Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 39 added, 0 removed)
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220606163915-7.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="848" width="848"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 ... ... @@ -8,1011 +8,910 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 13 +**Table of Contents:** 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 40 40 25 +((( 26 + 41 41 28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 42 42 43 - ==1.2Features==30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 56 56 57 - ==1.3Specification==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 58 58 59 - MeasureVolume:Base onthe centrapinof theprobe,acylinderwith 7cm diameter and10cmheight.36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 - 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 - 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 75 - 76 - 77 -**LSE01 v1.0 :** Release 78 - 79 - 80 - 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 - 83 -== 2.1 How it works == 84 - 85 85 ((( 86 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 87 87 ))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 42 + 91 91 ))) 92 92 45 +[[image:1654503236291-817.png]] 93 93 94 94 95 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==48 +[[image:1657245163077-232.png]] 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 99 99 100 - [[image:1654503992078-669.png]]52 +== 1.2 Features == 101 101 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 102 102 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 104 105 105 106 - **Step1**:Create a devicein TTN with the OTAA keys fromLSE01.69 +== 1.3 Specification == 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 110 - [[image:image-20220606163732-6.jpeg]]72 +(% style="color:#037691" %)**Common DC Characteristics:** 111 111 112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 113 113 114 - **AddAPP EUI intheapplication**77 +(% style="color:#037691" %)**NB-IoT Spec:** 115 115 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 116 116 117 - [[image:1654504596150-405.png]]86 +Probe(% style="color:#037691" %)** Specification:** 118 118 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 119 119 90 +[[image:image-20220708101224-1.png]] 120 120 121 -**Add APP KEY and DEV EUI** 122 122 123 -[[image:1654504683289-357.png]] 124 124 125 -|((( 126 - 127 -))) 94 +== 1.4 Applications == 128 128 129 -* *Step2**: Poweron LSE0196 +* Smart Agriculture 130 130 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 131 131 132 - PutaJumper on JP2 to power onthedevice. ( The Jumper must be inFLASH position).101 +== 1.5 Pin Definitions == 133 133 134 134 104 +[[image:1657246476176-652.png]] 135 135 136 -|((( 137 - 138 -))) 139 139 140 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]] 141 141 108 += 2. Use NSE01 to communicate with IoT Server = 142 142 110 +== 2.1 How it works == 143 143 144 144 113 +((( 114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 115 +))) 145 145 146 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 147 147 148 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 118 +((( 119 +The diagram below shows the working flow in default firmware of NSE01: 120 +))) 149 149 122 +[[image:image-20220708101605-2.png]] 150 150 151 - 152 - 153 -1. 154 -11. Uplink Payload 155 -111. MOD=0(Default Mode) 156 - 157 -LSE01 will uplink payload via LoRaWAN with below payload format: 158 - 159 - 160 -Uplink payload includes in total 11 bytes. 124 +((( 161 161 162 - 163 -|((( 164 -**Size** 165 - 166 -**(bytes)** 167 -)))|**2**|**2**|**2**|**2**|**2**|**1** 168 -|**Value**|[[BAT>>path:#bat]]|((( 169 -Temperature 170 - 171 -(Reserve, Ignore now) 172 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 173 -MOD & Digital Interrupt 174 - 175 -(Optional) 176 176 ))) 177 177 178 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 179 179 180 180 181 -1. 182 -11. 183 -111. MOD=1(Original value) 130 +== 2.2 Configure the NSE01 == 184 184 185 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 186 186 187 -|((( 188 -**Size** 133 +=== 2.2.1 Test Requirement === 189 189 190 -**(bytes)** 191 -)))|**2**|**2**|**2**|**2**|**2**|**1** 192 -|**Value**|[[BAT>>path:#bat]]|((( 193 -Temperature 194 194 195 -(Reserve, Ignore now) 196 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 197 -MOD & Digital Interrupt 198 - 199 -(Optional) 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 200 200 ))) 201 201 202 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 203 203 204 - 1.205 -11. 206 - 111. Battery Info144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 146 +))) 207 207 208 -Check the battery voltage for LSE01. 209 209 210 - Ex1:0x0B45=2885mV149 +[[image:1657249419225-449.png]] 211 211 212 -Ex2: 0x0B49 = 2889mV 213 213 214 214 153 +=== 2.2.2 Insert SIM card === 215 215 216 - 1.217 - 11.218 - 111. Soil Moisture155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 219 219 220 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 221 221 222 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is 223 223 224 - **05DC(H) =1500(D) /100 = 15%.**164 +[[image:1657249468462-536.png]] 225 225 226 226 227 -1. 228 -11. 229 -111. Soil Temperature 230 230 231 - Get the temperature in the soil.Thevalue rangeof the register is -4000 - +800(Decimal), dividethisvalueby100togetthe temperature in the soil.For example, ifthe data you get from the register is 0x09 0xEC, the temperaturecontentinthesoil is168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 232 232 233 -**Example**: 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 234 234 235 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 236 236 237 - If payloadis FF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C177 +**Connection:** 238 238 179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 239 239 240 -1. 241 -11. 242 -111. Soil Conductivity (EC) 181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 243 243 244 - Obtainsolublesaltconcentration in soilsolubleion concentration inliquid fertilizerorplantingmedium,.Thevaluerange of the register is 0-20000(Decimal)( Can be greater than 20000).183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 245 245 246 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 247 247 186 +In the PC, use below serial tool settings: 248 248 249 -Generally, the EC value of irrigation water is less than 800uS / cm. 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 250 250 251 - 1.252 -11. 253 - 111. MOD194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 254 254 255 - Firmwareversionat least v2.1supports changing mode.198 +[[image:image-20220708110657-3.png]] 256 256 257 -For example, bytes[10]=90 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 258 258 259 -mod=(bytes[10]>>7)&0x01=1. 260 260 261 261 262 - DownlinkCommand:206 +=== 2.2.4 Use CoAP protocol to uplink data === 263 263 264 - Ifpayload=0x0A00,workmode=0208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 265 265 266 -If** **payload =** **0x0A01, workmode=1 267 267 211 +**Use below commands:** 268 268 269 -1 .270 -1 1.271 - 111.DecodepayloadinTheThingsNetwork213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 272 272 273 - While using TTN network,you canaddthe payloadformattodecodethepayload.217 +For parameter description, please refer to AT command set 274 274 219 +[[image:1657249793983-486.png]] 275 275 276 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 277 277 278 - Thepayload decoderfunctionforTTN ishere:222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 279 279 280 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]224 +[[image:1657249831934-534.png]] 281 281 282 282 283 -1. 284 -11. Uplink Interval 285 285 286 - TheLSE01bydefault uplinkthe sensordatavery 20 minutes.Usercan changethis interval by AT Commandor LoRaWAN DownlinkCommand. See this link:228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 287 287 288 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]230 +This feature is supported since firmware version v1.0.1 289 289 290 -1. 291 -11. Downlink Payload 292 292 293 -By default, LSE50 prints the downlink payload to console port. 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 294 294 295 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 296 -|TDC (Transmit Time Interval)|Any|01|4 297 -|RESET|Any|04|2 298 -|AT+CFM|Any|05|4 299 -|INTMOD|Any|06|4 300 -|MOD|Any|0A|2 237 +[[image:1657249864775-321.png]] 301 301 302 -**Examples** 303 303 240 +[[image:1657249930215-289.png]] 304 304 305 -**Set TDC** 306 306 307 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 308 308 309 - Payload:0100001ETDC=30S244 +=== 2.2.6 Use MQTT protocol to uplink data === 310 310 311 - Payload:0100003C TDC=60S246 +This feature is supported since firmware version v110 312 312 313 313 314 -**Reset** 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 315 315 316 - If payload = 0x04FF,it will reset the LSE01257 +[[image:1657249978444-674.png]] 317 317 318 318 319 - **CFM**260 +[[image:1657249990869-686.png]] 320 320 321 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 322 322 323 -1. 324 -11. Show Data in DataCake IoT Server 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 325 325 326 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 327 327 328 328 329 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.269 +=== 2.2.7 Use TCP protocol to uplink data === 330 330 331 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:271 +This feature is supported since firmware version v110 332 332 333 333 334 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 335 335 277 +[[image:1657250217799-140.png]] 336 336 337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 338 338 280 +[[image:1657250255956-604.png]] 339 339 340 340 341 341 284 +=== 2.2.8 Change Update Interval === 342 342 343 - Step3:Create anaccountorlog inDatacake.286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 344 344 345 - Step4:Search theLSE01andaddDevEUI.288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 346 346 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 347 347 348 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 349 349 350 350 351 351 352 - Afteradded,the sensordata arrive TTN, it will alsorrive andshow in Mydevices.300 +== 2.3 Uplink Payload == 353 353 302 +In this mode, uplink payload includes in total 18 bytes 354 354 355 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 356 356 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 357 357 358 358 359 -1. 360 -11. Frequency Plans 315 +[[image:image-20220708111918-4.png]] 361 361 362 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 363 363 364 -1. 365 -11. 366 -111. EU863-870 (EU868) 318 +The payload is ASCII string, representative same HEX: 367 367 368 - Uplink:320 +0x72403155615900640c7817075e0a8c02f900 where: 369 369 370 -868.1 - SF7BW125 to SF12BW125 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 371 371 372 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 373 373 374 -868.5 - SF7BW125 to SF12BW125 375 375 376 -867.1 - SF7BW125 to SF12BW125 377 377 378 - 867.3- SF7BW125to SF12BW125334 +== 2.4 Payload Explanation and Sensor Interface == 379 379 380 -867.5 - SF7BW125 to SF12BW125 381 381 382 - 867.7- SF7BW125toSF12BW125337 +=== 2.4.1 Device ID === 383 383 384 -867.9 - SF7BW125 to SF12BW125 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 385 385 386 -868.8 - FSK 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 387 387 347 +((( 348 +**Example:** 349 +))) 388 388 389 -Downlink: 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 390 390 391 -Uplink channels 1-9 (RX1) 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 392 392 393 -869.525 - SF9BW125 (RX2 downlink only) 394 394 395 395 396 -1. 397 -11. 398 -111. US902-928(US915) 361 +=== 2.4.2 Version Info === 399 399 400 -Used in USA, Canada and South America. Default use CHE=2 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 401 401 402 -Uplink: 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 403 403 404 -903.9 - SF7BW125 to SF10BW125 405 405 406 -904.1 - SF7BW125 to SF10BW125 407 407 408 - 904.3- SF7BW125toSF10BW125373 +=== 2.4.3 Battery Info === 409 409 410 -904.5 - SF7BW125 to SF10BW125 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 411 411 412 -904.7 - SF7BW125 to SF10BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 413 413 414 -904.9 - SF7BW125 to SF10BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 415 415 416 -905.1 - SF7BW125 to SF10BW125 417 417 418 -905.3 - SF7BW125 to SF10BW125 419 419 389 +=== 2.4.4 Signal Strength === 420 420 421 -Downlink: 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 422 422 423 -923.3 - SF7BW500 to SF12BW500 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 424 424 425 -923.9 - SF7BW500 to SF12BW500 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 426 426 427 -924.5 - SF7BW500 to SF12BW500 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 428 428 429 -925.1 - SF7BW500 to SF12BW500 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 430 430 431 -925.7 - SF7BW500 to SF12BW500 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 432 432 433 -926.3 - SF7BW500 to SF12BW500 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 434 434 435 -926.9 - SF7BW500 to SF12BW500 436 436 437 -927.5 - SF7BW500 to SF12BW500 438 438 439 - 923.3- SF12BW500(RX2downlinkonly)421 +=== 2.4.5 Soil Moisture === 440 440 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 441 441 442 -1. 443 -11. 444 -111. CN470-510 (CN470) 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 445 445 446 -Used in China, Default use CHE=1 435 +((( 436 + 437 +))) 447 447 448 -Uplink: 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 449 449 450 -486.3 - SF7BW125 to SF12BW125 451 451 452 -486.5 - SF7BW125 to SF12BW125 453 453 454 -4 86.7-SF7BW125toSF12BW125445 +=== 2.4.6 Soil Temperature === 455 455 456 -486.9 - SF7BW125 to SF12BW125 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 457 457 458 -487.1 - SF7BW125 to SF12BW125 451 +((( 452 +**Example**: 453 +))) 459 459 460 -487.3 - SF7BW125 to SF12BW125 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 461 461 462 -487.5 - SF7BW125 to SF12BW125 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 463 463 464 -487.7 - SF7BW125 to SF12BW125 465 465 466 466 467 - Downlink:465 +=== 2.4.7 Soil Conductivity (EC) === 468 468 469 -506.7 - SF7BW125 to SF12BW125 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 470 470 471 -506.9 - SF7BW125 to SF12BW125 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 472 472 473 -507.1 - SF7BW125 to SF12BW125 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 474 474 475 -507.3 - SF7BW125 to SF12BW125 479 +((( 480 + 481 +))) 476 476 477 -507.5 - SF7BW125 to SF12BW125 483 +((( 484 + 485 +))) 478 478 479 - 507.7- SF7BW125toSF12BW125487 +=== 2.4.8 Digital Interrupt === 480 480 481 -507.9 - SF7BW125 to SF12BW125 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 482 482 483 -508.1 - SF7BW125 to SF12BW125 493 +((( 494 +The command is: 495 +))) 484 484 485 -505.3 - SF12BW125 (RX2 downlink only) 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 486 486 487 487 488 - 1.489 - 11.490 - 111. AU915-928(AU915)502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 491 491 492 -Default use CHE=2 493 493 494 -Uplink: 507 +((( 508 +Example: 509 +))) 495 495 496 -916.8 - SF7BW125 to SF12BW125 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 497 497 498 -917.0 - SF7BW125 to SF12BW125 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 499 499 500 -917.2 - SF7BW125 to SF12BW125 501 501 502 -917.4 - SF7BW125 to SF12BW125 503 503 504 - 917.6- SF7BW125 toSF12BW125521 +=== 2.4.9 +5V Output === 505 505 506 -917.8 - SF7BW125 to SF12BW125 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 507 507 508 -918.0 - SF7BW125 to SF12BW125 509 509 510 -918.2 - SF7BW125 to SF12BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 511 511 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 512 512 513 -Downlink: 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 514 514 515 -923.3 - SF7BW500 to SF12BW500 516 516 517 -923.9 - SF7BW500 to SF12BW500 518 518 519 - 924.5-SF7BW500 toSF12BW500542 +== 2.5 Downlink Payload == 520 520 521 - 925.1-SF7BW500toSF12BW500544 +By default, NSE01 prints the downlink payload to console port. 522 522 523 - 925.7-SF7BW500 to SF12BW500546 +[[image:image-20220708133731-5.png]] 524 524 525 -926.3 - SF7BW500 to SF12BW500 526 526 527 -926.9 - SF7BW500 to SF12BW500 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 528 528 529 -927.5 - SF7BW500 to SF12BW500 553 +((( 554 + 555 +))) 530 530 531 -923.3 - SF12BW500(RX2 downlink only) 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 532 532 533 - 1.534 -11. 535 - 111. AS920-923 & AS923-925 (AS923)561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 536 536 537 -**Default Uplink channel:** 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 538 538 539 -923.2 - SF7BW125 to SF10BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 540 540 541 -923.4 - SF7BW125 to SF10BW125 573 +((( 574 + 575 +))) 542 542 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 543 543 544 -**Additional Uplink Channel**: 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 545 545 546 -(OTAA mode, channel added by JoinAccept message) 547 547 548 -* *AS920~~AS923forJapan, Malaysia, Singapore**:586 +* (% style="color:blue" %)**INTMOD** 549 549 550 -922.2 - SF7BW125 to SF10BW125 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 551 551 552 -922.4 - SF7BW125 to SF10BW125 553 553 554 -922.6 - SF7BW125 to SF10BW125 555 555 556 - 922.8-SF7BW125toSF10BW125594 +== 2.6 LED Indicator == 557 557 558 -923.0 - SF7BW125 to SF10BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 559 559 560 -922.0 - SF7BW125 to SF10BW125 561 561 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 562 562 563 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 564 564 565 -923.6 - SF7BW125 to SF10BW125 566 566 567 -923.8 - SF7BW125 to SF10BW125 568 568 569 - 924.0 - SF7BW125to SF10BW125609 +== 2.7 Installation in Soil == 570 570 571 - 924.2- SF7BW125toSF10BW125611 +__**Measurement the soil surface**__ 572 572 573 -924.4 - SF7BW125 to SF10BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 574 574 575 - 924.6- SF7BW125to SF10BW125617 +[[image:1657259653666-883.png]] 576 576 577 577 620 +((( 621 + 578 578 579 -**Downlink:** 580 - 581 -Uplink channels 1-8 (RX1) 582 - 583 -923.2 - SF10BW125 (RX2) 584 - 585 - 586 -1. 587 -11. 588 -111. KR920-923 (KR920) 589 - 590 -Default channel: 591 - 592 -922.1 - SF7BW125 to SF12BW125 593 - 594 -922.3 - SF7BW125 to SF12BW125 595 - 596 -922.5 - SF7BW125 to SF12BW125 597 - 598 - 599 -Uplink: (OTAA mode, channel added by JoinAccept message) 600 - 601 -922.1 - SF7BW125 to SF12BW125 602 - 603 -922.3 - SF7BW125 to SF12BW125 604 - 605 -922.5 - SF7BW125 to SF12BW125 606 - 607 -922.7 - SF7BW125 to SF12BW125 608 - 609 -922.9 - SF7BW125 to SF12BW125 610 - 611 -923.1 - SF7BW125 to SF12BW125 612 - 613 -923.3 - SF7BW125 to SF12BW125 614 - 615 - 616 -Downlink: 617 - 618 -Uplink channels 1-7(RX1) 619 - 620 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 621 - 622 - 623 -1. 624 -11. 625 -111. IN865-867 (IN865) 626 - 627 -Uplink: 628 - 629 -865.0625 - SF7BW125 to SF12BW125 630 - 631 -865.4025 - SF7BW125 to SF12BW125 632 - 633 -865.9850 - SF7BW125 to SF12BW125 634 - 635 - 636 -Downlink: 637 - 638 -Uplink channels 1-3 (RX1) 639 - 640 -866.550 - SF10BW125 (RX2) 641 - 642 - 643 -1. 644 -11. LED Indicator 645 - 646 -The LSE01 has an internal LED which is to show the status of different state. 647 - 648 - 649 -* Blink once when device power on. 650 -* Solid ON for 5 seconds once device successful Join the network. 651 -* Blink once when device transmit a packet. 652 - 653 -1. 654 -11. Installation in Soil 655 - 656 -**Measurement the soil surface** 657 - 658 - 659 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 660 - 661 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 662 - 663 - 664 - 665 - 666 - 667 - 668 - 669 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 670 - 671 - 672 - 623 +((( 673 673 Dig a hole with diameter > 20CM. 625 +))) 674 674 627 +((( 675 675 Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 676 676 632 +[[image:1654506665940-119.png]] 677 677 634 +((( 635 + 636 +))) 678 678 679 679 680 -1. 681 -11. Firmware Change Log 639 +== 2.8 Firmware Change Log == 682 682 683 -**Firmware download link:** 684 684 685 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]642 +Download URL & Firmware Change log 686 686 644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 687 687 688 -**Firmware Upgrade Method:** 689 689 690 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 691 691 692 692 693 -**V1.0.** 694 694 695 - Release651 +== 2.9 Battery Analysis == 696 696 653 +=== 2.9.1 Battery Type === 697 697 698 698 699 - 1.700 -1 1.Battery Analysis701 - 111. Battery Type656 +((( 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 658 +))) 702 702 703 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 704 704 661 +((( 662 +The battery is designed to last for several years depends on the actually use environment and update interval. 663 +))) 705 705 706 -The battery is designed to last for more than 5 years for the LSN50. 707 707 708 - 666 +((( 709 709 The battery related documents as below: 668 +))) 710 710 711 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],712 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]713 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 714 714 715 - |(((716 - JST-XH-2P connector674 +((( 675 +[[image:image-20220708140453-6.png]] 717 717 ))) 718 718 719 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 720 720 721 721 680 +=== 2.9.2 Power consumption Analyze === 722 722 723 - 1.724 - 11.725 - 111. Battery Note682 +((( 683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 +))) 726 726 727 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 728 728 687 +((( 688 +Instruction to use as below: 689 +))) 729 729 730 - 1.731 -1 1.732 - 111. Replace the battery691 +((( 692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 693 +))) 733 733 734 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 735 735 696 +((( 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 698 +))) 736 736 737 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 700 +* ((( 701 +Product Model 702 +))) 703 +* ((( 704 +Uplink Interval 705 +))) 706 +* ((( 707 +Working Mode 708 +))) 738 738 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 739 739 740 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)714 +[[image:image-20220708141352-7.jpeg]] 741 741 742 742 743 743 718 +=== 2.9.3 Battery Note === 744 744 720 +((( 721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 +))) 745 745 746 746 747 -= 3. Using the AT Commands = 748 748 749 -== 3.1AccessATCommands==726 +=== 2.9.4 Replace the battery === 750 750 728 +((( 729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 730 +))) 751 751 752 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 753 753 754 -[[image:1654501986557-872.png]] 755 755 734 += 3. Access NB-IoT Module = 756 756 757 -Or if you have below board, use below connection: 736 +((( 737 +Users can directly access the AT command set of the NB-IoT module. 738 +))) 758 758 740 +((( 741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 742 +))) 759 759 760 -[[image:165 4502005655-729.png]]744 +[[image:1657261278785-153.png]] 761 761 762 762 763 763 764 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:748 += 4. Using the AT Commands = 765 765 750 +== 4.1 Access AT Commands == 766 766 767 - [[ima ge:1654502050864-459.png]]752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 768 768 769 769 770 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]755 +AT+<CMD>? : Help on <CMD> 771 771 757 +AT+<CMD> : Run <CMD> 772 772 773 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>759 +AT+<CMD>=<value> : Set the value 774 774 775 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>761 +AT+<CMD>=? : Get the value 776 776 777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 778 778 779 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 780 - 781 - 782 782 (% style="color:#037691" %)**General Commands**(%%) 783 783 784 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 785 785 786 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 787 787 788 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 789 789 790 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 791 791 774 +AT+CFG : Print all configurations 792 792 793 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 794 794 795 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 796 796 797 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 798 798 799 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 800 800 801 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 802 802 803 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 804 804 805 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 806 806 807 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 808 808 809 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 810 810 811 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 812 812 813 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 814 814 815 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 816 816 817 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 818 818 819 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 820 820 821 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 822 822 823 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 824 824 825 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 826 826 807 +AT+CLIENT : Get or Set MQTT client 827 827 828 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 829 829 830 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 831 831 832 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 833 833 834 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 835 835 836 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 837 837 838 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 839 839 840 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 841 841 842 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 843 843 844 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 845 845 846 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 847 847 848 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 849 849 850 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 851 851 852 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 853 853 854 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 855 855 856 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 835 +((( 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 837 +))) 857 857 858 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 839 +((( 840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 841 +))) 859 859 860 860 861 -(% style="color:#037691" %)**Information** 862 862 863 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket845 +== 5.2 Can I calibrate NSE01 to different soil types? == 864 864 865 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 866 866 867 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 868 868 869 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset852 += 6. Trouble Shooting = 870 870 871 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort854 +== 6.1 Connection problem when uploading firmware == 872 872 873 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 874 874 875 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 876 - 877 - 878 -= 4. FAQ = 879 - 880 -== 4.1 How to change the LoRa Frequency Bands/Region? == 881 - 882 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 883 -When downloading the images, choose the required image file for download. 884 - 885 - 886 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 887 - 888 - 889 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 890 - 891 - 892 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 893 - 894 -[[image:image-20220606154726-3.png]] 895 - 896 -When you use the TTN network, the US915 frequency bands use are: 897 - 898 -* 903.9 - SF7BW125 to SF10BW125 899 -* 904.1 - SF7BW125 to SF10BW125 900 -* 904.3 - SF7BW125 to SF10BW125 901 -* 904.5 - SF7BW125 to SF10BW125 902 -* 904.7 - SF7BW125 to SF10BW125 903 -* 904.9 - SF7BW125 to SF10BW125 904 -* 905.1 - SF7BW125 to SF10BW125 905 -* 905.3 - SF7BW125 to SF10BW125 906 -* 904.6 - SF8BW500 907 - 908 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 909 - 910 -(% class="box infomessage" %) 911 911 ((( 912 -** AT+CHE=2**858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 913 913 ))) 914 914 915 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 916 916 ((( 917 - **ATZ**863 + 918 918 ))) 919 919 920 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 921 921 867 +== 6.2 AT Command input doesn't work == 922 922 923 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 924 924 925 -[[image:image-20220606154825-4.png]] 872 + 873 +))) 926 926 927 927 876 += 7. Order Info = 928 928 929 -= 5. Trouble Shooting = 930 930 931 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 932 932 933 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 934 934 882 +(% class="wikigeneratedid" %) 883 +((( 884 + 885 +))) 935 935 936 -= =5.2AT Commandinputdoesn’t work==887 += 8. Packing Info = 937 937 938 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 +((( 890 + 939 939 892 +(% style="color:#037691" %)**Package Includes**: 940 940 941 -== 5.3 Device rejoin in at the second uplink packet == 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 896 +))) 942 942 943 -(% style="color:#4f81bd" %)**Issue describe as below:** 898 +((( 899 + 944 944 945 - [[image:1654500909990-784.png]]901 +(% style="color:#037691" %)**Dimension and weight**: 946 946 947 - 948 -(% style="color:#4f81bd" %)**Cause for this issue:** 949 - 950 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 951 - 952 - 953 -(% style="color:#4f81bd" %)**Solution: ** 954 - 955 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 956 - 957 -[[image:1654500929571-736.png]] 958 - 959 - 960 -= 6. Order Info = 961 - 962 - 963 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 964 - 965 - 966 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 967 - 968 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 969 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 970 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 971 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 972 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 973 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 974 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 975 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 976 - 977 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 978 - 979 -* (% style="color:red" %)**4**(%%): 4000mAh battery 980 -* (% style="color:red" %)**8**(%%): 8500mAh battery 981 - 982 -= 7. Packing Info = 983 - 984 -((( 985 -**Package Includes**: 903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 986 986 ))) 987 987 988 -* ((( 989 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 990 -))) 991 - 992 992 ((( 993 993 994 -))) 995 995 996 -((( 997 -**Dimension and weight**: 998 -))) 999 999 1000 -* ((( 1001 -Device Size: cm 911 + 1002 1002 ))) 1003 -* ((( 1004 -Device Weight: g 1005 -))) 1006 -* ((( 1007 -Package Size / pcs : cm 1008 -))) 1009 -* ((( 1010 -Weight / pcs : g 1011 -))) 1012 1012 1013 -= 8. Support =914 += 9. Support = 1014 1014 1015 1015 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1016 1016 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1017 - 1018 -
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content