Last modified by Mengting Qiu on 2024/04/02 16:44

From version 18.1
edited by Xiaoling
on 2022/06/06 16:38
Change comment: Uploaded new attachment "1654504683289-357.png", version {1}
To version 65.10
edited by Xiaoling
on 2022/07/08 15:43
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,1011 +8,832 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
13 +
14 +**Table of Contents:**
15 +
16 +{{toc/}}
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 += 1.  Introduction =
25 +
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
15 15  (((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
29 +
18 18  
19 19  (((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
21 21  )))
22 22  
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
25 25  )))
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
29 29  )))
30 30  
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
33 33  )))
34 34  
47 +
48 +)))
35 35  
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +== 1.3  Specification ==
60 60  
61 -[[image:image-20220606162220-5.png]]
62 62  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
64 64  
65 -== ​1.4 Applications ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
66 66  
67 -* Smart Agriculture
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
68 68  
90 +Probe(% style="color:#037691" %)** Specification:**
69 69  
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
94 +[[image:image-20220708101224-1.png]]
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
78 78  
98 +== ​1.4  Applications ==
79 79  
100 +* Smart Agriculture
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
82 82  
83 -== 2.1 How it works ==
105 +== 1.5  Pin Definitions ==
84 84  
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 -)))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
108 +[[image:1657246476176-652.png]]
92 92  
93 93  
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
112 += 2.  Use NSE01 to communicate with IoT Server =
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 +== 2. How it works ==
98 98  
99 99  
100 -[[image:1654503992078-669.png]]
117 +(((
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
119 +)))
101 101  
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 -
105 -
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 -
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 -
110 -[[image:image-20220606163732-6.jpeg]]
111 -
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
113 -
114 -**Add APP EUI in the application**
115 -
116 -
117 -[[image:1654504596150-405.png]]
118 -
119 -
120 -
121 -**Add APP KEY and DEV EUI**
122 -
123 -
124 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
125 -
126 -|(((
127 -
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
128 128  )))
129 129  
130 -**Step 2**: Power on LSE01
126 +[[image:image-20220708101605-2.png]]
131 131  
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -
136 -
137 -|(((
128 +(((
138 138  
139 139  )))
140 140  
141 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
142 142  
143 143  
134 +== 2.2 ​ Configure the NSE01 ==
144 144  
145 145  
137 +=== 2.2.1 Test Requirement ===
146 146  
147 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
148 148  
149 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
150 -
151 -
152 -
153 -
154 -1.
155 -11. ​Uplink Payload
156 -111. MOD=0(Default Mode)
157 -
158 -LSE01 will uplink payload via LoRaWAN with below payload format: 
159 -
160 -
161 -Uplink payload includes in total 11 bytes.
162 -
163 -
164 -|(((
165 -**Size**
166 -
167 -**(bytes)**
168 -)))|**2**|**2**|**2**|**2**|**2**|**1**
169 -|**Value**|[[BAT>>path:#bat]]|(((
170 -Temperature
171 -
172 -(Reserve, Ignore now)
173 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
174 -MOD & Digital Interrupt
175 -
176 -(Optional)
140 +(((
141 +To use NSE01 in your city, make sure meet below requirements:
177 177  )))
178 178  
179 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
180 180  
181 -
182 -1.
183 -11.
184 -111. MOD=1(Original value)
185 -
186 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 -
188 -|(((
189 -**Size**
190 -
191 -**(bytes)**
192 -)))|**2**|**2**|**2**|**2**|**2**|**1**
193 -|**Value**|[[BAT>>path:#bat]]|(((
194 -Temperature
195 -
196 -(Reserve, Ignore now)
197 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
198 -MOD & Digital Interrupt
199 -
200 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
201 201  )))
202 202  
203 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
204 204  
205 -1.
206 -11.
207 -111. Battery Info
153 +[[image:1657249419225-449.png]]
208 208  
209 -Check the battery voltage for LSE01.
210 210  
211 -Ex1: 0x0B45 = 2885mV
212 212  
213 -Ex2: 0x0B49 = 2889mV
157 +=== 2.2.2 Insert SIM card ===
214 214  
159 +Insert the NB-IoT Card get from your provider.
215 215  
161 +User need to take out the NB-IoT module and insert the SIM card like below:
216 216  
217 -1.
218 -11.
219 -111. Soil Moisture
220 220  
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
164 +[[image:1657249468462-536.png]]
222 222  
223 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
224 224  
225 -**05DC(H) = 1500(D) /100 = 15%.**
226 226  
168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
227 227  
228 -1.
229 -11.
230 -111. Soil Temperature
170 +(((
171 +(((
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 +)))
174 +)))
231 231  
232 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
233 233  
234 -**Example**:
177 +**Connection:**
235 235  
236 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
237 237  
238 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
239 239  
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
240 240  
241 -1.
242 -11.
243 -111. Soil Conductivity (EC)
244 244  
245 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
186 +In the PC, use below serial tool settings:
246 246  
247 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
248 248  
194 +(((
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 +)))
249 249  
250 -Generally, the EC value of irrigation water is less than 800uS / cm.
198 +[[image:image-20220708110657-3.png]]
251 251  
252 -1.
253 -11.
254 -111. MOD
200 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
255 255  
256 -Firmware version at least v2.1 supports changing mode.
257 257  
258 -For example, bytes[10]=90
259 259  
260 -mod=(bytes[10]>>7)&0x01=1.
204 +=== 2.2.4 Use CoAP protocol to uplink data ===
261 261  
206 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
262 262  
263 -Downlink Command:
264 264  
265 -If payload = 0x0A00, workmode=0
209 +**Use below commands:**
266 266  
267 -If** **payload =** **0x0A01, workmode=1
211 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
212 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
213 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
268 268  
215 +For parameter description, please refer to AT command set
269 269  
270 -1.
271 -11.
272 -111. ​Decode payload in The Things Network
217 +[[image:1657249793983-486.png]]
273 273  
274 -While using TTN network, you can add the payload format to decode the payload.
275 275  
220 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
276 276  
277 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
222 +[[image:1657249831934-534.png]]
278 278  
279 -The payload decoder function for TTN is here:
280 280  
281 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
282 282  
226 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
283 283  
284 -1.
285 -11. Uplink Interval
228 +This feature is supported since firmware version v1.0.1
286 286  
287 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
288 288  
289 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
231 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
232 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
233 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
290 290  
291 -1.
292 -11. ​Downlink Payload
235 +[[image:1657249864775-321.png]]
293 293  
294 -By default, LSE50 prints the downlink payload to console port.
295 295  
296 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
297 -|TDC (Transmit Time Interval)|Any|01|4
298 -|RESET|Any|04|2
299 -|AT+CFM|Any|05|4
300 -|INTMOD|Any|06|4
301 -|MOD|Any|0A|2
238 +[[image:1657249930215-289.png]]
302 302  
303 -**Examples**
304 304  
305 305  
306 -**Set TDC**
242 +=== 2.2.6 Use MQTT protocol to uplink data ===
307 307  
308 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
244 +This feature is supported since firmware version v110
309 309  
310 -Payload:    01 00 00 1E    TDC=30S
311 311  
312 -Payload:    01 00 00 3C    TDC=60S
247 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
248 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
249 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
250 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
251 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
252 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
253 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
313 313  
255 +[[image:1657249978444-674.png]]
314 314  
315 -**Reset**
316 316  
317 -If payload = 0x04FF, it will reset the LSE01
258 +[[image:1657249990869-686.png]]
318 318  
319 319  
320 -**CFM**
261 +(((
262 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
263 +)))
321 321  
322 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
323 323  
324 -1.
325 -11. ​Show Data in DataCake IoT Server
326 326  
327 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
267 +=== 2.2.7 Use TCP protocol to uplink data ===
328 328  
269 +This feature is supported since firmware version v110
329 329  
330 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
331 331  
332 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
333 333  
275 +[[image:1657250217799-140.png]]
334 334  
335 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
336 336  
278 +[[image:1657250255956-604.png]]
337 337  
338 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
339 339  
340 340  
282 +=== 2.2.8 Change Update Interval ===
341 341  
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
342 342  
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
343 343  
344 -Step 3: Create an account or log in Datacake.
288 +(((
289 +(% style="color:red" %)**NOTE:**
290 +)))
345 345  
346 -Step 4: Search the LSE01 and add DevEUI.
292 +(((
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
294 +)))
347 347  
348 348  
349 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
350 350  
298 +== 2.3  Uplink Payload ==
351 351  
300 +In this mode, uplink payload includes in total 18 bytes
352 352  
353 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
302 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
303 +|=(% style="width: 50px;" %)(((
304 +**Size(bytes)**
305 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
306 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
354 354  
308 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
355 355  
356 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
357 357  
311 +[[image:image-20220708111918-4.png]]
358 358  
359 359  
360 -1.
361 -11. Frequency Plans
314 +The payload is ASCII string, representative same HEX:
362 362  
363 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
316 +0x72403155615900640c7817075e0a8c02f900 where:
364 364  
365 -1.
366 -11.
367 -111. EU863-870 (EU868)
318 +* Device ID: 0x 724031556159 = 724031556159
319 +* Version: 0x0064=100=1.0.0
368 368  
369 -Uplink:
321 +* BAT: 0x0c78 = 3192 mV = 3.192V
322 +* Singal: 0x17 = 23
323 +* Soil Moisture: 0x075e= 1886 = 18.86  %
324 +* Soil Temperature:0x0a8c =2700=27 °C
325 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
326 +* Interrupt: 0x00 = 0
370 370  
371 -868.1 - SF7BW125 to SF12BW125
372 372  
373 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
329 +== 2.4  Payload Explanation and Sensor Interface ==
374 374  
375 -868.5 - SF7BW125 to SF12BW125
376 376  
377 -867.1 - SF7BW125 to SF12BW125
332 +=== 2.4.1  Device ID ===
378 378  
379 -867.3 - SF7BW125 to SF12BW125
334 +By default, the Device ID equal to the last 6 bytes of IMEI.
380 380  
381 -867.5 - SF7BW125 to SF12BW125
336 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
382 382  
383 -867.7 - SF7BW125 to SF12BW125
338 +**Example:**
384 384  
385 -867.9 - SF7BW125 to SF12BW125
340 +AT+DEUI=A84041F15612
386 386  
387 -868.8 - FSK
342 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
388 388  
389 389  
390 -Downlink:
391 391  
392 -Uplink channels 1-9 (RX1)
346 +=== 2.4.2  Version Info ===
393 393  
394 -869.525 - SF9BW125 (RX2 downlink only)
348 +Specify the software version: 0x64=100, means firmware version 1.00.
395 395  
350 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
396 396  
397 -1.
398 -11.
399 -111. US902-928(US915)
400 400  
401 -Used in USA, Canada and South America. Default use CHE=2
402 402  
403 -Uplink:
354 +=== 2.4.3  Battery Info ===
404 404  
405 -903.9 - SF7BW125 to SF10BW125
356 +(((
357 +Check the battery voltage for LSE01.
358 +)))
406 406  
407 -904.1 - SF7BW125 to SF10BW125
360 +(((
361 +Ex1: 0x0B45 = 2885mV
362 +)))
408 408  
409 -904.3 - SF7BW125 to SF10BW125
364 +(((
365 +Ex2: 0x0B49 = 2889mV
366 +)))
410 410  
411 -904.5 - SF7BW125 to SF10BW125
412 412  
413 -904.7 - SF7BW125 to SF10BW125
414 414  
415 -904.9 - SF7BW125 to SF10BW125
370 +=== 2.4. Signal Strength ===
416 416  
417 -905.1 - SF7BW125 to SF10BW125
372 +NB-IoT Network signal Strength.
418 418  
419 -905.3 - SF7BW125 to SF10BW125
374 +**Ex1: 0x1d = 29**
420 420  
376 +(% style="color:blue" %)**0**(%%)  -113dBm or less
421 421  
422 -Downlink:
378 +(% style="color:blue" %)**1**(%%)  -111dBm
423 423  
424 -923.3 - SF7BW500 to SF12BW500
380 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
425 425  
426 -923.9 - SF7BW500 to SF12BW500
382 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
427 427  
428 -924.5 - SF7BW500 to SF12BW500
384 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
429 429  
430 -925.1 - SF7BW500 to SF12BW500
431 431  
432 -925.7 - SF7BW500 to SF12BW500
433 433  
434 -926.3 - SF7BW500 to SF12BW500
388 +=== 2.4.5  Soil Moisture ===
435 435  
436 -926.9 - SF7BW500 to SF12BW500
390 +(((
391 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
392 +)))
437 437  
438 -927.5 - SF7BW500 to SF12BW500
394 +(((
395 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
396 +)))
439 439  
440 -923.3 - SF12BW500(RX2 downlink only)
398 +(((
399 +
400 +)))
441 441  
402 +(((
403 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
404 +)))
442 442  
443 -1.
444 -11.
445 -111. CN470-510 (CN470)
446 446  
447 -Used in China, Default use CHE=1
448 448  
449 -Uplink:
408 +=== 2.4.6  Soil Temperature ===
450 450  
451 -486.3 - SF7BW125 to SF12BW125
410 +(((
411 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
412 +)))
452 452  
453 -486.5 - SF7BW125 to SF12BW125
414 +(((
415 +**Example**:
416 +)))
454 454  
455 -486.7 - SF7BW125 to SF12BW125
418 +(((
419 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
420 +)))
456 456  
457 -486.9 - SF7BW125 to SF12BW125
422 +(((
423 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
424 +)))
458 458  
459 -487.1 - SF7BW125 to SF12BW125
460 460  
461 -487.3 - SF7BW125 to SF12BW125
462 462  
463 -487.5 - SF7BW125 to SF12BW125
428 +=== 2.4. Soil Conductivity (EC) ===
464 464  
465 -487.7 - SF7BW125 to SF12BW125
430 +(((
431 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
432 +)))
466 466  
434 +(((
435 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
436 +)))
467 467  
468 -Downlink:
438 +(((
439 +Generally, the EC value of irrigation water is less than 800uS / cm.
440 +)))
469 469  
470 -506.7 - SF7BW125 to SF12BW125
442 +(((
443 +
444 +)))
471 471  
472 -506.9 - SF7BW125 to SF12BW125
446 +(((
447 +
448 +)))
473 473  
474 -507.1 - SF7BW125 to SF12BW125
450 +=== 2.4.8  Digital Interrupt ===
475 475  
476 -507.3 - SF7BW125 to SF12BW125
452 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
477 477  
478 -507.5 - SF7BW125 to SF12BW125
454 +The command is:
479 479  
480 -507.7 - SF7BW125 to SF12BW125
456 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
481 481  
482 -507.9 - SF7BW125 to SF12BW125
483 483  
484 -508.1 - SF7BW125 to SF12BW125
459 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
485 485  
486 -505.3 - SF12BW125 (RX2 downlink only)
487 487  
462 +Example:
488 488  
489 -1.
490 -11.
491 -111. AU915-928(AU915)
464 +0x(00): Normal uplink packet.
492 492  
493 -Default use CHE=2
466 +0x(01): Interrupt Uplink Packet.
494 494  
495 -Uplink:
496 496  
497 -916.8 - SF7BW125 to SF12BW125
498 498  
499 -917.0 - SF7BW125 to SF12BW125
470 +=== 2.4.9  ​+5V Output ===
500 500  
501 -917.2 - SF7BW125 to SF12BW125
472 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
502 502  
503 -917.4 - SF7BW125 to SF12BW125
504 504  
505 -917.6 - SF7BW125 to SF12BW125
475 +The 5V output time can be controlled by AT Command.
506 506  
507 -917.8 - SF7BW125 to SF12BW125
477 +(% style="color:blue" %)**AT+5VT=1000**
508 508  
509 -918.0 - SF7BW125 to SF12BW125
479 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
510 510  
511 -918.2 - SF7BW125 to SF12BW125
512 512  
513 513  
514 -Downlink:
483 +== 2.5  Downlink Payload ==
515 515  
516 -923.3 - SF7BW500 to SF12BW500
485 +By default, NSE01 prints the downlink payload to console port.
517 517  
518 -923.9 - SF7BW500 to SF12BW500
487 +[[image:image-20220708133731-5.png]]
519 519  
520 -924.5 - SF7BW500 to SF12BW500
521 521  
522 -925.1 - SF7BW500 to SF12BW500
490 +(((
491 +(% style="color:blue" %)**Examples:**
492 +)))
523 523  
524 -925.7 - SF7BW500 to SF12BW500
494 +(((
495 +
496 +)))
525 525  
526 -926.3 - SF7BW500 to SF12BW500
498 +* (((
499 +(% style="color:blue" %)**Set TDC**
500 +)))
527 527  
528 -926.9 - SF7BW500 to SF12BW500
502 +(((
503 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
504 +)))
529 529  
530 -927.5 - SF7BW500 to SF12BW500
506 +(((
507 +Payload:    01 00 00 1E    TDC=30S
508 +)))
531 531  
532 -923.3 - SF12BW500(RX2 downlink only)
510 +(((
511 +Payload:    01 00 00 3C    TDC=60S
512 +)))
533 533  
534 -1.
535 -11.
536 -111. AS920-923 & AS923-925 (AS923)
514 +(((
515 +
516 +)))
537 537  
538 -**Default Uplink channel:**
518 +* (((
519 +(% style="color:blue" %)**Reset**
520 +)))
539 539  
540 -923.2 - SF7BW125 to SF10BW125
522 +(((
523 +If payload = 0x04FF, it will reset the NSE01
524 +)))
541 541  
542 -923.4 - SF7BW125 to SF10BW125
543 543  
527 +* (% style="color:blue" %)**INTMOD**
544 544  
545 -**Additional Uplink Channel**:
529 +Downlink Payload: 06000003, Set AT+INTMOD=3
546 546  
547 -(OTAA mode, channel added by JoinAccept message)
548 548  
549 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
550 550  
551 -922.2 - SF7BW125 to SF10BW125
533 +== 2. ​LED Indicator ==
552 552  
553 -922.4 - SF7BW125 to SF10BW125
535 +(((
536 +The NSE01 has an internal LED which is to show the status of different state.
554 554  
555 -922.6 - SF7BW125 to SF10BW125
556 556  
557 -922.8 - SF7BW125 to SF10BW125
539 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
540 +* Then the LED will be on for 1 second means device is boot normally.
541 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
542 +* For each uplink probe, LED will be on for 500ms.
543 +)))
558 558  
559 -923.0 - SF7BW125 to SF10BW125
560 560  
561 -922.0 - SF7BW125 to SF10BW125
562 562  
563 563  
564 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
548 +== 2.7  Installation in Soil ==
565 565  
566 -923.6 - SF7BW125 to SF10BW125
550 +__**Measurement the soil surface**__
567 567  
568 -923.8 - SF7BW125 to SF10BW125
552 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
569 569  
570 -924.0 - SF7BW125 to SF10BW125
554 +[[image:1657259653666-883.png]] ​
571 571  
572 -924.2 - SF7BW125 to SF10BW125
573 573  
574 -924.4 - SF7BW125 to SF10BW125
557 +(((
558 +
575 575  
576 -924.6 - SF7BW125 to SF10BW125
577 -
578 -
579 -
580 -**Downlink:**
581 -
582 -Uplink channels 1-8 (RX1)
583 -
584 -923.2 - SF10BW125 (RX2)
585 -
586 -
587 -1.
588 -11.
589 -111. KR920-923 (KR920)
590 -
591 -Default channel:
592 -
593 -922.1 - SF7BW125 to SF12BW125
594 -
595 -922.3 - SF7BW125 to SF12BW125
596 -
597 -922.5 - SF7BW125 to SF12BW125
598 -
599 -
600 -Uplink: (OTAA mode, channel added by JoinAccept message)
601 -
602 -922.1 - SF7BW125 to SF12BW125
603 -
604 -922.3 - SF7BW125 to SF12BW125
605 -
606 -922.5 - SF7BW125 to SF12BW125
607 -
608 -922.7 - SF7BW125 to SF12BW125
609 -
610 -922.9 - SF7BW125 to SF12BW125
611 -
612 -923.1 - SF7BW125 to SF12BW125
613 -
614 -923.3 - SF7BW125 to SF12BW125
615 -
616 -
617 -Downlink:
618 -
619 -Uplink channels 1-7(RX1)
620 -
621 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
622 -
623 -
624 -1.
625 -11.
626 -111. IN865-867 (IN865)
627 -
628 -Uplink:
629 -
630 -865.0625 - SF7BW125 to SF12BW125
631 -
632 -865.4025 - SF7BW125 to SF12BW125
633 -
634 -865.9850 - SF7BW125 to SF12BW125
635 -
636 -
637 -Downlink:
638 -
639 -Uplink channels 1-3 (RX1)
640 -
641 -866.550 - SF10BW125 (RX2)
642 -
643 -
644 -1.
645 -11. LED Indicator
646 -
647 -The LSE01 has an internal LED which is to show the status of different state.
648 -
649 -
650 -* Blink once when device power on.
651 -* Solid ON for 5 seconds once device successful Join the network.
652 -* Blink once when device transmit a packet.
653 -
654 -1.
655 -11. Installation in Soil
656 -
657 -**Measurement the soil surface**
658 -
659 -
660 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
661 -
662 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
663 -
664 -
665 -
666 -
667 -
668 -
669 -
670 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
671 -
672 -
673 -
560 +(((
674 674  Dig a hole with diameter > 20CM.
562 +)))
675 675  
564 +(((
676 676  Horizontal insert the probe to the soil and fill the hole for long term measurement.
566 +)))
567 +)))
677 677  
569 +[[image:1654506665940-119.png]]
678 678  
571 +(((
572 +
573 +)))
679 679  
680 680  
681 -1.
682 -11. ​Firmware Change Log
576 +== 2.8  ​Firmware Change Log ==
683 683  
684 -**Firmware download link:**
685 685  
686 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
579 +Download URL & Firmware Change log
687 687  
581 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
688 688  
689 -**Firmware Upgrade Method:**
690 690  
691 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
584 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
692 692  
693 693  
694 -**V1.0.**
695 695  
696 -Release
588 +== 2.9  ​Battery Analysis ==
697 697  
590 +=== 2.9.1  ​Battery Type ===
698 698  
699 699  
700 -1.
701 -11. ​Battery Analysis
702 -111. ​Battery Type
593 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
703 703  
704 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
705 705  
596 +The battery is designed to last for several years depends on the actually use environment and update interval. 
706 706  
707 -The battery is designed to last for more than 5 years for the LSN50.
708 708  
709 -
710 710  The battery related documents as below:
711 711  
712 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
713 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
714 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
601 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
602 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
603 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
715 715  
716 -|(((
717 -JST-XH-2P connector
605 +(((
606 +[[image:image-20220708140453-6.png]]
718 718  )))
719 719  
720 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
721 721  
722 722  
611 +=== 2.9.2  Power consumption Analyze ===
723 723  
724 -1.
725 -11.
726 -111. ​Battery Note
613 +(((
614 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
615 +)))
727 727  
728 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
729 729  
618 +(((
619 +Instruction to use as below:
620 +)))
730 730  
731 -1.
732 -11.
733 -111. ​Replace the battery
622 +(((
623 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
624 +)))
734 734  
735 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
736 736  
627 +(((
628 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
629 +)))
737 737  
738 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
631 +* (((
632 +Product Model
633 +)))
634 +* (((
635 +Uplink Interval
636 +)))
637 +* (((
638 +Working Mode
639 +)))
739 739  
641 +(((
642 +And the Life expectation in difference case will be shown on the right.
643 +)))
740 740  
741 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
645 +[[image:image-20220708141352-7.jpeg]]
742 742  
743 743  
744 744  
649 +=== 2.9.3  ​Battery Note ===
745 745  
651 +(((
652 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
653 +)))
746 746  
747 747  
748 -= 3. ​Using the AT Commands =
749 749  
750 -== 3.1 Access AT Commands ==
657 +=== 2.9.4  Replace the battery ===
751 751  
659 +(((
660 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
661 +)))
752 752  
753 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
754 754  
755 -[[image:1654501986557-872.png]]
756 756  
665 += 3. ​ Access NB-IoT Module =
757 757  
758 -Or if you have below board, use below connection:
667 +(((
668 +Users can directly access the AT command set of the NB-IoT module.
669 +)))
759 759  
671 +(((
672 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
673 +)))
760 760  
761 -[[image:1654502005655-729.png]]
675 +[[image:1657261278785-153.png]]
762 762  
763 763  
764 764  
765 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
679 += 4.  Using the AT Commands =
766 766  
681 +== 4.1  Access AT Commands ==
767 767  
768 - [[image:1654502050864-459.png]]
683 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
769 769  
770 770  
771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
686 +AT+<CMD>?  : Help on <CMD>
772 772  
688 +AT+<CMD>         : Run <CMD>
773 773  
774 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
690 +AT+<CMD>=<value> : Set the value
775 775  
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
692 +AT+<CMD>=?  : Get the value
777 777  
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
779 779  
780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
781 -
782 -
783 783  (% style="color:#037691" %)**General Commands**(%%)      
784 784  
785 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
697 +AT  : Attention       
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
699 +AT?  : Short Help     
788 788  
789 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
701 +ATZ  : MCU Reset    
790 790  
791 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
703 +AT+TDC  : Application Data Transmission Interval
792 792  
705 +AT+CFG  : Print all configurations
793 793  
794 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
707 +AT+CFGMOD           : Working mode selection
795 795  
796 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
709 +AT+INTMOD            : Set the trigger interrupt mode
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
711 +AT+5VT  : Set extend the time of 5V power  
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
713 +AT+PRO  : Choose agreement
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
715 +AT+WEIGRE  : Get weight or set weight to 0
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
717 +AT+WEIGAP  : Get or Set the GapValue of weight
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
719 +AT+RXDL  : Extend the sending and receiving time
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
721 +AT+CNTFAC  : Get or set counting parameters
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
723 +AT+SERVADDR  : Server Address
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
726 +(% style="color:#037691" %)**COAP Management**      
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
728 +AT+URI            : Resource parameters
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
731 +(% style="color:#037691" %)**UDP Management**
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
733 +AT+CFM          : Upload confirmation mode (only valid for UDP)
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
736 +(% style="color:#037691" %)**MQTT Management**
827 827  
738 +AT+CLIENT               : Get or Set MQTT client
828 828  
829 -(% style="color:#037691" %)**LoRa Network Management**
740 +AT+UNAME  : Get or Set MQTT Username
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
742 +AT+PWD                  : Get or Set MQTT password
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
744 +AT+PUBTOPI : Get or Set MQTT publish topic
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
746 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
749 +(% style="color:#037691" %)**Information**          
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
751 +AT+FDR  : Factory Data Reset
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
753 +AT+PWOR : Serial Access Password
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
757 += ​5.  FAQ =
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
759 +== 5.1 How to Upgrade Firmware ==
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
762 +(((
763 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
764 +)))
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
858 -
859 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
860 -
861 -
862 -(% style="color:#037691" %)**Information** 
863 -
864 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
873 -
874 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
875 -
876 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
877 -
878 -
879 -= ​4. FAQ =
880 -
881 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
882 -
883 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
884 -When downloading the images, choose the required image file for download. ​
885 -
886 -
887 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
888 -
889 -
890 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
891 -
892 -
893 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
894 -
895 -[[image:image-20220606154726-3.png]]
896 -
897 -When you use the TTN network, the US915 frequency bands use are:
898 -
899 -* 903.9 - SF7BW125 to SF10BW125
900 -* 904.1 - SF7BW125 to SF10BW125
901 -* 904.3 - SF7BW125 to SF10BW125
902 -* 904.5 - SF7BW125 to SF10BW125
903 -* 904.7 - SF7BW125 to SF10BW125
904 -* 904.9 - SF7BW125 to SF10BW125
905 -* 905.1 - SF7BW125 to SF10BW125
906 -* 905.3 - SF7BW125 to SF10BW125
907 -* 904.6 - SF8BW500
908 -
909 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
910 -
911 -(% class="box infomessage" %)
912 912  (((
913 -**AT+CHE=2**
767 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
914 914  )))
915 915  
916 -(% class="box infomessage" %)
917 917  (((
918 -**ATZ**
771 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
919 919  )))
920 920  
921 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
922 922  
923 923  
924 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
776 += 6.  Trouble Shooting =
925 925  
926 -[[image:image-20220606154825-4.png]]
778 +== 6.1  ​Connection problem when uploading firmware ==
927 927  
928 928  
781 +(% class="wikigeneratedid" %)
782 +(((
783 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
784 +)))
929 929  
930 -= 5. Trouble Shooting =
931 931  
932 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
933 933  
934 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
788 +== 6. AT Command input doesn't work ==
935 935  
790 +(((
791 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
792 +)))
936 936  
937 -== 5.2 AT Command input doesn’t work ==
938 938  
939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
940 940  
796 += 7. ​ Order Info =
941 941  
942 -== 5.3 Device rejoin in at the second uplink packet ==
943 943  
944 -(% style="color:#4f81bd" %)**Issue describe as below:**
799 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
945 945  
946 -[[image:1654500909990-784.png]]
947 947  
802 +(% class="wikigeneratedid" %)
803 +(((
804 +
805 +)))
948 948  
949 -(% style="color:#4f81bd" %)**Cause for this issue:**
807 += 8 Packing Info =
950 950  
951 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
809 +(((
810 +
952 952  
812 +(% style="color:#037691" %)**Package Includes**:
953 953  
954 -(% style="color:#4f81bd" %)**Solution: **
955 955  
956 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
815 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
816 +* External antenna x 1
817 +)))
957 957  
958 -[[image:1654500929571-736.png]]
819 +(((
820 +
959 959  
822 +(% style="color:#037691" %)**Dimension and weight**:
960 960  
961 -= 6. ​Order Info =
962 962  
963 -
964 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
965 -
966 -
967 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
968 -
969 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
970 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
971 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
972 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
973 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
974 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
975 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
976 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
977 -
978 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
979 -
980 -* (% style="color:red" %)**4**(%%): 4000mAh battery
981 -* (% style="color:red" %)**8**(%%): 8500mAh battery
982 -
983 -= 7. Packing Info =
984 -
985 -(((
986 -**Package Includes**:
825 +* Size: 195 x 125 x 55 mm
826 +* Weight:   420g
987 987  )))
988 988  
989 -* (((
990 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
991 -)))
992 -
993 993  (((
994 994  
995 -)))
996 996  
997 -(((
998 -**Dimension and weight**:
999 -)))
1000 1000  
1001 -* (((
1002 -Device Size: cm
833 +
1003 1003  )))
1004 -* (((
1005 -Device Weight: g
1006 -)))
1007 -* (((
1008 -Package Size / pcs : cm
1009 -)))
1010 -* (((
1011 -Weight / pcs : g
1012 -)))
1013 1013  
1014 -= 8. Support =
836 += 9.  Support =
1015 1015  
1016 1016  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1017 1017  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1018 -
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content