<
From version < 20.2 >
edited by Xiaoling
on 2022/06/06 16:39
To version < 6.2 >
edited by Xiaoling
on 2022/06/06 15:36
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,7 @@
1 1  (% style="text-align:center" %)
2 2  [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3 3  
4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
4 4  
5 5  
6 6  
... ... @@ -8,40 +8,44 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
23 -(((
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +1. Introduction
24 +11. ​What is LoRaWAN Soil Moisture & EC Sensor
25 +
26 +The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
27 +
28 +
29 +It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server.
30 +
31 +
24 24  The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
35 +LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years.
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
41 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
40 40  
41 41  
44 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
42 42  
43 -== 1.2 ​Features ==
44 44  
47 +
48 +*
49 +*1. ​Features
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 47  * Monitor Soil Moisture
... ... @@ -54,50 +54,63 @@
54 54  * IP66 Waterproof Enclosure
55 55  * 4000mAh or 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
62 +1.
63 +11. Specification
58 58  
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
67 +|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
68 +|**Range**|**0-100.00%**|(((
69 +**0-20000uS/cm**
62 62  
71 +**(25℃)(0-20.0EC)**
72 +)))|**-40.00℃~85.00℃**
73 +|**Unit**|**V/V %,**|**uS/cm,**|**℃**
74 +|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
75 +|**Accuracy**|(((
76 +**±3% (0-53%)**
63 63  
78 +**±5% (>53%)**
79 +)))|**2%FS,**|(((
80 +**-10℃~50℃:<0.3℃**
64 64  
65 -== ​1.4 Applications ==
82 +**All other: <0.6℃**
83 +)))
84 +|(((
85 +**Measure**
66 66  
87 +**Method**
88 +)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
89 +
90 +*
91 +*1. ​Applications
67 67  * Smart Agriculture
68 68  
94 +1.
95 +11. ​Firmware Change log
69 69  
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
97 +**LSE01 v1.0:**
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
99 +* Release
75 75  
101 +1. Configure LSE01 to connect to LoRaWAN network
102 +11. How it works
76 76  
77 -**LSE01 v1.0 :**  Release
104 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
78 78  
79 79  
107 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 82  
83 -== 2.1 How it works ==
84 84  
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 -)))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
112 +1.
113 +11. ​Quick guide to connect to LoRaWAN server (OTAA)
92 92  
93 -
94 -
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 -
97 97  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
99 99  
100 -[[image:1654503992078-669.png]]
118 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
101 101  
102 102  
103 103  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
... ... @@ -107,34 +107,49 @@
107 107  
108 108  Each LSE01 is shipped with a sticker with the default device EUI as below:
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
111 111  
129 +
130 +
112 112  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
113 113  
133 +
114 114  **Add APP EUI in the application**
115 115  
116 116  
117 -[[image:1654504596150-405.png]]
137 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
118 118  
119 119  
120 120  
121 121  **Add APP KEY and DEV EUI**
122 122  
123 -[[image:1654504683289-357.png]]
124 124  
144 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
125 125  
146 +|(((
147 +
148 +)))
126 126  
150 +
127 127  **Step 2**: Power on LSE01
128 128  
129 129  
130 130  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
131 131  
132 -[[image:image-20220606163915-7.png]]
133 133  
134 134  
158 +|(((
159 +
160 +)))
161 +
162 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
163 +
164 +
165 +
166 +
167 +
135 135  **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
136 136  
137 -[[image:1654504778294-788.png]]
170 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
138 138  
139 139  
140 140  
... ... @@ -168,7 +168,7 @@
168 168  
169 169  
170 170  1.
171 -11.
204 +11.
172 172  111. MOD=1(Original value)
173 173  
174 174  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
... ... @@ -191,7 +191,7 @@
191 191  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
192 192  
193 193  1.
194 -11.
227 +11.
195 195  111. Battery Info
196 196  
197 197  Check the battery voltage for LSE01.
... ... @@ -202,8 +202,8 @@
202 202  
203 203  
204 204  
205 -1.
206 -11.
238 +1.
239 +11.
207 207  111. Soil Moisture
208 208  
209 209  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
... ... @@ -213,8 +213,8 @@
213 213  **05DC(H) = 1500(D) /100 = 15%.**
214 214  
215 215  
216 -1.
217 -11.
249 +1.
250 +11.
218 218  111. Soil Temperature
219 219  
220 220   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
... ... @@ -226,8 +226,8 @@
226 226  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
227 227  
228 228  
229 -1.
230 -11.
262 +1.
263 +11.
231 231  111. Soil Conductivity (EC)
232 232  
233 233  Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -237,8 +237,8 @@
237 237  
238 238  Generally, the EC value of irrigation water is less than 800uS / cm.
239 239  
240 -1.
241 -11.
273 +1.
274 +11.
242 242  111. MOD
243 243  
244 244  Firmware version at least v2.1 supports changing mode.
... ... @@ -255,8 +255,8 @@
255 255  If** **payload =** **0x0A01, workmode=1
256 256  
257 257  
258 -1.
259 -11.
291 +1.
292 +11.
260 260  111. ​Decode payload in The Things Network
261 261  
262 262  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -269,7 +269,7 @@
269 269  LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
270 270  
271 271  
272 -1.
305 +1.
273 273  11. Uplink Interval
274 274  
275 275  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
... ... @@ -276,7 +276,7 @@
276 276  
277 277  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
278 278  
279 -1.
312 +1.
280 280  11. ​Downlink Payload
281 281  
282 282  By default, LSE50 prints the downlink payload to console port.
... ... @@ -309,7 +309,7 @@
309 309  
310 310  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
311 311  
312 -1.
345 +1.
313 313  11. ​Show Data in DataCake IoT Server
314 314  
315 315  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
... ... @@ -350,8 +350,8 @@
350 350  
351 351  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
352 352  
353 -1.
354 -11.
386 +1.
387 +11.
355 355  111. EU863-870 (EU868)
356 356  
357 357  Uplink:
... ... @@ -382,8 +382,8 @@
382 382  869.525 - SF9BW125 (RX2 downlink only)
383 383  
384 384  
385 -1.
386 -11.
418 +1.
419 +11.
387 387  111. US902-928(US915)
388 388  
389 389  Used in USA, Canada and South America. Default use CHE=2
... ... @@ -428,8 +428,8 @@
428 428  923.3 - SF12BW500(RX2 downlink only)
429 429  
430 430  
431 -1.
432 -11.
464 +1.
465 +11.
433 433  111. CN470-510 (CN470)
434 434  
435 435  Used in China, Default use CHE=1
... ... @@ -474,8 +474,8 @@
474 474  505.3 - SF12BW125 (RX2 downlink only)
475 475  
476 476  
477 -1.
478 -11.
510 +1.
511 +11.
479 479  111. AU915-928(AU915)
480 480  
481 481  Default use CHE=2
... ... @@ -519,8 +519,8 @@
519 519  
520 520  923.3 - SF12BW500(RX2 downlink only)
521 521  
522 -1.
523 -11.
555 +1.
556 +11.
524 524  111. AS920-923 & AS923-925 (AS923)
525 525  
526 526  **Default Uplink channel:**
... ... @@ -572,8 +572,8 @@
572 572  923.2 - SF10BW125 (RX2)
573 573  
574 574  
575 -1.
576 -11.
608 +1.
609 +11.
577 577  111. KR920-923 (KR920)
578 578  
579 579  Default channel:
... ... @@ -609,8 +609,8 @@
609 609  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
610 610  
611 611  
612 -1.
613 -11.
645 +1.
646 +11.
614 614  111. IN865-867 (IN865)
615 615  
616 616  Uplink:
... ... @@ -629,7 +629,7 @@
629 629  866.550 - SF10BW125 (RX2)
630 630  
631 631  
632 -1.
665 +1.
633 633  11. LED Indicator
634 634  
635 635  The LSE01 has an internal LED which is to show the status of different state.
... ... @@ -639,7 +639,7 @@
639 639  * Solid ON for 5 seconds once device successful Join the network.
640 640  * Blink once when device transmit a packet.
641 641  
642 -1.
675 +1.
643 643  11. Installation in Soil
644 644  
645 645  **Measurement the soil surface**
... ... @@ -666,7 +666,7 @@
666 666  
667 667  
668 668  
669 -1.
702 +1.
670 670  11. ​Firmware Change Log
671 671  
672 672  **Firmware download link:**
... ... @@ -685,7 +685,7 @@
685 685  
686 686  
687 687  
688 -1.
721 +1.
689 689  11. ​Battery Analysis
690 690  111. ​Battery Type
691 691  
... ... @@ -709,15 +709,15 @@
709 709  
710 710  
711 711  
712 -1.
713 -11.
745 +1.
746 +11.
714 714  111. ​Battery Note
715 715  
716 716  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
717 717  
718 718  
719 -1.
720 -11.
752 +1.
753 +11.
721 721  111. ​Replace the battery
722 722  
723 723  If Battery is lower than 2.7v, user should replace the battery of LSE01.
... ... @@ -733,155 +733,173 @@
733 733  
734 734  
735 735  
736 -= 3. ​Using the AT Commands =
769 +1. ​Using the AT Commands
770 +11. ​Access AT Commands
737 737  
738 -== 3.1 Access AT Commands ==
739 -
740 -
741 741  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
742 742  
743 -[[image:1654501986557-872.png]]
774 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
744 744  
745 745  
746 746  Or if you have below board, use below connection:
747 747  
748 748  
749 -[[image:1654502005655-729.png]]
780 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
750 750  
751 751  
752 752  
753 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
784 +In the PC, you need to set the serial baud rate to **9600** to access the serial console for LSE01. LSE01 will output system info once power on as below:
754 754  
755 755  
756 - [[image:1654502050864-459.png]]
787 + [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
757 757  
758 758  
759 759  Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
760 760  
761 761  
762 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
793 +AT+<CMD>?        : Help on <CMD>
763 763  
764 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
795 +AT+<CMD>         : Run <CMD>
765 765  
766 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
797 +AT+<CMD>=<value> : Set the value
767 767  
768 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
799 +AT+<CMD>=?       : Get the value
769 769  
770 770  
771 -(% style="color:#037691" %)**General Commands**(%%)      
802 +**General Commands**      
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
804 +AT                    : Attention       
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
806 +AT?                            : Short Help     
776 776  
777 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
808 +ATZ                            : MCU Reset    
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
810 +AT+TDC           : Application Data Transmission Interval 
780 780  
781 781  
782 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
813 +**Keys, IDs and EUIs management**
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
815 +AT+APPEUI              : Application EUI      
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
817 +AT+APPKEY              : Application Key     
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
819 +AT+APPSKEY            : Application Session Key
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
821 +AT+DADDR              : Device Address     
791 791  
792 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
823 +AT+DEUI                   : Device EUI     
793 793  
794 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
825 +AT+NWKID               : Network ID (You can enter this command change only after successful network connection) 
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
827 +AT+NWKSKEY          : Network Session Key Joining and sending date on LoRa network  
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
829 +AT+CFM          : Confirm Mode       
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
831 +AT+CFS                     : Confirm Status       
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
833 +AT+JOIN          : Join LoRa? Network       
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
835 +AT+NJM          : LoRa? Network Join Mode    
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
837 +AT+NJS                     : LoRa? Network Join Status    
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
839 +AT+RECV                  : Print Last Received Data in Raw Format
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
841 +AT+RECVB                : Print Last Received Data in Binary Format      
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
843 +AT+SEND                  : Send Text Data      
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
845 +AT+SENB                  : Send Hexadecimal Data
815 815  
816 816  
817 -(% style="color:#037691" %)**LoRa Network Management**
848 +**LoRa Network Management**
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
850 +AT+ADR          : Adaptive Rate
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
852 +AT+CLASS                : LoRa Class(Currently only support class A
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
854 +AT+DCS           : Duty Cycle Setting 
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
856 +AT+DR                      : Data Rate (Can Only be Modified after ADR=0)     
826 826  
827 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
858 +AT+FCD           : Frame Counter Downlink       
828 828  
829 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
860 +AT+FCU           : Frame Counter Uplink   
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
862 +AT+JN1DL                : Join Accept Delay1
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
864 +AT+JN2DL                : Join Accept Delay2
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
866 +AT+PNM                   : Public Network Mode   
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
868 +AT+RX1DL                : Receive Delay1      
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
870 +AT+RX2DL                : Receive Delay2      
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
872 +AT+RX2DR               : Rx2 Window Data Rate 
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
874 +AT+RX2FQ               : Rx2 Window Frequency
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
876 +AT+TXP           : Transmit Power
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
878 +AT+ MOD                 : Set work mode
848 848  
849 849  
850 -(% style="color:#037691" %)**Information** 
881 +**Information** 
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
883 +AT+RSSI           : RSSI of the Last Received Packet   
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
885 +AT+SNR           : SNR of the Last Received Packet   
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
887 +AT+VER           : Image Version and Frequency Band       
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
889 +AT+FDR           : Factory Data Reset
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
891 +AT+PORT                  : Application Port    
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
893 +AT+CHS           : Get or Set Frequency (Unit: Hz) for Single Channel Mode
863 863  
864 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
895 + AT+CHE                   : Get or Set eight channels mode, Only for US915, AU915, CN470
865 865  
866 866  
867 -= ​4. FAQ =
868 868  
869 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
870 870  
900 +
901 +
902 +
903 +1. ​FAQ
904 +11. ​How to change the LoRa Frequency Bands/Region?
905 +
871 871  You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
872 872  When downloading the images, choose the required image file for download. ​
873 873  
874 874  
875 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
876 876  
911 +How to set up LSE01 to work in 8 channel mode
877 877  
913 +By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
914 +
915 +
878 878  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
879 879  
880 880  
919 +
881 881  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
882 882  
883 -[[image:image-20220606154726-3.png]]
884 884  
923 +|CHE|(% colspan="9" %)US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)
924 +|0|(% colspan="9" %)ENABLE Channel 0-63
925 +|1|902.3|902.5|902.7|902.9|903.1|903.3|903.5|903.7|Channel 0-7
926 +|2|903.9|904.1|904.3|904.5|904.7|904.9|905.1|905.3|Channel 8-15
927 +|3|905.5|905.7|905.9|906.1|906.3|906.5|906.7|906.9|Channel 16-23
928 +|4|907.1|907.3|907.5|907.7|907.9|908.1|908.3|908.5|Channel 24-31
929 +|5|908.7|908.9|909.1|909.3|909.5|909.7|909.9|910.1|Channel 32-39
930 +|6|910.3|910.5|910.7|910.9|911.1|911.3|911.5|911.7|Channel 40-47
931 +|7|911.9|912.1|912.3|912.5|912.7|912.9|913.1|913.3|Channel 48-55
932 +|8|913.5|913.7|913.9|914.1|914.3|914.5|914.7|914.9|Channel 56-63
933 +|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0)
934 +| |903|904.6|906.2|907.8|909.4|911|912.6|914.2|Channel 64-71
935 +
885 885  When you use the TTN network, the US915 frequency bands use are:
886 886  
887 887  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -896,15 +896,9 @@
896 896  
897 897  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
898 898  
899 -(% class="box infomessage" %)
900 -(((
901 901  **AT+CHE=2**
902 -)))
903 903  
904 -(% class="box infomessage" %)
905 -(((
906 906  **ATZ**
907 -)))
908 908  
909 909  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
910 910  
... ... @@ -911,12 +911,25 @@
911 911  
912 912  The **AU915** band is similar. Below are the AU915 Uplink Channels.
913 913  
914 -[[image:image-20220606154825-4.png]]
915 915  
960 +|CHE|(% colspan="9" %)AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)
961 +|0|(% colspan="9" %)ENABLE Channel 0-63
962 +|1|915.2|915.4|915.6|915.8|916|916.2|916.4|916.6|Channel 0-7
963 +|2|916.8|917|917.2|917.4|917.6|917.8|918|918.2|Channel 8-15
964 +|3|918.4|918.6|918.8|919|919.2|919.4|919.6|919.8|Channel 16-23
965 +|4|920|920.2|920.4|920.6|920.8|921|921.2|921.4|Channel 24-31
966 +|5|921.6|921.8|922|922.2|922.4|922.6|922.8|923|Channel 32-39
967 +|6|923.2|923.4|923.6|923.8|924|924.2|924.4|924.6|Channel 40-47
968 +|7|924.8|925|925.2|925.4|925.6|925.8|926|926.2|Channel 48-55
969 +|8|926.4|926.6|926.8|927|927.2|927.4|927.6|927.8|Channel 56-63
970 +|(% colspan="10" %)Channels(500KHz,4/5,Unit:MHz,CHS=0)
971 +| |915.9|917.5|919.1|920.7|922.3|923.9|925.5|927.1|Channel 64-71
916 916  
917 917  
974 +
918 918  = 5. Trouble Shooting =
919 919  
977 +
920 920  == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
921 921  
922 922  It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1654501986557-872.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -767.2 KB
Content
1654502005655-729.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -915.0 KB
Content
1654502050864-459.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -174.6 KB
Content
1654503236291-817.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -685.6 KB
Content
1654503265560-120.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1654503992078-669.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.4 KB
Content
image-20220606154726-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -35.1 KB
Content
image-20220606154825-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -35.3 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.8 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0