Last modified by Mengting Qiu on 2024/04/02 16:44

From version 19.1
edited by Xiaoling
on 2022/06/06 16:39
Change comment: Uploaded new attachment "image-20220606163915-7.png", version {1}
To version 65.7
edited by Xiaoling
on 2022/07/08 15:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,1011 +8,821 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
16 +{{toc/}}
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
23 += 1.  Introduction =
40 40  
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
41 41  
27 +(((
28 +
42 42  
43 -== 1.2 Features ==
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
56 56  
57 -== 1.3 Specification ==
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
60 60  
61 -[[image:image-20220606162220-5.png]]
38 +
39 +)))
62 62  
41 +[[image:1654503236291-817.png]]
63 63  
64 64  
65 -== ​1.4 Applications ==
44 +[[image:1657245163077-232.png]]
66 66  
67 -* Smart Agriculture
68 68  
69 69  
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
48 +== 1.2 ​ Features ==
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
64 +== 1.3  Specification ==
78 78  
79 79  
67 +(% style="color:#037691" %)**Common DC Characteristics:**
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
82 82  
83 -== 2.1 How it works ==
72 +(% style="color:#037691" %)**NB-IoT Spec:**
84 84  
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 -)))
74 +* - B1 @H-FDD: 2100MHz
75 +* - B3 @H-FDD: 1800MHz
76 +* - B8 @H-FDD: 900MHz
77 +* - B5 @H-FDD: 850MHz
78 +* - B20 @H-FDD: 800MHz
79 +* - B28 @H-FDD: 700MHz
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
81 +Probe(% style="color:#037691" %)** Specification:**
92 92  
83 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
93 93  
85 +[[image:image-20220708101224-1.png]]
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
89 +== ​1.4  Applications ==
99 99  
100 -[[image:1654503992078-669.png]]
91 +* Smart Agriculture
101 101  
93 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
94 +​
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
96 +== 1.5  Pin Definitions ==
104 104  
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
99 +[[image:1657246476176-652.png]]
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
103 += 2.  Use NSE01 to communicate with IoT Server =
113 113  
114 -**Add APP EUI in the application**
105 +== 2.1  How it works ==
115 115  
116 116  
117 -[[image:1654504596150-405.png]]
108 +(((
109 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +)))
118 118  
119 119  
120 -
121 -**Add APP KEY and DEV EUI**
122 -
123 -[[image:1654504683289-357.png]]
124 -
125 -|(((
126 -
113 +(((
114 +The diagram below shows the working flow in default firmware of NSE01:
127 127  )))
128 128  
129 -**Step 2**: Power on LSE01
117 +[[image:image-20220708101605-2.png]]
130 130  
131 -
132 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 -
134 -
135 -
136 -|(((
119 +(((
137 137  
138 138  )))
139 139  
140 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
141 141  
142 142  
125 +== 2.2 ​ Configure the NSE01 ==
143 143  
144 144  
128 +=== 2.2.1 Test Requirement ===
145 145  
146 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
147 147  
148 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
131 +To use NSE01 in your city, make sure meet below requirements:
149 149  
133 +* Your local operator has already distributed a NB-IoT Network there.
134 +* The local NB-IoT network used the band that NSE01 supports.
135 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
150 150  
137 +(((
138 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
139 +)))
151 151  
152 152  
153 -1.
154 -11. ​Uplink Payload
155 -111. MOD=0(Default Mode)
142 +[[image:1657249419225-449.png]]
156 156  
157 -LSE01 will uplink payload via LoRaWAN with below payload format: 
158 158  
159 159  
160 -Uplink payload includes in total 11 bytes.
161 -
146 +=== 2.2.2 Insert SIM card ===
162 162  
163 -|(((
164 -**Size**
148 +Insert the NB-IoT Card get from your provider.
165 165  
166 -**(bytes)**
167 -)))|**2**|**2**|**2**|**2**|**2**|**1**
168 -|**Value**|[[BAT>>path:#bat]]|(((
169 -Temperature
150 +User need to take out the NB-IoT module and insert the SIM card like below:
170 170  
171 -(Reserve, Ignore now)
172 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
173 -MOD & Digital Interrupt
174 174  
175 -(Optional)
176 -)))
153 +[[image:1657249468462-536.png]]
177 177  
178 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
179 179  
180 180  
181 -1.
182 -11.
183 -111. MOD=1(Original value)
157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
184 184  
185 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
186 -
187 -|(((
188 -**Size**
189 -
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>path:#bat]]|(((
193 -Temperature
194 -
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
197 -MOD & Digital Interrupt
198 -
199 -(Optional)
159 +(((
160 +(((
161 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
200 200  )))
163 +)))
201 201  
202 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
203 203  
204 -1.
205 -11.
206 -111. Battery Info
166 +**Connection:**
207 207  
208 -Check the battery voltage for LSE01.
168 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
209 209  
210 -Ex1: 0x0B45 = 2885mV
170 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
211 211  
212 -Ex2: 0x0B49 = 2889mV
172 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
213 213  
214 214  
175 +In the PC, use below serial tool settings:
215 215  
216 -1.
217 -11.
218 -111. Soil Moisture
177 +* Baud:  (% style="color:green" %)**9600**
178 +* Data bits:** (% style="color:green" %)8(%%)**
179 +* Stop bits: (% style="color:green" %)**1**
180 +* Parity:  (% style="color:green" %)**None**
181 +* Flow Control: (% style="color:green" %)**None**
219 219  
220 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
183 +(((
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
185 +)))
221 221  
222 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
187 +[[image:image-20220708110657-3.png]]
223 223  
224 -**05DC(H) = 1500(D) /100 = 15%.**
189 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
225 225  
226 226  
227 -1.
228 -11.
229 -111. Soil Temperature
230 230  
231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
193 +=== 2.2.4 Use CoAP protocol to uplink data ===
232 232  
233 -**Example**:
195 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
234 234  
235 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
236 236  
237 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
198 +**Use below commands:**
238 238  
200 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
201 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
202 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
239 239  
240 -1.
241 -11.
242 -111. Soil Conductivity (EC)
204 +For parameter description, please refer to AT command set
243 243  
244 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
206 +[[image:1657249793983-486.png]]
245 245  
246 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
247 247  
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
248 248  
249 -Generally, the EC value of irrigation water is less than 800uS / cm.
211 +[[image:1657249831934-534.png]]
250 250  
251 -1.
252 -11.
253 -111. MOD
254 254  
255 -Firmware version at least v2.1 supports changing mode.
256 256  
257 -For example, bytes[10]=90
215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
258 258  
259 -mod=(bytes[10]>>7)&0x01=1.
217 +This feature is supported since firmware version v1.0.1
260 260  
261 261  
262 -Downlink Command:
220 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
263 263  
264 -If payload = 0x0A00, workmode=0
224 +[[image:1657249864775-321.png]]
265 265  
266 -If** **payload =** **0x0A01, workmode=1
267 267  
227 +[[image:1657249930215-289.png]]
268 268  
269 -1.
270 -11.
271 -111. ​Decode payload in The Things Network
272 272  
273 -While using TTN network, you can add the payload format to decode the payload.
274 274  
231 +=== 2.2.6 Use MQTT protocol to uplink data ===
275 275  
276 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
233 +This feature is supported since firmware version v110
277 277  
278 -The payload decoder function for TTN is here:
279 279  
280 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
236 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
238 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
239 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
240 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
241 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
242 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
281 281  
244 +[[image:1657249978444-674.png]]
282 282  
283 -1.
284 -11. Uplink Interval
285 285  
286 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
247 +[[image:1657249990869-686.png]]
287 287  
288 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
289 289  
290 -1.
291 -11. ​Downlink Payload
250 +(((
251 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
252 +)))
292 292  
293 -By default, LSE50 prints the downlink payload to console port.
294 294  
295 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
296 -|TDC (Transmit Time Interval)|Any|01|4
297 -|RESET|Any|04|2
298 -|AT+CFM|Any|05|4
299 -|INTMOD|Any|06|4
300 -|MOD|Any|0A|2
301 301  
302 -**Examples**
256 +=== 2.2.7 Use TCP protocol to uplink data ===
303 303  
258 +This feature is supported since firmware version v110
304 304  
305 -**Set TDC**
306 306  
307 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
261 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
308 308  
309 -Payload:    01 00 00 1E    TDC=30S
264 +[[image:1657250217799-140.png]]
310 310  
311 -Payload:    01 00 00 3C    TDC=60S
312 312  
267 +[[image:1657250255956-604.png]]
313 313  
314 -**Reset**
315 315  
316 -If payload = 0x04FF, it will reset the LSE01
317 317  
271 +=== 2.2.8 Change Update Interval ===
318 318  
319 -**CFM**
273 +User can use below command to change the (% style="color:green" %)**uplink interval**.
320 320  
321 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
275 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
322 322  
323 -1.
324 -11. ​Show Data in DataCake IoT Server
277 +(((
278 +(% style="color:red" %)**NOTE:**
279 +)))
325 325  
326 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
281 +(((
282 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
283 +)))
327 327  
328 328  
329 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
330 330  
331 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
287 +== 2.3  Uplink Payload ==
332 332  
289 +In this mode, uplink payload includes in total 18 bytes
333 333  
334 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
291 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
292 +|=(% style="width: 50px;" %)(((
293 +**Size(bytes)**
294 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
295 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
335 335  
297 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
338 338  
300 +[[image:image-20220708111918-4.png]]
339 339  
340 340  
303 +The payload is ASCII string, representative same HEX:
341 341  
305 +0x72403155615900640c7817075e0a8c02f900 where:
342 342  
343 -Step 3: Create an account or log in Datacake.
307 +* Device ID: 0x 724031556159 = 724031556159
308 +* Version: 0x0064=100=1.0.0
344 344  
345 -Step 4: Search the LSE01 and add DevEUI.
310 +* BAT: 0x0c78 = 3192 mV = 3.192V
311 +* Singal: 0x17 = 23
312 +* Soil Moisture: 0x075e= 1886 = 18.86  %
313 +* Soil Temperature:0x0a8c =2700=27 °C
314 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
315 +* Interrupt: 0x00 = 0
346 346  
347 347  
348 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
318 +== 2.4  Payload Explanation and Sensor Interface ==
349 349  
350 350  
321 +=== 2.4.1  Device ID ===
351 351  
352 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
323 +By default, the Device ID equal to the last 6 bytes of IMEI.
353 353  
325 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 354  
355 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
327 +**Example:**
356 356  
329 +AT+DEUI=A84041F15612
357 357  
331 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
358 358  
359 -1.
360 -11. Frequency Plans
361 361  
362 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
363 363  
364 -1.
365 -11.
366 -111. EU863-870 (EU868)
335 +=== 2.4.2  Version Info ===
367 367  
368 -Uplink:
337 +Specify the software version: 0x64=100, means firmware version 1.00.
369 369  
370 -868.1 - SF7BW125 to SF12BW125
339 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
371 371  
372 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
373 373  
374 -868.5 - SF7BW125 to SF12BW125
375 375  
376 -867.1 - SF7BW125 to SF12BW125
343 +=== 2.4.3  Battery Info ===
377 377  
378 -867.3 - SF7BW125 to SF12BW125
345 +(((
346 +Check the battery voltage for LSE01.
347 +)))
379 379  
380 -867.5 - SF7BW125 to SF12BW125
349 +(((
350 +Ex1: 0x0B45 = 2885mV
351 +)))
381 381  
382 -867.7 - SF7BW125 to SF12BW125
353 +(((
354 +Ex2: 0x0B49 = 2889mV
355 +)))
383 383  
384 -867.9 - SF7BW125 to SF12BW125
385 385  
386 -868.8 - FSK
387 387  
359 +=== 2.4.4  Signal Strength ===
388 388  
389 -Downlink:
361 +NB-IoT Network signal Strength.
390 390  
391 -Uplink channels 1-9 (RX1)
363 +**Ex1: 0x1d = 29**
392 392  
393 -869.525 - SF9BW125 (RX2 downlink only)
365 +(% style="color:blue" %)**0**(%%)  -113dBm or less
394 394  
367 +(% style="color:blue" %)**1**(%%)  -111dBm
395 395  
396 -1.
397 -11.
398 -111. US902-928(US915)
369 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
399 399  
400 -Used in USA, Canada and South America. Default use CHE=2
371 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
401 401  
402 -Uplink:
373 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
403 403  
404 -903.9 - SF7BW125 to SF10BW125
405 405  
406 -904.1 - SF7BW125 to SF10BW125
407 407  
408 -904.3 - SF7BW125 to SF10BW125
377 +=== 2.4. Soil Moisture ===
409 409  
410 -904.5 - SF7BW125 to SF10BW125
379 +(((
380 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
381 +)))
411 411  
412 -904.7 - SF7BW125 to SF10BW125
383 +(((
384 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
385 +)))
413 413  
414 -904.9 - SF7BW125 to SF10BW125
387 +(((
388 +
389 +)))
415 415  
416 -905.1 - SF7BW125 to SF10BW125
391 +(((
392 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
393 +)))
417 417  
418 -905.3 - SF7BW125 to SF10BW125
419 419  
420 420  
421 -Downlink:
397 +=== 2.4.6  Soil Temperature ===
422 422  
423 -923.3 - SF7BW500 to SF12BW500
399 +(((
400 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
401 +)))
424 424  
425 -923.9 - SF7BW500 to SF12BW500
403 +(((
404 +**Example**:
405 +)))
426 426  
427 -924.5 - SF7BW500 to SF12BW500
407 +(((
408 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
409 +)))
428 428  
429 -925.1 - SF7BW500 to SF12BW500
411 +(((
412 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
413 +)))
430 430  
431 -925.7 - SF7BW500 to SF12BW500
432 432  
433 -926.3 - SF7BW500 to SF12BW500
434 434  
435 -926.9 - SF7BW500 to SF12BW500
417 +=== 2.4.7  Soil Conductivity (EC) ===
436 436  
437 -927.5 - SF7BW500 to SF12BW500
419 +(((
420 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
421 +)))
438 438  
439 -923.3 - SF12BW500(RX2 downlink only)
423 +(((
424 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
425 +)))
440 440  
427 +(((
428 +Generally, the EC value of irrigation water is less than 800uS / cm.
429 +)))
441 441  
442 -1.
443 -11.
444 -111. CN470-510 (CN470)
431 +(((
432 +
433 +)))
445 445  
446 -Used in China, Default use CHE=1
435 +(((
436 +
437 +)))
447 447  
448 -Uplink:
439 +=== 2.4.8  Digital Interrupt ===
449 449  
450 -486.3 - SF7BW125 to SF12BW125
441 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
451 451  
452 -486.5 - SF7BW125 to SF12BW125
443 +The command is:
453 453  
454 -486.7 - SF7BW125 to SF12BW125
445 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
455 455  
456 -486.9 - SF7BW125 to SF12BW125
457 457  
458 -487.1 - SF7BW125 to SF12BW125
448 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
459 459  
460 -487.3 - SF7BW125 to SF12BW125
461 461  
462 -487.5 - SF7BW125 to SF12BW125
451 +Example:
463 463  
464 -487.7 - SF7BW125 to SF12BW125
453 +0x(00): Normal uplink packet.
465 465  
455 +0x(01): Interrupt Uplink Packet.
466 466  
467 -Downlink:
468 468  
469 -506.7 - SF7BW125 to SF12BW125
470 470  
471 -506.9 - SF7BW125 to SF12BW125
459 +=== 2.4.9  ​+5V Output ===
472 472  
473 -507.1 - SF7BW125 to SF12BW125
461 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
474 474  
475 -507.3 - SF7BW125 to SF12BW125
476 476  
477 -507.5 - SF7BW125 to SF12BW125
464 +The 5V output time can be controlled by AT Command.
478 478  
479 -507.7 - SF7BW125 to SF12BW125
466 +(% style="color:blue" %)**AT+5VT=1000**
480 480  
481 -507.9 - SF7BW125 to SF12BW125
468 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
482 482  
483 -508.1 - SF7BW125 to SF12BW125
484 484  
485 -505.3 - SF12BW125 (RX2 downlink only)
486 486  
472 +== 2.5  Downlink Payload ==
487 487  
488 -1.
489 -11.
490 -111. AU915-928(AU915)
474 +By default, NSE01 prints the downlink payload to console port.
491 491  
492 -Default use CHE=2
476 +[[image:image-20220708133731-5.png]]
493 493  
494 -Uplink:
495 495  
496 -916.8 - SF7BW125 to SF12BW125
479 +(((
480 +(% style="color:blue" %)**Examples:**
481 +)))
497 497  
498 -917.0 - SF7BW125 to SF12BW125
483 +(((
484 +
485 +)))
499 499  
500 -917.2 - SF7BW125 to SF12BW125
487 +* (((
488 +(% style="color:blue" %)**Set TDC**
489 +)))
501 501  
502 -917.4 - SF7BW125 to SF12BW125
491 +(((
492 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
493 +)))
503 503  
504 -917.6 - SF7BW125 to SF12BW125
495 +(((
496 +Payload:    01 00 00 1E    TDC=30S
497 +)))
505 505  
506 -917.8 - SF7BW125 to SF12BW125
499 +(((
500 +Payload:    01 00 00 3C    TDC=60S
501 +)))
507 507  
508 -918.0 - SF7BW125 to SF12BW125
503 +(((
504 +
505 +)))
509 509  
510 -918.2 - SF7BW125 to SF12BW125
507 +* (((
508 +(% style="color:blue" %)**Reset**
509 +)))
511 511  
511 +(((
512 +If payload = 0x04FF, it will reset the NSE01
513 +)))
512 512  
513 -Downlink:
514 514  
515 -923.3 - SF7BW500 to SF12BW500
516 +* (% style="color:blue" %)**INTMOD**
516 516  
517 -923.9 - SF7BW500 to SF12BW500
518 +Downlink Payload: 06000003, Set AT+INTMOD=3
518 518  
519 -924.5 - SF7BW500 to SF12BW500
520 520  
521 -925.1 - SF7BW500 to SF12BW500
522 522  
523 -925.7 - SF7BW500 to SF12BW500
522 +== 2. ​LED Indicator ==
524 524  
525 -926.3 - SF7BW500 to SF12BW500
524 +(((
525 +The NSE01 has an internal LED which is to show the status of different state.
526 526  
527 -926.9 - SF7BW500 to SF12BW500
528 528  
529 -927.5 - SF7BW500 to SF12BW500
528 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
529 +* Then the LED will be on for 1 second means device is boot normally.
530 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
531 +* For each uplink probe, LED will be on for 500ms.
532 +)))
530 530  
531 -923.3 - SF12BW500(RX2 downlink only)
532 532  
533 -1.
534 -11.
535 -111. AS920-923 & AS923-925 (AS923)
536 536  
537 -**Default Uplink channel:**
538 538  
539 -923.2 - SF7BW125 to SF10BW125
537 +== 2.7  Installation in Soil ==
540 540  
541 -923.4 - SF7BW125 to SF10BW125
539 +__**Measurement the soil surface**__
542 542  
541 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
543 543  
544 -**Additional Uplink Channel**:
543 +[[image:1657259653666-883.png]]
545 545  
546 -(OTAA mode, channel added by JoinAccept message)
547 547  
548 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
546 +(((
547 +
549 549  
550 -922.2 - SF7BW125 to SF10BW125
551 -
552 -922.4 - SF7BW125 to SF10BW125
553 -
554 -922.6 - SF7BW125 to SF10BW125
555 -
556 -922.8 - SF7BW125 to SF10BW125
557 -
558 -923.0 - SF7BW125 to SF10BW125
559 -
560 -922.0 - SF7BW125 to SF10BW125
561 -
562 -
563 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
564 -
565 -923.6 - SF7BW125 to SF10BW125
566 -
567 -923.8 - SF7BW125 to SF10BW125
568 -
569 -924.0 - SF7BW125 to SF10BW125
570 -
571 -924.2 - SF7BW125 to SF10BW125
572 -
573 -924.4 - SF7BW125 to SF10BW125
574 -
575 -924.6 - SF7BW125 to SF10BW125
576 -
577 -
578 -
579 -**Downlink:**
580 -
581 -Uplink channels 1-8 (RX1)
582 -
583 -923.2 - SF10BW125 (RX2)
584 -
585 -
586 -1.
587 -11.
588 -111. KR920-923 (KR920)
589 -
590 -Default channel:
591 -
592 -922.1 - SF7BW125 to SF12BW125
593 -
594 -922.3 - SF7BW125 to SF12BW125
595 -
596 -922.5 - SF7BW125 to SF12BW125
597 -
598 -
599 -Uplink: (OTAA mode, channel added by JoinAccept message)
600 -
601 -922.1 - SF7BW125 to SF12BW125
602 -
603 -922.3 - SF7BW125 to SF12BW125
604 -
605 -922.5 - SF7BW125 to SF12BW125
606 -
607 -922.7 - SF7BW125 to SF12BW125
608 -
609 -922.9 - SF7BW125 to SF12BW125
610 -
611 -923.1 - SF7BW125 to SF12BW125
612 -
613 -923.3 - SF7BW125 to SF12BW125
614 -
615 -
616 -Downlink:
617 -
618 -Uplink channels 1-7(RX1)
619 -
620 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
621 -
622 -
623 -1.
624 -11.
625 -111. IN865-867 (IN865)
626 -
627 -Uplink:
628 -
629 -865.0625 - SF7BW125 to SF12BW125
630 -
631 -865.4025 - SF7BW125 to SF12BW125
632 -
633 -865.9850 - SF7BW125 to SF12BW125
634 -
635 -
636 -Downlink:
637 -
638 -Uplink channels 1-3 (RX1)
639 -
640 -866.550 - SF10BW125 (RX2)
641 -
642 -
643 -1.
644 -11. LED Indicator
645 -
646 -The LSE01 has an internal LED which is to show the status of different state.
647 -
648 -
649 -* Blink once when device power on.
650 -* Solid ON for 5 seconds once device successful Join the network.
651 -* Blink once when device transmit a packet.
652 -
653 -1.
654 -11. Installation in Soil
655 -
656 -**Measurement the soil surface**
657 -
658 -
659 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
660 -
661 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
662 -
663 -
664 -
665 -
666 -
667 -
668 -
669 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
670 -
671 -
672 -
549 +(((
673 673  Dig a hole with diameter > 20CM.
551 +)))
674 674  
553 +(((
675 675  Horizontal insert the probe to the soil and fill the hole for long term measurement.
555 +)))
556 +)))
676 676  
558 +[[image:1654506665940-119.png]]
677 677  
560 +(((
561 +
562 +)))
678 678  
679 679  
680 -1.
681 -11. ​Firmware Change Log
565 +== 2.8  ​Firmware Change Log ==
682 682  
683 -**Firmware download link:**
684 684  
685 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
568 +Download URL & Firmware Change log
686 686  
570 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
687 687  
688 -**Firmware Upgrade Method:**
689 689  
690 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
573 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
691 691  
692 692  
693 -**V1.0.**
694 694  
695 -Release
577 +== 2.9  ​Battery Analysis ==
696 696  
579 +=== 2.9.1  ​Battery Type ===
697 697  
698 698  
699 -1.
700 -11. ​Battery Analysis
701 -111. ​Battery Type
582 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
702 702  
703 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
704 704  
585 +The battery is designed to last for several years depends on the actually use environment and update interval. 
705 705  
706 -The battery is designed to last for more than 5 years for the LSN50.
707 707  
708 -
709 709  The battery related documents as below:
710 710  
711 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
712 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
713 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
590 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
592 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
714 714  
715 -|(((
716 -JST-XH-2P connector
594 +(((
595 +[[image:image-20220708140453-6.png]]
717 717  )))
718 718  
719 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
720 720  
721 721  
600 +=== 2.9.2  Power consumption Analyze ===
722 722  
723 -1.
724 -11.
725 -111. ​Battery Note
602 +(((
603 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
604 +)))
726 726  
727 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  
607 +(((
608 +Instruction to use as below:
609 +)))
729 729  
730 -1.
731 -11.
732 -111. ​Replace the battery
611 +(((
612 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
613 +)))
733 733  
734 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
735 735  
616 +(((
617 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
618 +)))
736 736  
737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
620 +* (((
621 +Product Model
622 +)))
623 +* (((
624 +Uplink Interval
625 +)))
626 +* (((
627 +Working Mode
628 +)))
738 738  
630 +(((
631 +And the Life expectation in difference case will be shown on the right.
632 +)))
739 739  
740 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
634 +[[image:image-20220708141352-7.jpeg]]
741 741  
742 742  
743 743  
638 +=== 2.9.3  ​Battery Note ===
744 744  
640 +(((
641 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
642 +)))
745 745  
746 746  
747 -= 3. ​Using the AT Commands =
748 748  
749 -== 3.1 Access AT Commands ==
646 +=== 2.9.4  Replace the battery ===
750 750  
648 +(((
649 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
650 +)))
751 751  
752 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
753 753  
754 -[[image:1654501986557-872.png]]
755 755  
654 += 3. ​ Access NB-IoT Module =
756 756  
757 -Or if you have below board, use below connection:
656 +(((
657 +Users can directly access the AT command set of the NB-IoT module.
658 +)))
758 758  
660 +(((
661 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
662 +)))
759 759  
760 -[[image:1654502005655-729.png]]
664 +[[image:1657261278785-153.png]]
761 761  
762 762  
763 763  
764 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
668 += 4.  Using the AT Commands =
765 765  
670 +== 4.1  Access AT Commands ==
766 766  
767 - [[image:1654502050864-459.png]]
672 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
768 768  
769 769  
770 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
675 +AT+<CMD>?  : Help on <CMD>
771 771  
677 +AT+<CMD>         : Run <CMD>
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
679 +AT+<CMD>=<value> : Set the value
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
681 +AT+<CMD>=?  : Get the value
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
778 778  
779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
780 -
781 -
782 782  (% style="color:#037691" %)**General Commands**(%%)      
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
686 +AT  : Attention       
785 785  
786 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
688 +AT?  : Short Help     
787 787  
788 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
690 +ATZ  : MCU Reset    
789 789  
790 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
692 +AT+TDC  : Application Data Transmission Interval
791 791  
694 +AT+CFG  : Print all configurations
792 792  
793 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
696 +AT+CFGMOD           : Working mode selection
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
698 +AT+INTMOD            : Set the trigger interrupt mode
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
700 +AT+5VT  : Set extend the time of 5V power  
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
702 +AT+PRO  : Choose agreement
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
704 +AT+WEIGRE  : Get weight or set weight to 0
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
706 +AT+WEIGAP  : Get or Set the GapValue of weight
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
708 +AT+RXDL  : Extend the sending and receiving time
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
710 +AT+CNTFAC  : Get or set counting parameters
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
712 +AT+SERVADDR  : Server Address
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
715 +(% style="color:#037691" %)**COAP Management**      
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
717 +AT+URI            : Resource parameters
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
720 +(% style="color:#037691" %)**UDP Management**
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
722 +AT+CFM          : Upload confirmation mode (only valid for UDP)
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
824 824  
825 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
725 +(% style="color:#037691" %)**MQTT Management**
826 826  
727 +AT+CLIENT               : Get or Set MQTT client
827 827  
828 -(% style="color:#037691" %)**LoRa Network Management**
729 +AT+UNAME  : Get or Set MQTT Username
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
731 +AT+PWD                  : Get or Set MQTT password
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
733 +AT+PUBTOPI : Get or Set MQTT publish topic
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
735 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
738 +(% style="color:#037691" %)**Information**          
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
740 +AT+FDR  : Factory Data Reset
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
742 +AT+PWOR : Serial Access Password
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
746 += ​5.  FAQ =
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
748 +== 5.1 How to Upgrade Firmware ==
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
751 +(((
752 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
753 +)))
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
857 -
858 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
859 -
860 -
861 -(% style="color:#037691" %)**Information** 
862 -
863 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
864 -
865 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
866 -
867 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
868 -
869 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
870 -
871 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
872 -
873 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
874 -
875 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
876 -
877 -
878 -= ​4. FAQ =
879 -
880 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
881 -
882 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
883 -When downloading the images, choose the required image file for download. ​
884 -
885 -
886 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
887 -
888 -
889 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
890 -
891 -
892 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
893 -
894 -[[image:image-20220606154726-3.png]]
895 -
896 -When you use the TTN network, the US915 frequency bands use are:
897 -
898 -* 903.9 - SF7BW125 to SF10BW125
899 -* 904.1 - SF7BW125 to SF10BW125
900 -* 904.3 - SF7BW125 to SF10BW125
901 -* 904.5 - SF7BW125 to SF10BW125
902 -* 904.7 - SF7BW125 to SF10BW125
903 -* 904.9 - SF7BW125 to SF10BW125
904 -* 905.1 - SF7BW125 to SF10BW125
905 -* 905.3 - SF7BW125 to SF10BW125
906 -* 904.6 - SF8BW500
907 -
908 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
909 -
910 -(% class="box infomessage" %)
911 911  (((
912 -**AT+CHE=2**
756 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
913 913  )))
914 914  
915 -(% class="box infomessage" %)
916 916  (((
917 -**ATZ**
760 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
918 918  )))
919 919  
920 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
921 921  
922 922  
923 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
765 += 6.  Trouble Shooting =
924 924  
925 -[[image:image-20220606154825-4.png]]
767 +== 6.1  ​Connection problem when uploading firmware ==
926 926  
927 927  
770 +(% class="wikigeneratedid" %)
771 +(((
772 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
773 +)))
928 928  
929 -= 5. Trouble Shooting =
930 930  
931 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
932 932  
933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
777 +== 6. AT Command input doesn't work ==
934 934  
779 +(((
780 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
781 +)))
935 935  
936 -== 5.2 AT Command input doesn’t work ==
937 937  
938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
939 939  
785 += 7. ​ Order Info =
940 940  
941 -== 5.3 Device rejoin in at the second uplink packet ==
942 942  
943 -(% style="color:#4f81bd" %)**Issue describe as below:**
788 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
944 944  
945 -[[image:1654500909990-784.png]]
946 946  
791 +(% class="wikigeneratedid" %)
792 +(((
793 +
794 +)))
947 947  
948 -(% style="color:#4f81bd" %)**Cause for this issue:**
796 += 8 Packing Info =
949 949  
950 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
798 +(((
799 +
951 951  
801 +(% style="color:#037691" %)**Package Includes**:
952 952  
953 -(% style="color:#4f81bd" %)**Solution: **
954 954  
955 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
804 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
805 +* External antenna x 1
806 +)))
956 956  
957 -[[image:1654500929571-736.png]]
808 +(((
809 +
958 958  
811 +(% style="color:#037691" %)**Dimension and weight**:
959 959  
960 -= 6. ​Order Info =
961 961  
962 -
963 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
964 -
965 -
966 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
967 -
968 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
969 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
970 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
971 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
972 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
973 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
974 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
975 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
976 -
977 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
978 -
979 -* (% style="color:red" %)**4**(%%): 4000mAh battery
980 -* (% style="color:red" %)**8**(%%): 8500mAh battery
981 -
982 -= 7. Packing Info =
983 -
984 -(((
985 -**Package Includes**:
814 +* Size: 195 x 125 x 55 mm
815 +* Weight:   420g
986 986  )))
987 987  
988 -* (((
989 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
990 -)))
991 -
992 992  (((
993 993  
994 -)))
995 995  
996 -(((
997 -**Dimension and weight**:
998 -)))
999 999  
1000 -* (((
1001 -Device Size: cm
822 +
1002 1002  )))
1003 -* (((
1004 -Device Weight: g
1005 -)))
1006 -* (((
1007 -Package Size / pcs : cm
1008 -)))
1009 -* (((
1010 -Weight / pcs : g
1011 -)))
1012 1012  
1013 -= 8. Support =
825 += 9.  Support =
1014 1014  
1015 1015  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1016 1016  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1017 -
1018 -
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content