Last modified by Mengting Qiu on 2024/04/02 16:44

From version 19.1
edited by Xiaoling
on 2022/06/06 16:39
Change comment: Uploaded new attachment "image-20220606163915-7.png", version {1}
To version 67.2
edited by Xiaoling
on 2022/07/08 18:09
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:1657271519014-786.png]]
3 3  
4 4  
5 5  
... ... @@ -8,1011 +8,910 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
13 +**Table of Contents:**
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
21 += 1.  Introduction =
38 38  
39 -[[image:1654503265560-120.png]]
23 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
40 40  
25 +(((
26 +
41 41  
28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
42 42  
43 -== 1.2 ​Features ==
30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
56 56  
57 -== 1.3 Specification ==
34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*.
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
36 +~* Actually lifetime depends on network coverage and uplink interval and other factors
60 60  
61 -[[image:image-20220606162220-5.png]]
62 -
63 -
64 -
65 -== ​1.4 Applications ==
66 -
67 -* Smart Agriculture
68 -
69 -
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
72 -
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
75 -
76 -
77 -**LSE01 v1.0 :**  Release
78 -
79 -
80 -
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 -
83 -== 2.1 How it works ==
84 -
85 85  (((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
39 +
87 87  )))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
42 +
91 91  )))
92 92  
45 +[[image:1654503236291-817.png]]
93 93  
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
48 +[[image:1657245163077-232.png]]
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
99 99  
100 -[[image:1654503992078-669.png]]
52 +== 1.2 ​ Features ==
101 101  
54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
55 +* Monitor Soil Moisture
56 +* Monitor Soil Temperature
57 +* Monitor Soil Conductivity
58 +* AT Commands to change parameters
59 +* Uplink on periodically
60 +* Downlink to change configure
61 +* IP66 Waterproof Enclosure
62 +* Ultra-Low Power consumption
63 +* AT Commands to change parameters
64 +* Micro SIM card slot for NB-IoT SIM
65 +* 8500mAh Battery for long term use
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 104  
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
69 +== 1.3  Specification ==
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
72 +(% style="color:#037691" %)**Common DC Characteristics:**
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
74 +* Supply Voltage: 2.1v ~~ 3.6v
75 +* Operating Temperature: -40 ~~ 85°C
113 113  
114 -**Add APP EUI in the application**
77 +(% style="color:#037691" %)**NB-IoT Spec:**
115 115  
79 +* - B1 @H-FDD: 2100MHz
80 +* - B3 @H-FDD: 1800MHz
81 +* - B8 @H-FDD: 900MHz
82 +* - B5 @H-FDD: 850MHz
83 +* - B20 @H-FDD: 800MHz
84 +* - B28 @H-FDD: 700MHz
116 116  
117 -[[image:1654504596150-405.png]]
86 +Probe(% style="color:#037691" %)** Specification:**
118 118  
88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
119 119  
90 +[[image:image-20220708101224-1.png]]
120 120  
121 -**Add APP KEY and DEV EUI**
122 122  
123 -[[image:1654504683289-357.png]]
124 124  
125 -|(((
126 -
127 -)))
94 +== ​1.4  Applications ==
128 128  
129 -**Step 2**: Power on LSE01
96 +* Smart Agriculture
130 130  
98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 +​
131 131  
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
101 +== 1.5  Pin Definitions ==
133 133  
134 134  
104 +[[image:1657246476176-652.png]]
135 135  
136 -|(((
137 -
138 -)))
139 139  
140 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
141 141  
108 += 2.  Use NSE01 to communicate with IoT Server =
142 142  
110 +== 2.1  How it works ==
143 143  
144 144  
113 +(((
114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
115 +)))
145 145  
146 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
147 147  
148 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
118 +(((
119 +The diagram below shows the working flow in default firmware of NSE01:
120 +)))
149 149  
122 +[[image:image-20220708101605-2.png]]
150 150  
151 -
152 -
153 -1.
154 -11. ​Uplink Payload
155 -111. MOD=0(Default Mode)
156 -
157 -LSE01 will uplink payload via LoRaWAN with below payload format: 
158 -
159 -
160 -Uplink payload includes in total 11 bytes.
124 +(((
161 161  
162 -
163 -|(((
164 -**Size**
165 -
166 -**(bytes)**
167 -)))|**2**|**2**|**2**|**2**|**2**|**1**
168 -|**Value**|[[BAT>>path:#bat]]|(((
169 -Temperature
170 -
171 -(Reserve, Ignore now)
172 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
173 -MOD & Digital Interrupt
174 -
175 -(Optional)
176 176  )))
177 177  
178 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
179 179  
180 180  
181 -1.
182 -11.
183 -111. MOD=1(Original value)
130 +== 2.2 ​ Configure the NSE01 ==
184 184  
185 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
186 186  
187 -|(((
188 -**Size**
133 +=== 2.2.1 Test Requirement ===
189 189  
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>path:#bat]]|(((
193 -Temperature
194 194  
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
197 -MOD & Digital Interrupt
198 -
199 -(Optional)
136 +(((
137 +To use NSE01 in your city, make sure meet below requirements:
200 200  )))
201 201  
202 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
140 +* Your local operator has already distributed a NB-IoT Network there.
141 +* The local NB-IoT network used the band that NSE01 supports.
142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
203 203  
204 -1.
205 -11.
206 -111. Battery Info
144 +(((
145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
146 +)))
207 207  
208 -Check the battery voltage for LSE01.
209 209  
210 -Ex1: 0x0B45 = 2885mV
149 +[[image:1657249419225-449.png]]
211 211  
212 -Ex2: 0x0B49 = 2889mV
213 213  
214 214  
153 +=== 2.2.2 Insert SIM card ===
215 215  
216 -1.
217 -11.
218 -111. Soil Moisture
155 +(((
156 +Insert the NB-IoT Card get from your provider.
157 +)))
219 219  
220 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
159 +(((
160 +User need to take out the NB-IoT module and insert the SIM card like below:
161 +)))
221 221  
222 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
223 223  
224 -**05DC(H) = 1500(D) /100 = 15%.**
164 +[[image:1657249468462-536.png]]
225 225  
226 226  
227 -1.
228 -11.
229 -111. Soil Temperature
230 230  
231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
168 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
232 232  
233 -**Example**:
170 +(((
171 +(((
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 +)))
174 +)))
234 234  
235 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
236 236  
237 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
177 +**Connection:**
238 238  
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
239 239  
240 -1.
241 -11.
242 -111. Soil Conductivity (EC)
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
243 243  
244 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
245 245  
246 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
247 247  
186 +In the PC, use below serial tool settings:
248 248  
249 -Generally, the EC value of irrigation water is less than 800uS / cm.
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
250 250  
251 -1.
252 -11.
253 -111. MOD
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
254 254  
255 -Firmware version at least v2.1 supports changing mode.
198 +[[image:image-20220708110657-3.png]]
256 256  
257 -For example, bytes[10]=90
200 +(((
201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
202 +)))
258 258  
259 -mod=(bytes[10]>>7)&0x01=1.
260 260  
261 261  
262 -Downlink Command:
206 +=== 2.2.4 Use CoAP protocol to uplink data ===
263 263  
264 -If payload = 0x0A00, workmode=0
208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
265 265  
266 -If** **payload =** **0x0A01, workmode=1
267 267  
211 +**Use below commands:**
268 268  
269 -1.
270 -11.
271 -111. ​Decode payload in The Things Network
213 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
272 272  
273 -While using TTN network, you can add the payload format to decode the payload.
217 +For parameter description, please refer to AT command set
274 274  
219 +[[image:1657249793983-486.png]]
275 275  
276 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
277 277  
278 -The payload decoder function for TTN is here:
222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
279 279  
280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
224 +[[image:1657249831934-534.png]]
281 281  
282 282  
283 -1.
284 -11. Uplink Interval
285 285  
286 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
287 287  
288 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
230 +This feature is supported since firmware version v1.0.1
289 289  
290 -1.
291 -11. ​Downlink Payload
292 292  
293 -By default, LSE50 prints the downlink payload to console port.
233 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
235 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
294 294  
295 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
296 -|TDC (Transmit Time Interval)|Any|01|4
297 -|RESET|Any|04|2
298 -|AT+CFM|Any|05|4
299 -|INTMOD|Any|06|4
300 -|MOD|Any|0A|2
237 +[[image:1657249864775-321.png]]
301 301  
302 -**Examples**
303 303  
240 +[[image:1657249930215-289.png]]
304 304  
305 -**Set TDC**
306 306  
307 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
308 308  
309 -Payload:    01 00 00 1E    TDC=30S
244 +=== 2.2.6 Use MQTT protocol to uplink data ===
310 310  
311 -Payload:    01 00 00 3C    TDC=60S
246 +This feature is supported since firmware version v110
312 312  
313 313  
314 -**Reset**
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
315 315  
316 -If payload = 0x04FF, it will reset the LSE01
257 +[[image:1657249978444-674.png]]
317 317  
318 318  
319 -**CFM**
260 +[[image:1657249990869-686.png]]
320 320  
321 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
322 322  
323 -1.
324 -11. ​Show Data in DataCake IoT Server
263 +(((
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 +)))
325 325  
326 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
327 327  
328 328  
329 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
269 +=== 2.2.7 Use TCP protocol to uplink data ===
330 330  
331 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
271 +This feature is supported since firmware version v110
332 332  
333 333  
334 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
274 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
335 335  
277 +[[image:1657250217799-140.png]]
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
338 338  
280 +[[image:1657250255956-604.png]]
339 339  
340 340  
341 341  
284 +=== 2.2.8 Change Update Interval ===
342 342  
343 -Step 3: Create an account or log in Datacake.
286 +User can use below command to change the (% style="color:green" %)**uplink interval**.
344 344  
345 -Step 4: Search the LSE01 and add DevEUI.
288 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
346 346  
290 +(((
291 +(% style="color:red" %)**NOTE:**
292 +)))
347 347  
348 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
294 +(((
295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 +)))
349 349  
350 350  
351 351  
352 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
300 +== 2.3  Uplink Payload ==
353 353  
302 +In this mode, uplink payload includes in total 18 bytes
354 354  
355 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 +|=(% style="width: 60px;" %)(((
306 +**Size(bytes)**
307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
356 356  
310 +(((
311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
312 +)))
357 357  
358 358  
359 -1.
360 -11. Frequency Plans
315 +[[image:image-20220708111918-4.png]]
361 361  
362 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
363 363  
364 -1.
365 -11.
366 -111. EU863-870 (EU868)
318 +The payload is ASCII string, representative same HEX:
367 367  
368 -Uplink:
320 +0x72403155615900640c7817075e0a8c02f900 where:
369 369  
370 -868.1 - SF7BW125 to SF12BW125
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
371 371  
372 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
373 373  
374 -868.5 - SF7BW125 to SF12BW125
375 375  
376 -867.1 - SF7BW125 to SF12BW125
377 377  
378 -867.3 - SF7BW125 to SF12BW125
334 +== 2.4  Payload Explanation and Sensor Interface ==
379 379  
380 -867.5 - SF7BW125 to SF12BW125
381 381  
382 -867.7 - SF7BW125 to SF12BW125
337 +=== 2.4.1  Device ID ===
383 383  
384 -867.9 - SF7BW125 to SF12BW125
339 +(((
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
341 +)))
385 385  
386 -868.8 - FSK
343 +(((
344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
345 +)))
387 387  
347 +(((
348 +**Example:**
349 +)))
388 388  
389 -Downlink:
351 +(((
352 +AT+DEUI=A84041F15612
353 +)))
390 390  
391 -Uplink channels 1-9 (RX1)
355 +(((
356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 +)))
392 392  
393 -869.525 - SF9BW125 (RX2 downlink only)
394 394  
395 395  
396 -1.
397 -11.
398 -111. US902-928(US915)
361 +=== 2.4.2  Version Info ===
399 399  
400 -Used in USA, Canada and South America. Default use CHE=2
363 +(((
364 +Specify the software version: 0x64=100, means firmware version 1.00.
365 +)))
401 401  
402 -Uplink:
367 +(((
368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 +)))
403 403  
404 -903.9 - SF7BW125 to SF10BW125
405 405  
406 -904.1 - SF7BW125 to SF10BW125
407 407  
408 -904.3 - SF7BW125 to SF10BW125
373 +=== 2.4.3  Battery Info ===
409 409  
410 -904.5 - SF7BW125 to SF10BW125
375 +(((
376 +Check the battery voltage for LSE01.
377 +)))
411 411  
412 -904.7 - SF7BW125 to SF10BW125
379 +(((
380 +Ex1: 0x0B45 = 2885mV
381 +)))
413 413  
414 -904.9 - SF7BW125 to SF10BW125
383 +(((
384 +Ex2: 0x0B49 = 2889mV
385 +)))
415 415  
416 -905.1 - SF7BW125 to SF10BW125
417 417  
418 -905.3 - SF7BW125 to SF10BW125
419 419  
389 +=== 2.4.4  Signal Strength ===
420 420  
421 -Downlink:
391 +(((
392 +NB-IoT Network signal Strength.
393 +)))
422 422  
423 -923.3 - SF7BW500 to SF12BW500
395 +(((
396 +**Ex1: 0x1d = 29**
397 +)))
424 424  
425 -923.9 - SF7BW500 to SF12BW500
399 +(((
400 +(% style="color:blue" %)**0**(%%)  -113dBm or less
401 +)))
426 426  
427 -924.5 - SF7BW500 to SF12BW500
403 +(((
404 +(% style="color:blue" %)**1**(%%)  -111dBm
405 +)))
428 428  
429 -925.1 - SF7BW500 to SF12BW500
407 +(((
408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
409 +)))
430 430  
431 -925.7 - SF7BW500 to SF12BW500
411 +(((
412 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
413 +)))
432 432  
433 -926.3 - SF7BW500 to SF12BW500
415 +(((
416 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 +)))
434 434  
435 -926.9 - SF7BW500 to SF12BW500
436 436  
437 -927.5 - SF7BW500 to SF12BW500
438 438  
439 -923.3 - SF12BW500(RX2 downlink only)
421 +=== 2.4.5  Soil Moisture ===
440 440  
423 +(((
424 +(((
425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
426 +)))
427 +)))
441 441  
442 -1.
443 -11.
444 -111. CN470-510 (CN470)
429 +(((
430 +(((
431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
432 +)))
433 +)))
445 445  
446 -Used in China, Default use CHE=1
435 +(((
436 +
437 +)))
447 447  
448 -Uplink:
439 +(((
440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
441 +)))
449 449  
450 -486.3 - SF7BW125 to SF12BW125
451 451  
452 -486.5 - SF7BW125 to SF12BW125
453 453  
454 -486.7 - SF7BW125 to SF12BW125
445 +=== 2.4. Soil Temperature ===
455 455  
456 -486.9 - SF7BW125 to SF12BW125
447 +(((
448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
449 +)))
457 457  
458 -487.1 - SF7BW125 to SF12BW125
451 +(((
452 +**Example**:
453 +)))
459 459  
460 -487.3 - SF7BW125 to SF12BW125
455 +(((
456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
457 +)))
461 461  
462 -487.5 - SF7BW125 to SF12BW125
459 +(((
460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
461 +)))
463 463  
464 -487.7 - SF7BW125 to SF12BW125
465 465  
466 466  
467 -Downlink:
465 +=== 2.4.7  Soil Conductivity (EC) ===
468 468  
469 -506.7 - SF7BW125 to SF12BW125
467 +(((
468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
469 +)))
470 470  
471 -506.9 - SF7BW125 to SF12BW125
471 +(((
472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
473 +)))
472 472  
473 -507.1 - SF7BW125 to SF12BW125
475 +(((
476 +Generally, the EC value of irrigation water is less than 800uS / cm.
477 +)))
474 474  
475 -507.3 - SF7BW125 to SF12BW125
479 +(((
480 +
481 +)))
476 476  
477 -507.5 - SF7BW125 to SF12BW125
483 +(((
484 +
485 +)))
478 478  
479 -507.7 - SF7BW125 to SF12BW125
487 +=== 2.4.8  Digital Interrupt ===
480 480  
481 -507.9 - SF7BW125 to SF12BW125
489 +(((
490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
491 +)))
482 482  
483 -508.1 - SF7BW125 to SF12BW125
493 +(((
494 +The command is:
495 +)))
484 484  
485 -505.3 - SF12BW125 (RX2 downlink only)
497 +(((
498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 +)))
486 486  
487 487  
488 -1.
489 -11.
490 -111. AU915-928(AU915)
502 +(((
503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
504 +)))
491 491  
492 -Default use CHE=2
493 493  
494 -Uplink:
507 +(((
508 +Example:
509 +)))
495 495  
496 -916.8 - SF7BW125 to SF12BW125
511 +(((
512 +0x(00): Normal uplink packet.
513 +)))
497 497  
498 -917.0 - SF7BW125 to SF12BW125
515 +(((
516 +0x(01): Interrupt Uplink Packet.
517 +)))
499 499  
500 -917.2 - SF7BW125 to SF12BW125
501 501  
502 -917.4 - SF7BW125 to SF12BW125
503 503  
504 -917.6 - SF7BW125 to SF12BW125
521 +=== 2.4.9  ​+5V Output ===
505 505  
506 -917.8 - SF7BW125 to SF12BW125
523 +(((
524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 +)))
507 507  
508 -918.0 - SF7BW125 to SF12BW125
509 509  
510 -918.2 - SF7BW125 to SF12BW125
528 +(((
529 +The 5V output time can be controlled by AT Command.
530 +)))
511 511  
532 +(((
533 +(% style="color:blue" %)**AT+5VT=1000**
534 +)))
512 512  
513 -Downlink:
536 +(((
537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 +)))
514 514  
515 -923.3 - SF7BW500 to SF12BW500
516 516  
517 -923.9 - SF7BW500 to SF12BW500
518 518  
519 -924.5 - SF7BW500 to SF12BW500
542 +== 2.5  Downlink Payload ==
520 520  
521 -925.1 - SF7BW500 to SF12BW500
544 +By default, NSE01 prints the downlink payload to console port.
522 522  
523 -925.7 - SF7BW500 to SF12BW500
546 +[[image:image-20220708133731-5.png]]
524 524  
525 -926.3 - SF7BW500 to SF12BW500
526 526  
527 -926.9 - SF7BW500 to SF12BW500
549 +(((
550 +(% style="color:blue" %)**Examples:**
551 +)))
528 528  
529 -927.5 - SF7BW500 to SF12BW500
553 +(((
554 +
555 +)))
530 530  
531 -923.3 - SF12BW500(RX2 downlink only)
557 +* (((
558 +(% style="color:blue" %)**Set TDC**
559 +)))
532 532  
533 -1.
534 -11.
535 -111. AS920-923 & AS923-925 (AS923)
561 +(((
562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
563 +)))
536 536  
537 -**Default Uplink channel:**
565 +(((
566 +Payload:    01 00 00 1E    TDC=30S
567 +)))
538 538  
539 -923.2 - SF7BW125 to SF10BW125
569 +(((
570 +Payload:    01 00 00 3C    TDC=60S
571 +)))
540 540  
541 -923.4 - SF7BW125 to SF10BW125
573 +(((
574 +
575 +)))
542 542  
577 +* (((
578 +(% style="color:blue" %)**Reset**
579 +)))
543 543  
544 -**Additional Uplink Channel**:
581 +(((
582 +If payload = 0x04FF, it will reset the NSE01
583 +)))
545 545  
546 -(OTAA mode, channel added by JoinAccept message)
547 547  
548 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
586 +* (% style="color:blue" %)**INTMOD**
549 549  
550 -922.2 - SF7BW125 to SF10BW125
588 +(((
589 +Downlink Payload: 06000003, Set AT+INTMOD=3
590 +)))
551 551  
552 -922.4 - SF7BW125 to SF10BW125
553 553  
554 -922.6 - SF7BW125 to SF10BW125
555 555  
556 -922.8 - SF7BW125 to SF10BW125
594 +== 2. ​LED Indicator ==
557 557  
558 -923.0 - SF7BW125 to SF10BW125
596 +(((
597 +The NSE01 has an internal LED which is to show the status of different state.
559 559  
560 -922.0 - SF7BW125 to SF10BW125
561 561  
600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
601 +* Then the LED will be on for 1 second means device is boot normally.
602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
603 +* For each uplink probe, LED will be on for 500ms.
604 +)))
562 562  
563 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
564 564  
565 -923.6 - SF7BW125 to SF10BW125
566 566  
567 -923.8 - SF7BW125 to SF10BW125
568 568  
569 -924.0 - SF7BW125 to SF10BW125
609 +== 2.7  Installation in Soil ==
570 570  
571 -924.2 - SF7BW125 to SF10BW125
611 +__**Measurement the soil surface**__
572 572  
573 -924.4 - SF7BW125 to SF10BW125
613 +(((
614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
615 +)))
574 574  
575 -924.6 - SF7BW125 to SF10BW125
617 +[[image:1657259653666-883.png]] ​
576 576  
577 577  
620 +(((
621 +
578 578  
579 -**Downlink:**
580 -
581 -Uplink channels 1-8 (RX1)
582 -
583 -923.2 - SF10BW125 (RX2)
584 -
585 -
586 -1.
587 -11.
588 -111. KR920-923 (KR920)
589 -
590 -Default channel:
591 -
592 -922.1 - SF7BW125 to SF12BW125
593 -
594 -922.3 - SF7BW125 to SF12BW125
595 -
596 -922.5 - SF7BW125 to SF12BW125
597 -
598 -
599 -Uplink: (OTAA mode, channel added by JoinAccept message)
600 -
601 -922.1 - SF7BW125 to SF12BW125
602 -
603 -922.3 - SF7BW125 to SF12BW125
604 -
605 -922.5 - SF7BW125 to SF12BW125
606 -
607 -922.7 - SF7BW125 to SF12BW125
608 -
609 -922.9 - SF7BW125 to SF12BW125
610 -
611 -923.1 - SF7BW125 to SF12BW125
612 -
613 -923.3 - SF7BW125 to SF12BW125
614 -
615 -
616 -Downlink:
617 -
618 -Uplink channels 1-7(RX1)
619 -
620 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
621 -
622 -
623 -1.
624 -11.
625 -111. IN865-867 (IN865)
626 -
627 -Uplink:
628 -
629 -865.0625 - SF7BW125 to SF12BW125
630 -
631 -865.4025 - SF7BW125 to SF12BW125
632 -
633 -865.9850 - SF7BW125 to SF12BW125
634 -
635 -
636 -Downlink:
637 -
638 -Uplink channels 1-3 (RX1)
639 -
640 -866.550 - SF10BW125 (RX2)
641 -
642 -
643 -1.
644 -11. LED Indicator
645 -
646 -The LSE01 has an internal LED which is to show the status of different state.
647 -
648 -
649 -* Blink once when device power on.
650 -* Solid ON for 5 seconds once device successful Join the network.
651 -* Blink once when device transmit a packet.
652 -
653 -1.
654 -11. Installation in Soil
655 -
656 -**Measurement the soil surface**
657 -
658 -
659 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
660 -
661 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
662 -
663 -
664 -
665 -
666 -
667 -
668 -
669 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
670 -
671 -
672 -
623 +(((
673 673  Dig a hole with diameter > 20CM.
625 +)))
674 674  
627 +(((
675 675  Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 +)))
630 +)))
676 676  
632 +[[image:1654506665940-119.png]]
677 677  
634 +(((
635 +
636 +)))
678 678  
679 679  
680 -1.
681 -11. ​Firmware Change Log
639 +== 2.8  ​Firmware Change Log ==
682 682  
683 -**Firmware download link:**
684 684  
685 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
642 +Download URL & Firmware Change log
686 686  
644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
687 687  
688 -**Firmware Upgrade Method:**
689 689  
690 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
691 691  
692 692  
693 -**V1.0.**
694 694  
695 -Release
651 +== 2.9  ​Battery Analysis ==
696 696  
653 +=== 2.9.1  ​Battery Type ===
697 697  
698 698  
699 -1.
700 -11. ​Battery Analysis
701 -111. ​Battery Type
656 +(((
657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
658 +)))
702 702  
703 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
704 704  
661 +(((
662 +The battery is designed to last for several years depends on the actually use environment and update interval. 
663 +)))
705 705  
706 -The battery is designed to last for more than 5 years for the LSN50.
707 707  
708 -
666 +(((
709 709  The battery related documents as below:
668 +)))
710 710  
711 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
712 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
713 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
714 714  
715 -|(((
716 -JST-XH-2P connector
674 +(((
675 +[[image:image-20220708140453-6.png]]
717 717  )))
718 718  
719 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
720 720  
721 721  
680 +=== 2.9.2  Power consumption Analyze ===
722 722  
723 -1.
724 -11.
725 -111. ​Battery Note
682 +(((
683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
684 +)))
726 726  
727 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  
687 +(((
688 +Instruction to use as below:
689 +)))
729 729  
730 -1.
731 -11.
732 -111. ​Replace the battery
691 +(((
692 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
693 +)))
733 733  
734 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
735 735  
696 +(((
697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
698 +)))
736 736  
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
700 +* (((
701 +Product Model
702 +)))
703 +* (((
704 +Uplink Interval
705 +)))
706 +* (((
707 +Working Mode
708 +)))
738 738  
710 +(((
711 +And the Life expectation in difference case will be shown on the right.
712 +)))
739 739  
740 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
714 +[[image:image-20220708141352-7.jpeg]]
741 741  
742 742  
743 743  
718 +=== 2.9.3  ​Battery Note ===
744 744  
720 +(((
721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
722 +)))
745 745  
746 746  
747 -= 3. ​Using the AT Commands =
748 748  
749 -== 3.1 Access AT Commands ==
726 +=== 2.9.4  Replace the battery ===
750 750  
728 +(((
729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
730 +)))
751 751  
752 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
753 753  
754 -[[image:1654501986557-872.png]]
755 755  
734 += 3. ​ Access NB-IoT Module =
756 756  
757 -Or if you have below board, use below connection:
736 +(((
737 +Users can directly access the AT command set of the NB-IoT module.
738 +)))
758 758  
740 +(((
741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
742 +)))
759 759  
760 -[[image:1654502005655-729.png]]
744 +[[image:1657261278785-153.png]]
761 761  
762 762  
763 763  
764 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
748 += 4.  Using the AT Commands =
765 765  
750 +== 4.1  Access AT Commands ==
766 766  
767 - [[image:1654502050864-459.png]]
752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
768 768  
769 769  
770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
755 +AT+<CMD>?  : Help on <CMD>
771 771  
757 +AT+<CMD>         : Run <CMD>
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
759 +AT+<CMD>=<value> : Set the value
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
761 +AT+<CMD>=?  : Get the value
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
780 -
781 -
782 782  (% style="color:#037691" %)**General Commands**(%%)      
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
766 +AT  : Attention       
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
768 +AT?  : Short Help     
787 787  
788 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
770 +ATZ  : MCU Reset    
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
772 +AT+TDC  : Application Data Transmission Interval
791 791  
774 +AT+CFG  : Print all configurations
792 792  
793 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
776 +AT+CFGMOD           : Working mode selection
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
778 +AT+INTMOD            : Set the trigger interrupt mode
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
780 +AT+5VT  : Set extend the time of 5V power  
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
782 +AT+PRO  : Choose agreement
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
784 +AT+WEIGRE  : Get weight or set weight to 0
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
786 +AT+WEIGAP  : Get or Set the GapValue of weight
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
788 +AT+RXDL  : Extend the sending and receiving time
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
790 +AT+CNTFAC  : Get or set counting parameters
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
792 +AT+SERVADDR  : Server Address
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
795 +(% style="color:#037691" %)**COAP Management**      
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
797 +AT+URI            : Resource parameters
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
800 +(% style="color:#037691" %)**UDP Management**
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
802 +AT+CFM          : Upload confirmation mode (only valid for UDP)
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
805 +(% style="color:#037691" %)**MQTT Management**
826 826  
807 +AT+CLIENT               : Get or Set MQTT client
827 827  
828 -(% style="color:#037691" %)**LoRa Network Management**
809 +AT+UNAME  : Get or Set MQTT Username
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
811 +AT+PWD                  : Get or Set MQTT password
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
813 +AT+PUBTOPI : Get or Set MQTT publish topic
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
815 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
818 +(% style="color:#037691" %)**Information**          
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
820 +AT+FDR  : Factory Data Reset
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
822 +AT+PWOR : Serial Access Password
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
826 += ​5.  FAQ =
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
828 +== 5.1 How to Upgrade Firmware ==
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
831 +(((
832 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
833 +)))
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
835 +(((
836 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
837 +)))
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
839 +(((
840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
841 +)))
859 859  
860 860  
861 -(% style="color:#037691" %)**Information** 
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
845 +== 5.2  Can I calibrate NSE01 to different soil types? ==
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
847 +(((
848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
849 +)))
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
852 += 6.  Trouble Shooting =
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
854 +== 6.1  ​Connection problem when uploading firmware ==
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
874 874  
875 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
876 -
877 -
878 -= ​4. FAQ =
879 -
880 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881 -
882 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
883 -When downloading the images, choose the required image file for download. ​
884 -
885 -
886 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
887 -
888 -
889 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
890 -
891 -
892 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
893 -
894 -[[image:image-20220606154726-3.png]]
895 -
896 -When you use the TTN network, the US915 frequency bands use are:
897 -
898 -* 903.9 - SF7BW125 to SF10BW125
899 -* 904.1 - SF7BW125 to SF10BW125
900 -* 904.3 - SF7BW125 to SF10BW125
901 -* 904.5 - SF7BW125 to SF10BW125
902 -* 904.7 - SF7BW125 to SF10BW125
903 -* 904.9 - SF7BW125 to SF10BW125
904 -* 905.1 - SF7BW125 to SF10BW125
905 -* 905.3 - SF7BW125 to SF10BW125
906 -* 904.6 - SF8BW500
907 -
908 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909 -
910 -(% class="box infomessage" %)
911 911  (((
912 -**AT+CHE=2**
858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
913 913  )))
914 914  
915 -(% class="box infomessage" %)
861 +(% class="wikigeneratedid" %)
916 916  (((
917 -**ATZ**
863 +
918 918  )))
919 919  
920 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
921 921  
867 +== 6.2  AT Command input doesn't work ==
922 922  
923 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
869 +(((
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
924 924  
925 -[[image:image-20220606154825-4.png]]
872 +
873 +)))
926 926  
927 927  
876 += 7. ​ Order Info =
928 928  
929 -= 5. Trouble Shooting =
930 930  
931 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
932 932  
933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
934 934  
882 +(% class="wikigeneratedid" %)
883 +(((
884 +
885 +)))
935 935  
936 -== 5.2 AT Command input doesn’t work ==
887 += 8.  Packing Info =
937 937  
938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
889 +(((
890 +
939 939  
892 +(% style="color:#037691" %)**Package Includes**:
940 940  
941 -== 5.3 Device rejoin in at the second uplink packet ==
894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 +* External antenna x 1
896 +)))
942 942  
943 -(% style="color:#4f81bd" %)**Issue describe as below:**
898 +(((
899 +
944 944  
945 -[[image:1654500909990-784.png]]
901 +(% style="color:#037691" %)**Dimension and weight**:
946 946  
947 -
948 -(% style="color:#4f81bd" %)**Cause for this issue:**
949 -
950 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
951 -
952 -
953 -(% style="color:#4f81bd" %)**Solution: **
954 -
955 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
956 -
957 -[[image:1654500929571-736.png]]
958 -
959 -
960 -= 6. ​Order Info =
961 -
962 -
963 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
964 -
965 -
966 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
967 -
968 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
969 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
970 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
971 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
972 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
973 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
974 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
975 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
976 -
977 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
978 -
979 -* (% style="color:red" %)**4**(%%): 4000mAh battery
980 -* (% style="color:red" %)**8**(%%): 8500mAh battery
981 -
982 -= 7. Packing Info =
983 -
984 -(((
985 -**Package Includes**:
903 +* Size: 195 x 125 x 55 mm
904 +* Weight:   420g
986 986  )))
987 987  
988 -* (((
989 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
990 -)))
991 -
992 992  (((
993 993  
994 -)))
995 995  
996 -(((
997 -**Dimension and weight**:
998 -)))
999 999  
1000 -* (((
1001 -Device Size: cm
911 +
1002 1002  )))
1003 -* (((
1004 -Device Weight: g
1005 -)))
1006 -* (((
1007 -Package Size / pcs : cm
1008 -)))
1009 -* (((
1010 -Weight / pcs : g
1011 -)))
1012 1012  
1013 -= 8. Support =
914 += 9.  Support =
1014 1014  
1015 1015  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1016 1016  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1017 -
1018 -
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content