
682 -**V1.0.**
683 -
684 -Release
685 -
686 -
687 -
688 -1.
689 -11. ​Battery Analysis
690 -111. ​Battery Type
691 -
692 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
693 -
694 -
695 -The battery is designed to last for more than 5 years for the LSN50.
696 -
697 -
698 -The battery related documents as below:
699 -
700 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
701 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
702 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
703 -
704 -|(((
705 -JST-XH-2P connector
623 +(((
624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
706 706  )))
707 707  
708 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
709 709  
710 710  
629 +=== 2.9.4  Replace the battery ===
711 711  
712 -1.
713 -11.
714 -111. ​Battery Note
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
715 715  
716 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
717 717  
718 718  
719 -1.
720 -11.
721 -111. ​Replace the battery
722 -
723 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
724 -
725 -
726 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
727 -
728 -
729 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 -
731 -
732 -
733 -
734 -
735 -
736 736  = 3. ​Using the AT Commands =
737 737  
738 738  == 3.1 Access AT Commands ==
... ... @@ -740,13 +740,13 @@
740 740  
741 741  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
742 742  
743 -[[image:1654501986557-872.png]]
642 +[[image:1654501986557-872.png||height="391" width="800"]]
744 744  
745 745  
746 746  Or if you have below board, use below connection:
747 747  
748 748  
749 -[[image:1654502005655-729.png]]
648 +[[image:1654502005655-729.png||height="503" width="801"]]
750 750  
751 751  
752 752  
... ... @@ -753,10 +753,10 @@
753 753  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
754 754  
755 755  
756 - [[image:1654502050864-459.png]]
655 + [[image:1654502050864-459.png||height="564" width="806"]]
757 757  
758 758  
759 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
760 760  
761 761  
762 762  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -868,20 +868,38 @@
868 868  
869 869  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
870 870  
871 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
770 +(((
771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
872 872  When downloading the images, choose the required image file for download. ​
773 +)))
873 873  
775 +(((
776 +
777 +)))
874 874  
779 +(((
875 875  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
781 +)))
876 876  
783 +(((
784 +
785 +)))
877 877  
787 +(((
878 878  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
789 +)))
879 879  
791 +(((
792 +
793 +)))
880 880  
795 +(((
881 881  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
797 +)))
882 882  
883 883  [[image:image-20220606154726-3.png]]
884 884  
801 +
885 885  When you use the TTN network, the US915 frequency bands use are:
886 886  
887 887  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -894,37 +894,47 @@
894 894  * 905.3 - SF7BW125 to SF10BW125
895 895  * 904.6 - SF8BW500
896 896  
814 +(((
897 897  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
898 898  
899 -(% class="box infomessage" %)
900 -(((
901 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
902 902  )))
903 903  
904 -(% class="box infomessage" %)
905 905  (((
906 -**ATZ**
907 -)))
822 +
908 908  
909 909  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
825 +)))
910 910  
827 +(((
828 +
829 +)))
911 911  
831 +(((
912 912  The **AU915** band is similar. Below are the AU915 Uplink Channels.
833 +)))
913 913  
914 914  [[image:image-20220606154825-4.png]]
915 915  
916 916  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
917 917  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
918 918  = 5. Trouble Shooting =
919 919  
920 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
921 921  
922 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
923 923  
924 924  
925 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
926 926  
927 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
852 +(((
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
854 +)))
928 928  
929 929  
930 930  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -936,7 +936,9 @@
936 936  
937 937  (% style="color:#4f81bd" %)**Cause for this issue:**
938 938  
866 +(((
939 939  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
868 +)))
940 940  
941 941  
942 942  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -943,7 +943,7 @@
943 943  
944 944  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
945 945  
946 -[[image:1654500929571-736.png]]
875 +[[image:1654500929571-736.png||height="458" width="832"]]
947 947  
948 948  
949 949  = 6. ​Order Info =
... ... @@ -968,10 +968,17 @@
968 968  * (% style="color:red" %)**4**(%%): 4000mAh battery
969 969  * (% style="color:red" %)**8**(%%): 8500mAh battery
970 970  
900 +(% class="wikigeneratedid" %)
901 +(((
902 +
903 +)))
904 +
971 971  = 7. Packing Info =
972 972  
973 973  (((
974 -**Package Includes**:
908 +
909 +
910 +(% style="color:#037691" %)**Package Includes**:
975 975  )))
976 976  
977 977  * (((
... ... @@ -980,10 +980,8 @@
980 980  
981 981  (((
982 982  
983 -)))
984 984  
985 -(((
986 -**Dimension and weight**:
920 +(% style="color:#037691" %)**Dimension and weight**:
987 987  )))
988 988  
989 989  * (((
... ... @@ -997,6 +997,8 @@
997 997  )))
998 998  * (((
999 999  Weight / pcs : g
934 +
935 +
1000 1000  )))
1001 1001  
1002 1002  = 8. Support =
... ... @@ -1003,5 +1003,3 @@
1003 1003  
1004 1004  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1005 1005  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1006 -
1007 -
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content