Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 35 added, 0 removed)
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,1003 +8,827 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 56 +* Ultra-Low Power consumption 57 +* AT Commands to change parameters 58 +* Micro SIM card slot for NB-IoT SIM 59 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 62 62 64 +== 1.3 Specification == 63 63 64 64 65 - ==1.4 Applications==67 +(% style="color:#037691" %)**Common DC Characteristics:** 66 66 67 -* Smart Agriculture 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 68 68 69 69 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 72 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 74 +(% style="color:#037691" %)**NB-IoT Spec:** 75 75 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 76 76 77 -**LSE01 v1.0 :** Release 78 78 79 79 85 +Probe(% style="color:#037691" %)** Specification:** 80 80 81 - =2. ConfigureLSE01toconnecttoLoRaWANnetwork=87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 - ==2.1How it works ==89 +[[image:image-20220708101224-1.png]] 84 84 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 92 92 93 +== 1.4 Applications == 93 93 95 +* Smart Agriculture 94 94 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 98 + 96 96 97 - Followingisan examplefor how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.100 +== 1.5 Pin Definitions == 98 98 99 99 100 -[[image:165 4503992078-669.png]]103 +[[image:1657246476176-652.png]] 101 101 102 102 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 104 107 += 2. Use NSE01 to communicate with IoT Server = 105 105 106 - **Step1**:Createa device in TTN withthe OTAAkeysfrom LSE01.109 +== 2.1 How it works == 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 110 -[[image:image-20220606163732-6.jpeg]] 112 +((( 113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 114 +))) 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 113 113 114 -**Add APP EUI in the application** 117 +((( 118 +The diagram below shows the working flow in default firmware of NSE01: 119 +))) 115 115 121 +[[image:image-20220708101605-2.png]] 116 116 117 -[[image:1654504596150-405.png]] 123 +((( 124 + 125 +))) 118 118 119 119 120 120 121 - **AddAPPKEYandDEVEUI**129 +== 2.2 Configure the NSE01 == 122 122 123 -[[image:1654504683289-357.png]] 124 124 132 +=== 2.2.1 Test Requirement === 125 125 126 126 127 - **Step2**:PoweronLSE01135 +To use NSE01 in your city, make sure meet below requirements: 128 128 137 +* Your local operator has already distributed a NB-IoT Network there. 138 +* The local NB-IoT network used the band that NSE01 supports. 139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 129 129 130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 141 +((( 142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 143 +))) 131 131 132 -[[image:image-20220606163915-7.png]] 133 133 146 +[[image:1657249419225-449.png]] 134 134 135 135 136 136 150 +=== 2.2.2 Insert SIM card === 137 137 138 - **Step 3:** The LSE01 will autojointo theTTNnetwork.Afterjoin success, itwill start touploadmessagesto TTN andyoucan see the messagesin thepanel.152 +Insert the NB-IoT Card get from your provider. 139 139 140 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]154 +User need to take out the NB-IoT module and insert the SIM card like below: 141 141 142 142 157 +[[image:1657249468462-536.png]] 143 143 144 144 145 -1. 146 -11. Uplink Payload 147 -111. MOD=0(Default Mode) 148 148 149 - LSE01willuplinkpayloadviaLoRaWANwith belowpayloadformat:161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 150 150 151 - 152 -Uplink payload includes in total 11 bytes. 153 - 154 - 155 -|((( 156 -**Size** 157 - 158 -**(bytes)** 159 -)))|**2**|**2**|**2**|**2**|**2**|**1** 160 -|**Value**|[[BAT>>path:#bat]]|((( 161 -Temperature 162 - 163 -(Reserve, Ignore now) 164 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 165 -MOD & Digital Interrupt 166 - 167 -(Optional) 163 +((( 164 +((( 165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 168 168 ))) 169 - 170 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 171 - 172 - 173 -1. 174 -11. 175 -111. MOD=1(Original value) 176 - 177 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 178 - 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>path:#bat]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 192 ))) 193 193 194 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 195 195 196 -1. 197 -11. 198 -111. Battery Info 170 +**Connection:** 199 199 200 - Checkthettery voltage forLSE01.172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 201 201 202 - Ex1:0x0B45=2885mV174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 203 203 204 - Ex2:0x0B49=2889mV176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 205 205 206 206 179 +In the PC, use below serial tool settings: 207 207 208 -1. 209 -11. 210 -111. Soil Moisture 181 +* Baud: (% style="color:green" %)**9600** 182 +* Data bits:** (% style="color:green" %)8(%%)** 183 +* Stop bits: (% style="color:green" %)**1** 184 +* Parity: (% style="color:green" %)**None** 185 +* Flow Control: (% style="color:green" %)**None** 211 211 212 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 187 +((( 188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 189 +))) 213 213 214 - For example,if the data youget fromthe register is0x050xDC, the moisture content in the soil is191 +[[image:image-20220708110657-3.png]] 215 215 216 - **05DC(H)=1500(D)/100=15%.**193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 217 217 218 218 219 -1. 220 -11. 221 -111. Soil Temperature 222 222 223 - Get the temperature in the soil.The value range of the register is -4000-+800(Decimal), divide thisvalueby 100 toget the temperature in the soil.Forexample,ifthedatayou get from the register is 0x09 0xEC, the temperature content in the soil is197 +=== 2.2.4 Use CoAP protocol to uplink data === 224 224 225 - **Example**:199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 226 226 227 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 228 228 229 - IfpayloadisFF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C202 +**Use below commands:** 230 230 204 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 231 231 232 -1. 233 -11. 234 -111. Soil Conductivity (EC) 208 +For parameter description, please refer to AT command set 235 235 236 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0 -20000(Decimal)( Canbegreater than 20000).210 +[[image:1657249793983-486.png]] 237 237 238 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 239 239 213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 240 240 241 - Generally, the EC value ofirrigation water is less than800uS / cm.215 +[[image:1657249831934-534.png]] 242 242 243 -1. 244 -11. 245 -111. MOD 246 246 247 -Firmware version at least v2.1 supports changing mode. 248 248 249 - Forexample,bytes[10]=90219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 250 250 251 - mod=(bytes[10]>>7)&0x01=1.221 +This feature is supported since firmware version v1.0.1 252 252 253 253 254 -Downlink Command: 224 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 226 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 255 255 256 - If payload = 0x0A00, workmode=0228 +[[image:1657249864775-321.png]] 257 257 258 -If** **payload =** **0x0A01, workmode=1 259 259 231 +[[image:1657249930215-289.png]] 260 260 261 -1. 262 -11. 263 -111. Decode payload in The Things Network 264 264 265 -While using TTN network, you can add the payload format to decode the payload. 266 266 235 +=== 2.2.6 Use MQTT protocol to uplink data === 267 267 268 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]237 +This feature is supported since firmware version v110 269 269 270 -The payload decoder function for TTN is here: 271 271 272 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 240 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 273 273 248 +[[image:1657249978444-674.png]] 274 274 275 -1. 276 -11. Uplink Interval 277 277 278 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:251 +[[image:1657249990869-686.png]] 279 279 280 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 281 281 282 -1. 283 -11. Downlink Payload 254 +((( 255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 256 +))) 284 284 285 -By default, LSE50 prints the downlink payload to console port. 286 286 287 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 288 -|TDC (Transmit Time Interval)|Any|01|4 289 -|RESET|Any|04|2 290 -|AT+CFM|Any|05|4 291 -|INTMOD|Any|06|4 292 -|MOD|Any|0A|2 293 293 294 - **Examples**260 +=== 2.2.7 Use TCP protocol to uplink data === 295 295 262 +This feature is supported since firmware version v110 296 296 297 -**Set TDC** 298 298 299 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 265 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 300 300 301 - Payload:010 001E TDC=30S268 +[[image:1657250217799-140.png]] 302 302 303 -Payload: 01 00 00 3C TDC=60S 304 304 271 +[[image:1657250255956-604.png]] 305 305 306 -**Reset** 307 307 308 -If payload = 0x04FF, it will reset the LSE01 309 309 275 +=== 2.2.8 Change Update Interval === 310 310 311 -** CFM**277 +User can use below command to change the (% style="color:green" %)**uplink interval**. 312 312 313 - DownlinkPayload:05000001, SetAT+CFM=1 or05000000,setAT+CFM=0279 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 314 314 315 -1. 316 -11. Show Data in DataCake IoT Server 281 +((( 282 +(% style="color:red" %)**NOTE:** 283 +))) 317 317 318 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 285 +((( 286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 +))) 319 319 320 320 321 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 322 322 323 - **Step2**:To configure the Applicationto forward data to DATACAKEyou will need todintegration. To add the DATACAKE integration, perform the following steps:291 +== 2.3 Uplink Payload == 324 324 293 +In this mode, uplink payload includes in total 18 bytes 325 325 326 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 +|=(% style="width: 50px;" %)((( 297 +**Size(bytes)** 298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 327 327 301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 328 328 329 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 330 330 304 +[[image:image-20220708111918-4.png]] 331 331 332 332 307 +The payload is ASCII string, representative same HEX: 333 333 309 +0x72403155615900640c7817075e0a8c02f900 where: 334 334 335 -Step 3: Create an account or log in Datacake. 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 336 336 337 -Step 4: Search the LSE01 and add DevEUI. 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 338 338 339 339 340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 341 341 342 342 324 +== 2.4 Payload Explanation and Sensor Interface == 343 343 344 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 345 345 327 +=== 2.4.1 Device ID === 346 346 347 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]329 +By default, the Device ID equal to the last 6 bytes of IMEI. 348 348 331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 349 349 333 +**Example:** 350 350 351 -1. 352 -11. Frequency Plans 335 +AT+DEUI=A84041F15612 353 353 354 -The LSE01 uses OTAA mode and below frequency plans by default.Ifuserwanttouse itwithdifferentfrequency plan, pleaserefertheATcommandsets.337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 355 355 356 -1. 357 -11. 358 -111. EU863-870 (EU868) 359 359 360 -Uplink: 361 361 362 - 868.1- SF7BW125toSF12BW125341 +=== 2.4.2 Version Info === 363 363 364 - 868.3 -SF7BW125toSF12BW125andSF7BW250343 +Specify the software version: 0x64=100, means firmware version 1.00. 365 365 366 - 868.5-SF7BW125toSF12BW125345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 367 367 368 -867.1 - SF7BW125 to SF12BW125 369 369 370 -867.3 - SF7BW125 to SF12BW125 371 371 372 - 867.5- SF7BW125toSF12BW125349 +=== 2.4.3 Battery Info === 373 373 374 -867.7 - SF7BW125 to SF12BW125 351 +((( 352 +Check the battery voltage for LSE01. 353 +))) 375 375 376 -867.9 - SF7BW125 to SF12BW125 355 +((( 356 +Ex1: 0x0B45 = 2885mV 357 +))) 377 377 378 -868.8 - FSK 359 +((( 360 +Ex2: 0x0B49 = 2889mV 361 +))) 379 379 380 380 381 -Downlink: 382 382 383 - Uplink channels1-9(RX1)365 +=== 2.4.4 Signal Strength === 384 384 385 - 869.525 - SF9BW125 (RX2 downlinkonly)367 +NB-IoT Network signal Strength. 386 386 369 +**Ex1: 0x1d = 29** 387 387 388 -1. 389 -11. 390 -111. US902-928(US915) 371 +(% style="color:blue" %)**0**(%%) -113dBm or less 391 391 392 - UsedinUSA,CanadaandSouthAmerica.Defaultuse CHE=2373 +(% style="color:blue" %)**1**(%%) -111dBm 393 393 394 - Uplink:375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 395 395 396 - 903.9-SF7BW125toSF10BW125377 +(% style="color:blue" %)**31** (%%) -51dBm or greater 397 397 398 -9 04.1-SF7BW125toSF10BW125379 +(% style="color:blue" %)**99** (%%) Not known or not detectable 399 399 400 -904.3 - SF7BW125 to SF10BW125 401 401 402 -904.5 - SF7BW125 to SF10BW125 403 403 404 - 904.7-SF7BW125toSF10BW125383 +=== 2.4.5 Soil Moisture === 405 405 406 -904.9 - SF7BW125 to SF10BW125 385 +((( 386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 387 +))) 407 407 408 -905.1 - SF7BW125 to SF10BW125 389 +((( 390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 391 +))) 409 409 410 -905.3 - SF7BW125 to SF10BW125 393 +((( 394 + 395 +))) 411 411 397 +((( 398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 399 +))) 412 412 413 -Downlink: 414 414 415 -923.3 - SF7BW500 to SF12BW500 416 416 417 - 923.9-SF7BW500toSF12BW500403 +=== 2.4.6 Soil Temperature === 418 418 419 -924.5 - SF7BW500 to SF12BW500 405 +((( 406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 407 +))) 420 420 421 -925.1 - SF7BW500 to SF12BW500 409 +((( 410 +**Example**: 411 +))) 422 422 423 -925.7 - SF7BW500 to SF12BW500 413 +((( 414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 415 +))) 424 424 425 -926.3 - SF7BW500 to SF12BW500 417 +((( 418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 419 +))) 426 426 427 -926.9 - SF7BW500 to SF12BW500 428 428 429 -927.5 - SF7BW500 to SF12BW500 430 430 431 - 923.3-SF12BW500(RX2 downlinkonly)423 +=== 2.4.7 Soil Conductivity (EC) === 432 432 425 +((( 426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 427 +))) 433 433 434 - 1.435 - 11.436 - 111. CN470-510 (CN470)429 +((( 430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 431 +))) 437 437 438 -Used in China, Default use CHE=1 433 +((( 434 +Generally, the EC value of irrigation water is less than 800uS / cm. 435 +))) 439 439 440 -Uplink: 437 +((( 438 + 439 +))) 441 441 442 -486.3 - SF7BW125 to SF12BW125 441 +((( 442 + 443 +))) 443 443 444 -4 86.5-SF7BW125toSF12BW125445 +=== 2.4.8 Digital Interrupt === 445 445 446 - 486.7-SF7BW125toSF12BW125447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 447 447 448 - 486.9- SF7BW125 toSF12BW125449 +The command is: 449 449 450 - 487.1-SF7BW125to SF12BW125451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 451 451 452 -487.3 - SF7BW125 to SF12BW125 453 453 454 - 487.5-SF7BW125toSF12BW125454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 455 455 456 -487.7 - SF7BW125 to SF12BW125 457 457 457 +Example: 458 458 459 - Downlink:459 +0x(00): Normal uplink packet. 460 460 461 - 506.7 - SF7BW125toSF12BW125461 +0x(01): Interrupt Uplink Packet. 462 462 463 -506.9 - SF7BW125 to SF12BW125 464 464 465 -507.1 - SF7BW125 to SF12BW125 466 466 467 - 507.3- SF7BW125 toSF12BW125465 +=== 2.4.9 +5V Output === 468 468 469 - 507.5-SF7BW125 toSF12BW125467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 470 470 471 -507.7 - SF7BW125 to SF12BW125 472 472 473 -5 07.9-SF7BW125toSF12BW125470 +The 5V output time can be controlled by AT Command. 474 474 475 - 508.1- SF7BW125toSF12BW125472 +(% style="color:blue" %)**AT+5VT=1000** 476 476 477 -50 5.3-SF12BW125(RX2downlinkonly)474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 478 478 479 479 480 -1. 481 -11. 482 -111. AU915-928(AU915) 483 483 484 -D efaultuse CHE=2478 +== 2.5 Downlink Payload == 485 485 486 - Uplink:480 +By default, NSE01 prints the downlink payload to console port. 487 487 488 - 916.8-SF7BW125 to SF12BW125482 +[[image:image-20220708133731-5.png]] 489 489 490 -917.0 - SF7BW125 to SF12BW125 491 491 492 -917.2 - SF7BW125 to SF12BW125 485 +((( 486 +(% style="color:blue" %)**Examples:** 487 +))) 493 493 494 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 + 491 +))) 495 495 496 -917.6 - SF7BW125 to SF12BW125 493 +* ((( 494 +(% style="color:blue" %)**Set TDC** 495 +))) 497 497 498 -917.8 - SF7BW125 to SF12BW125 497 +((( 498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 499 +))) 499 499 500 -918.0 - SF7BW125 to SF12BW125 501 +((( 502 +Payload: 01 00 00 1E TDC=30S 503 +))) 501 501 502 -918.2 - SF7BW125 to SF12BW125 505 +((( 506 +Payload: 01 00 00 3C TDC=60S 507 +))) 503 503 509 +((( 510 + 511 +))) 504 504 505 -Downlink: 513 +* ((( 514 +(% style="color:blue" %)**Reset** 515 +))) 506 506 507 -923.3 - SF7BW500 to SF12BW500 517 +((( 518 +If payload = 0x04FF, it will reset the NSE01 519 +))) 508 508 509 -923.9 - SF7BW500 to SF12BW500 510 510 511 - 924.5-SF7BW500toSF12BW500522 +* (% style="color:blue" %)**INTMOD** 512 512 513 - 925.1-SF7BW500 toSF12BW500524 +Downlink Payload: 06000003, Set AT+INTMOD=3 514 514 515 -925.7 - SF7BW500 to SF12BW500 516 516 517 -926.3 - SF7BW500 to SF12BW500 518 518 519 - 926.9-SF7BW500toSF12BW500528 +== 2.6 LED Indicator == 520 520 521 -927.5 - SF7BW500 to SF12BW500 530 +((( 531 +The NSE01 has an internal LED which is to show the status of different state. 522 522 523 -923.3 - SF12BW500(RX2 downlink only) 524 524 525 -1. 526 -11. 527 -111. AS920-923 & AS923-925 (AS923) 534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 535 +* Then the LED will be on for 1 second means device is boot normally. 536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 537 +* For each uplink probe, LED will be on for 500ms. 538 +))) 528 528 529 -**Default Uplink channel:** 530 530 531 -923.2 - SF7BW125 to SF10BW125 532 532 533 -923.4 - SF7BW125 to SF10BW125 534 534 543 +== 2.7 Installation in Soil == 535 535 536 -** Additional UplinkChannel**:545 +__**Measurement the soil surface**__ 537 537 538 - (OTAAmode,channel addedbyJoinAccept message)547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 539 539 540 - **AS920~~AS923for Japan, Malaysia, Singapore**:549 +[[image:1657259653666-883.png]] 541 541 542 -922.2 - SF7BW125 to SF10BW125 543 543 544 -922.4 - SF7BW125 to SF10BW125 552 +((( 553 + 545 545 546 -922.6 - SF7BW125 to SF10BW125 547 - 548 -922.8 - SF7BW125 to SF10BW125 549 - 550 -923.0 - SF7BW125 to SF10BW125 551 - 552 -922.0 - SF7BW125 to SF10BW125 553 - 554 - 555 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 556 - 557 -923.6 - SF7BW125 to SF10BW125 558 - 559 -923.8 - SF7BW125 to SF10BW125 560 - 561 -924.0 - SF7BW125 to SF10BW125 562 - 563 -924.2 - SF7BW125 to SF10BW125 564 - 565 -924.4 - SF7BW125 to SF10BW125 566 - 567 -924.6 - SF7BW125 to SF10BW125 568 - 569 - 570 - 571 -**Downlink:** 572 - 573 -Uplink channels 1-8 (RX1) 574 - 575 -923.2 - SF10BW125 (RX2) 576 - 577 - 578 -1. 579 -11. 580 -111. KR920-923 (KR920) 581 - 582 -Default channel: 583 - 584 -922.1 - SF7BW125 to SF12BW125 585 - 586 -922.3 - SF7BW125 to SF12BW125 587 - 588 -922.5 - SF7BW125 to SF12BW125 589 - 590 - 591 -Uplink: (OTAA mode, channel added by JoinAccept message) 592 - 593 -922.1 - SF7BW125 to SF12BW125 594 - 595 -922.3 - SF7BW125 to SF12BW125 596 - 597 -922.5 - SF7BW125 to SF12BW125 598 - 599 -922.7 - SF7BW125 to SF12BW125 600 - 601 -922.9 - SF7BW125 to SF12BW125 602 - 603 -923.1 - SF7BW125 to SF12BW125 604 - 605 -923.3 - SF7BW125 to SF12BW125 606 - 607 - 608 -Downlink: 609 - 610 -Uplink channels 1-7(RX1) 611 - 612 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 613 - 614 - 615 -1. 616 -11. 617 -111. IN865-867 (IN865) 618 - 619 -Uplink: 620 - 621 -865.0625 - SF7BW125 to SF12BW125 622 - 623 -865.4025 - SF7BW125 to SF12BW125 624 - 625 -865.9850 - SF7BW125 to SF12BW125 626 - 627 - 628 -Downlink: 629 - 630 -Uplink channels 1-3 (RX1) 631 - 632 -866.550 - SF10BW125 (RX2) 633 - 634 - 635 -1. 636 -11. LED Indicator 637 - 638 -The LSE01 has an internal LED which is to show the status of different state. 639 - 640 - 641 -* Blink once when device power on. 642 -* Solid ON for 5 seconds once device successful Join the network. 643 -* Blink once when device transmit a packet. 644 - 645 -1. 646 -11. Installation in Soil 647 - 648 -**Measurement the soil surface** 649 - 650 - 651 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 652 - 653 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 654 - 655 - 656 - 657 - 658 - 659 - 660 - 661 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 662 - 663 - 664 - 555 +((( 665 665 Dig a hole with diameter > 20CM. 557 +))) 666 666 559 +((( 667 667 Horizontal insert the probe to the soil and fill the hole for long term measurement. 561 +))) 562 +))) 668 668 564 +[[image:1654506665940-119.png]] 669 669 566 +((( 567 + 568 +))) 670 670 671 671 672 -1. 673 -11. Firmware Change Log 571 +== 2.8 Firmware Change Log == 674 674 675 -**Firmware download link:** 676 676 677 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]574 +Download URL & Firmware Change log 678 678 576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 679 679 680 -**Firmware Upgrade Method:** 681 681 682 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 683 683 684 684 685 -**V1.0.** 686 686 687 - Release583 +== 2.9 Battery Analysis == 688 688 585 +=== 2.9.1 Battery Type === 689 689 690 690 691 -1. 692 -11. Battery Analysis 693 -111. Battery Type 588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 694 694 695 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 696 591 +The battery is designed to last for several years depends on the actually use environment and update interval. 697 697 698 -The battery is designed to last for more than 5 years for the LSN50. 699 699 700 - 701 701 The battery related documents as below: 702 702 703 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],704 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/ downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]705 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 706 706 707 - |(((708 - JST-XH-2P connector600 +((( 601 +[[image:image-20220708140453-6.png]] 709 709 ))) 710 710 711 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 712 712 713 713 606 +=== 2.9.2 Power consumption Analyze === 714 714 715 - 1.716 - 11.717 - 111. Battery Note608 +((( 609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 610 +))) 718 718 719 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 720 720 613 +((( 614 +Instruction to use as below: 615 +))) 721 721 722 - 1.723 -1 1.724 - 111. Replace the battery617 +((( 618 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 619 +))) 725 725 726 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 727 727 622 +((( 623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 624 +))) 728 728 729 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 626 +* ((( 627 +Product Model 628 +))) 629 +* ((( 630 +Uplink Interval 631 +))) 632 +* ((( 633 +Working Mode 634 +))) 730 730 636 +((( 637 +And the Life expectation in difference case will be shown on the right. 638 +))) 731 731 732 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)640 +[[image:image-20220708141352-7.jpeg]] 733 733 734 734 735 735 644 +=== 2.9.3 Battery Note === 736 736 646 +((( 647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 648 +))) 737 737 738 738 739 -= 3. Using the AT Commands = 740 740 741 -== 3.1AccessATCommands==652 +=== 2.9.4 Replace the battery === 742 742 654 +((( 655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 656 +))) 743 743 744 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 745 745 746 -[[image:1654501986557-872.png]] 747 747 660 += 3. Access NB-IoT Module = 748 748 749 -Or if you have below board, use below connection: 662 +((( 663 +Users can directly access the AT command set of the NB-IoT module. 664 +))) 750 750 666 +((( 667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 668 +))) 751 751 752 -[[image:165 4502005655-729.png]]670 +[[image:1657261278785-153.png]] 753 753 754 754 755 755 756 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:674 += 4. Using the AT Commands = 757 757 676 +== 4.1 Access AT Commands == 758 758 759 - [[ima ge:1654502050864-459.png]]678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 760 760 761 761 762 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]681 +AT+<CMD>? : Help on <CMD> 763 763 683 +AT+<CMD> : Run <CMD> 764 764 765 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>685 +AT+<CMD>=<value> : Set the value 766 766 767 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>687 +AT+<CMD>=? : Get the value 768 768 769 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 770 770 771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 772 - 773 - 774 774 (% style="color:#037691" %)**General Commands**(%%) 775 775 776 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention692 +AT : Attention 777 777 778 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help694 +AT? : Short Help 779 779 780 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset696 +ATZ : MCU Reset 781 781 782 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval698 +AT+TDC : Application Data Transmission Interval 783 783 700 +AT+CFG : Print all configurations 784 784 785 - (%style="color:#037691"%)**Keys,IDsand EUIs management**702 +AT+CFGMOD : Working mode selection 786 786 787 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI704 +AT+INTMOD : Set the trigger interrupt mode 788 788 789 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey706 +AT+5VT : Set extend the time of 5V power 790 790 791 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key708 +AT+PRO : Choose agreement 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress710 +AT+WEIGRE : Get weight or set weight to 0 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI712 +AT+WEIGAP : Get or Set the GapValue of weight 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)714 +AT+RXDL : Extend the sending and receiving time 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network716 +AT+CNTFAC : Get or set counting parameters 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode718 +AT+SERVADDR : Server Address 802 802 803 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 804 804 805 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network721 +(% style="color:#037691" %)**COAP Management** 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode723 +AT+URI : Resource parameters 808 808 809 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 810 810 811 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format726 +(% style="color:#037691" %)**UDP Management** 812 812 813 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat728 +AT+CFM : Upload confirmation mode (only valid for UDP) 814 814 815 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 816 816 817 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data731 +(% style="color:#037691" %)**MQTT Management** 818 818 733 +AT+CLIENT : Get or Set MQTT client 819 819 820 - (%style="color:#037691"%)**LoRaNetworkManagement**735 +AT+UNAME : Get or Set MQTT Username 821 821 822 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate737 +AT+PWD : Get or Set MQTT password 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA739 +AT+PUBTOPIC : Get or Set MQTT publish topic 825 825 826 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting741 +AT+SUBTOPIC : Get or Set MQTT subscription topic 827 827 828 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 829 829 830 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink744 +(% style="color:#037691" %)**Information** 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink746 +AT+FDR : Factory Data Reset 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1748 +AT+PWORD : Serial Access Password 835 835 836 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 837 837 838 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 839 839 840 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1752 += 5. FAQ = 841 841 842 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2754 +== 5.1 How to Upgrade Firmware == 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 757 +((( 758 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 759 +))) 847 847 848 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 849 - 850 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 851 - 852 - 853 -(% style="color:#037691" %)**Information** 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 858 - 859 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 860 - 861 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 862 - 863 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 864 - 865 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 866 - 867 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 868 - 869 - 870 -= 4. FAQ = 871 - 872 -== 4.1 How to change the LoRa Frequency Bands/Region? == 873 - 874 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 875 -When downloading the images, choose the required image file for download. 876 - 877 - 878 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 879 - 880 - 881 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 882 - 883 - 884 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 885 - 886 -[[image:image-20220606154726-3.png]] 887 - 888 -When you use the TTN network, the US915 frequency bands use are: 889 - 890 -* 903.9 - SF7BW125 to SF10BW125 891 -* 904.1 - SF7BW125 to SF10BW125 892 -* 904.3 - SF7BW125 to SF10BW125 893 -* 904.5 - SF7BW125 to SF10BW125 894 -* 904.7 - SF7BW125 to SF10BW125 895 -* 904.9 - SF7BW125 to SF10BW125 896 -* 905.1 - SF7BW125 to SF10BW125 897 -* 905.3 - SF7BW125 to SF10BW125 898 -* 904.6 - SF8BW500 899 - 900 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 901 - 902 -(% class="box infomessage" %) 903 903 ((( 904 - **AT+CHE=2**762 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 905 905 ))) 906 906 907 -(% class="box infomessage" %) 908 908 ((( 909 - **ATZ**766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 910 910 ))) 911 911 912 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 913 913 914 914 915 - The**AU915**band is similar. Beloware the AU915 UplinkChannels.771 += 6. Trouble Shooting = 916 916 917 - [[image:image-20220606154825-4.png]]773 +== 6.1 Connection problem when uploading firmware == 918 918 919 919 776 +(% class="wikigeneratedid" %) 777 +((( 778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 779 +))) 920 920 921 -= 5. Trouble Shooting = 922 922 923 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 924 924 925 - Itis due to channel mapping.Please see the [[Eight Channel Mode>>doc:Main.LoRaWANCommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]sectionabove fordetails.783 +== 6.2 AT Command input doesn't work == 926 926 785 +((( 786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 787 +))) 927 927 928 -== 5.2 AT Command input doesn’t work == 929 929 930 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 931 931 791 += 7. Order Info = 932 932 933 -== 5.3 Device rejoin in at the second uplink packet == 934 934 935 -(% style="color:#4f81bd" %)** Issue describe as below:**794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 936 936 937 -[[image:1654500909990-784.png]] 938 938 797 +(% class="wikigeneratedid" %) 798 +((( 799 + 800 +))) 939 939 940 - (% style="color:#4f81bd"%)**Causeforthis issue:**802 += 8. Packing Info = 941 941 942 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 804 +((( 805 + 943 943 807 +(% style="color:#037691" %)**Package Includes**: 944 944 945 -(% style="color:#4f81bd" %)**Solution: ** 946 946 947 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 811 +* External antenna x 1 812 +))) 948 948 949 -[[image:1654500929571-736.png]] 814 +((( 815 + 950 950 817 +(% style="color:#037691" %)**Dimension and weight**: 951 951 952 -= 6. Order Info = 953 953 954 - 955 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 956 - 957 - 958 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 959 - 960 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 961 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 962 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 963 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 964 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 965 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 966 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 967 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 968 - 969 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 970 - 971 -* (% style="color:red" %)**4**(%%): 4000mAh battery 972 -* (% style="color:red" %)**8**(%%): 8500mAh battery 973 - 974 -= 7. Packing Info = 975 - 976 -((( 977 -**Package Includes**: 820 +* Size: 195 x 125 x 55 mm 821 +* Weight: 420g 978 978 ))) 979 979 980 -* ((( 981 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 982 -))) 983 - 984 984 ((( 985 985 986 -))) 987 987 988 -((( 989 -**Dimension and weight**: 990 -))) 991 991 992 -* ((( 993 -Device Size: cm 828 + 994 994 ))) 995 -* ((( 996 -Device Weight: g 997 -))) 998 -* ((( 999 -Package Size / pcs : cm 1000 -))) 1001 -* ((( 1002 -Weight / pcs : g 1003 -))) 1004 1004 1005 -= 8. Support =831 += 9. Support = 1006 1006 1007 1007 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1008 1008 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1009 - 1010 -
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content