Last modified by Mengting Qiu on 2024/04/02 16:44

From version 18.1
edited by Xiaoling
on 2022/06/06 16:38
Change comment: Uploaded new attachment "1654504683289-357.png", version {1}
To version 45.7
edited by Xiaoling
on 2022/07/08 11:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,251 +8,416 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
63 +
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
69 -
70 70  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 71  ​
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
78 78  
79 79  
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
82 82  
83 -== 2.1 How it works ==
107 +== 2.1  How it works ==
84 84  
109 +
85 85  (((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
87 87  )))
88 88  
114 +
89 89  (((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
116 +The diagram below shows the working flow in default firmware of NSE01:
91 91  )))
92 92  
119 +[[image:image-20220708101605-2.png]]
93 93  
121 +(((
122 +
123 +)))
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
127 +== 2.2 ​ Configure the NSE01 ==
99 99  
100 -[[image:1654503992078-669.png]]
129 +=== 2.2.1 Test Requirement ===
101 101  
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 +To use NSE01 in your city, make sure meet below requirements:
104 104  
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
109 109  
110 -[[image:image-20220606163732-6.jpeg]]
111 111  
112 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
113 113  
114 -**Add APP EUI in the application**
115 115  
116 116  
117 -[[image:1654504596150-405.png]]
146 +=== 2.2.2 Insert SIM card ===
118 118  
148 +Insert the NB-IoT Card get from your provider.
119 119  
120 120  
121 -**Add APP KEY and DEV EUI**
151 +User need to take out the NB-IoT module and insert the SIM card like below:
122 122  
123 123  
124 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
154 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
125 125  
126 -|(((
127 -
128 -)))
129 129  
130 -**Step 2**: Power on LSE01
157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
131 131  
132 132  
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
160 +User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
134 134  
135 135  
136 136  
137 -|(((
138 -
139 -)))
140 140  
141 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
165 +Connection:
142 142  
167 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
143 143  
169 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
144 144  
171 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
145 145  
146 146  
147 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
148 148  
149 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
175 +In the PC, use below serial tool settings:
150 150  
177 +* Baud: ** (% style="background-color:green" %)9600**(%%)
178 +* Data bits:** (% style="background-color:green" %)8**(%%)
179 +* Stop bits: **(% style="background-color:green" %)1**(%%)
180 +* Parity: **(% style="background-color:green" %)None**(%%)
181 +* Flow Control: **(% style="background-color:green" %)None**
151 151  
152 152  
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input.
153 153  
154 -1.
155 -11. ​Uplink Payload
156 -111. MOD=0(Default Mode)
186 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
157 157  
158 -LSE01 will uplink payload via LoRaWAN with below payload format: 
188 +Note: the valid AT Commands can be found at:
159 159  
190 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
160 160  
192 +
193 +
194 +=== 2.2.4 Use CoAP protocol to uplink data === 
195 +
196 +
197 +(% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one:
198 +
199 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
200 +
201 +
202 +Use below commands:
203 +
204 +* **(% style="color:blue" %)AT+PRO=1**  (%%)  ~/~/ Set to use CoAP protocol to uplink
205 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)      ~/~/Set COAP resource path
207 +
208 +
209 +For parameter description, please refer to AT command set
210 +
211 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
212 +
213 +
214 +After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
215 +
216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
217 +
218 +
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 +
221 +
222 +This feature is supported since firmware version v1.0.1
223 +
224 +
225 +* **(% style="color:blue" %)AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
226 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
227 +* **(% style="color:blue" %)AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
228 +
229 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
230 +
231 +
232 +
233 +
234 +
235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
236 +
237 +
238 +=== 2.2.6 Use MQTT protocol to uplink data ===
239 +
240 +
241 +This feature is supported since firmware version v110
242 +
243 +
244 +* **(% style="color:blue" %)AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
245 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
246 +* **(% style="color:blue" %)AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT
247 +* **(% style="color:blue" %)AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
248 +* **(% style="color:blue" %)AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
249 +* **(% style="color:blue" %)AT+PUBTOPIC=NSE01_PUB   **(%%)~/~/Set the sending topic of MQTT
250 +* **(% style="color:blue" %)AT+SUBTOPIC=NSE01_SUB    **(%%) ~/~/Set the subscription topic of MQTT
251 +
252 +
253 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
254 +
255 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
256 +
257 +
258 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
259 +
260 +
261 +=== 2.2.7 Use TCP protocol to uplink data ===
262 +
263 +
264 +This feature is supported since firmware version v110
265 +
266 +
267 +* **(% style="color:blue" %)AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 +* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
269 +
270 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
271 +
272 +
273 +
274 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
275 +
276 +
277 +=== 2.2.8 Change Update Interval ===
278 +
279 +User can use below command to change the **(% style="color:green" %)uplink interval**.
280 +
281 +**~ (% style="color:blue" %)AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
282 +
283 +
284 +**(% style="color:red" %)NOTE:**
285 +
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +
288 +
289 +
290 +
291 +
292 +
293 +
294 +== 2.3 Uplink Payload ==
295 +
296 +
297 +=== 2.3.1 MOD~=0(Default Mode) ===
298 +
299 +LSE01 will uplink payload via LoRaWAN with below payload format: 
300 +
301 +(((
161 161  Uplink payload includes in total 11 bytes.
162 -
303 +)))
163 163  
305 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
164 164  |(((
165 165  **Size**
166 166  
167 167  **(bytes)**
168 168  )))|**2**|**2**|**2**|**2**|**2**|**1**
169 -|**Value**|[[BAT>>path:#bat]]|(((
311 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
170 170  Temperature
171 171  
172 172  (Reserve, Ignore now)
173 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
315 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
174 174  MOD & Digital Interrupt
175 175  
176 176  (Optional)
177 177  )))
178 178  
179 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
321 +=== 2.3.2 MOD~=1(Original value) ===
180 180  
181 -
182 -1.
183 -11.
184 -111. MOD=1(Original value)
185 -
186 186  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 187  
325 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
188 188  |(((
189 189  **Size**
190 190  
191 191  **(bytes)**
192 192  )))|**2**|**2**|**2**|**2**|**2**|**1**
193 -|**Value**|[[BAT>>path:#bat]]|(((
331 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
194 194  Temperature
195 195  
196 196  (Reserve, Ignore now)
197 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
335 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
198 198  MOD & Digital Interrupt
199 199  
200 200  (Optional)
201 201  )))
202 202  
203 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
341 +=== 2.3.3 Battery Info ===
204 204  
205 -1.
206 -11.
207 -111. Battery Info
208 -
343 +(((
209 209  Check the battery voltage for LSE01.
345 +)))
210 210  
347 +(((
211 211  Ex1: 0x0B45 = 2885mV
349 +)))
212 212  
351 +(((
213 213  Ex2: 0x0B49 = 2889mV
353 +)))
214 214  
215 215  
216 216  
217 -1.
218 -11.
219 -111. Soil Moisture
357 +=== 2.3.4 Soil Moisture ===
220 220  
359 +(((
221 221  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
361 +)))
222 222  
223 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
363 +(((
364 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
365 +)))
224 224  
225 -**05DC(H) = 1500(D) /100 = 15%.**
367 +(((
368 +
369 +)))
226 226  
371 +(((
372 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
373 +)))
227 227  
228 -1.
229 -11.
230 -111. Soil Temperature
231 231  
376 +
377 +=== 2.3.5 Soil Temperature ===
378 +
379 +(((
232 232   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
381 +)))
233 233  
383 +(((
234 234  **Example**:
385 +)))
235 235  
387 +(((
236 236  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
389 +)))
237 237  
391 +(((
238 238  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
393 +)))
239 239  
240 240  
241 -1.
242 -11.
243 -111. Soil Conductivity (EC)
244 244  
245 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
397 +=== 2.3.6 Soil Conductivity (EC) ===
246 246  
399 +(((
400 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
401 +)))
402 +
403 +(((
247 247  For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
405 +)))
248 248  
249 -
407 +(((
250 250  Generally, the EC value of irrigation water is less than 800uS / cm.
409 +)))
251 251  
252 -1.
253 -11.
254 -111. MOD
411 +(((
412 +
413 +)))
255 255  
415 +(((
416 +
417 +)))
418 +
419 +=== 2.3.7 MOD ===
420 +
256 256  Firmware version at least v2.1 supports changing mode.
257 257  
258 258  For example, bytes[10]=90
... ... @@ -260,7 +260,7 @@
260 260  mod=(bytes[10]>>7)&0x01=1.
261 261  
262 262  
263 -Downlink Command:
428 +**Downlink Command:**
264 264  
265 265  If payload = 0x0A00, workmode=0
266 266  
... ... @@ -267,107 +267,127 @@
267 267  If** **payload =** **0x0A01, workmode=1
268 268  
269 269  
270 -1.
271 -11.
272 -111. ​Decode payload in The Things Network
273 273  
436 +=== 2.3.8 ​Decode payload in The Things Network ===
437 +
274 274  While using TTN network, you can add the payload format to decode the payload.
275 275  
276 276  
277 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
441 +[[image:1654505570700-128.png]]
278 278  
443 +(((
279 279  The payload decoder function for TTN is here:
445 +)))
280 280  
281 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
447 +(((
448 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
449 +)))
282 282  
283 283  
284 -1.
285 -11. Uplink Interval
452 +== 2.4 Uplink Interval ==
286 286  
287 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
454 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
288 288  
289 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
290 290  
291 -1.
292 -11. ​Downlink Payload
293 293  
458 +== 2.5 Downlink Payload ==
459 +
294 294  By default, LSE50 prints the downlink payload to console port.
295 295  
296 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
297 -|TDC (Transmit Time Interval)|Any|01|4
298 -|RESET|Any|04|2
299 -|AT+CFM|Any|05|4
300 -|INTMOD|Any|06|4
301 -|MOD|Any|0A|2
462 +[[image:image-20220606165544-8.png]]
302 302  
303 -**Examples**
304 304  
465 +(((
466 +(% style="color:blue" %)**Examples:**
467 +)))
305 305  
306 -**Set TDC**
469 +(((
470 +
471 +)))
307 307  
473 +* (((
474 +(% style="color:blue" %)**Set TDC**
475 +)))
476 +
477 +(((
308 308  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
479 +)))
309 309  
481 +(((
310 310  Payload:    01 00 00 1E    TDC=30S
483 +)))
311 311  
485 +(((
312 312  Payload:    01 00 00 3C    TDC=60S
487 +)))
313 313  
489 +(((
490 +
491 +)))
314 314  
315 -**Reset**
493 +* (((
494 +(% style="color:blue" %)**Reset**
495 +)))
316 316  
497 +(((
317 317  If payload = 0x04FF, it will reset the LSE01
499 +)))
318 318  
319 319  
320 -**CFM**
502 +* (% style="color:blue" %)**CFM**
321 321  
322 322  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
323 323  
324 -1.
325 -11. ​Show Data in DataCake IoT Server
326 326  
327 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
328 328  
508 +== 2.6 ​Show Data in DataCake IoT Server ==
329 329  
330 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
510 +(((
511 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
512 +)))
331 331  
332 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
514 +(((
515 +
516 +)))
333 333  
518 +(((
519 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
520 +)))
334 334  
335 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
522 +(((
523 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
524 +)))
336 336  
337 337  
338 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
527 +[[image:1654505857935-743.png]]
339 339  
340 340  
530 +[[image:1654505874829-548.png]]
341 341  
342 342  
533 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
343 343  
344 -Step 3: Create an account or log in Datacake.
535 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
345 345  
346 -Step 4: Search the LSE01 and add DevEUI.
347 347  
538 +[[image:1654505905236-553.png]]
348 348  
349 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
350 350  
351 -
352 -
353 353  After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
354 354  
543 +[[image:1654505925508-181.png]]
355 355  
356 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
357 357  
358 358  
547 +== 2.7 Frequency Plans ==
359 359  
360 -1.
361 -11. Frequency Plans
362 -
363 363  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
364 364  
365 -1.
366 -11.
367 -111. EU863-870 (EU868)
368 368  
369 -Uplink:
552 +=== 2.7.1 EU863-870 (EU868) ===
370 370  
554 +(% style="color:#037691" %)** Uplink:**
555 +
371 371  868.1 - SF7BW125 to SF12BW125
372 372  
373 373  868.3 - SF7BW125 to SF12BW125 and SF7BW250
... ... @@ -387,7 +387,7 @@
387 387  868.8 - FSK
388 388  
389 389  
390 -Downlink:
575 +(% style="color:#037691" %)** Downlink:**
391 391  
392 392  Uplink channels 1-9 (RX1)
393 393  
... ... @@ -394,13 +394,12 @@
394 394  869.525 - SF9BW125 (RX2 downlink only)
395 395  
396 396  
397 -1.
398 -11.
399 -111. US902-928(US915)
400 400  
583 +=== 2.7.2 US902-928(US915) ===
584 +
401 401  Used in USA, Canada and South America. Default use CHE=2
402 402  
403 -Uplink:
587 +(% style="color:#037691" %)**Uplink:**
404 404  
405 405  903.9 - SF7BW125 to SF10BW125
406 406  
... ... @@ -419,7 +419,7 @@
419 419  905.3 - SF7BW125 to SF10BW125
420 420  
421 421  
422 -Downlink:
606 +(% style="color:#037691" %)**Downlink:**
423 423  
424 424  923.3 - SF7BW500 to SF12BW500
425 425  
... ... @@ -440,13 +440,12 @@
440 440  923.3 - SF12BW500(RX2 downlink only)
441 441  
442 442  
443 -1.
444 -11.
445 -111. CN470-510 (CN470)
446 446  
628 +=== 2.7.3 CN470-510 (CN470) ===
629 +
447 447  Used in China, Default use CHE=1
448 448  
449 -Uplink:
632 +(% style="color:#037691" %)**Uplink:**
450 450  
451 451  486.3 - SF7BW125 to SF12BW125
452 452  
... ... @@ -465,7 +465,7 @@
465 465  487.7 - SF7BW125 to SF12BW125
466 466  
467 467  
468 -Downlink:
651 +(% style="color:#037691" %)**Downlink:**
469 469  
470 470  506.7 - SF7BW125 to SF12BW125
471 471  
... ... @@ -486,13 +486,12 @@
486 486  505.3 - SF12BW125 (RX2 downlink only)
487 487  
488 488  
489 -1.
490 -11.
491 -111. AU915-928(AU915)
492 492  
673 +=== 2.7.4 AU915-928(AU915) ===
674 +
493 493  Default use CHE=2
494 494  
495 -Uplink:
677 +(% style="color:#037691" %)**Uplink:**
496 496  
497 497  916.8 - SF7BW125 to SF12BW125
498 498  
... ... @@ -511,7 +511,7 @@
511 511  918.2 - SF7BW125 to SF12BW125
512 512  
513 513  
514 -Downlink:
696 +(% style="color:#037691" %)**Downlink:**
515 515  
516 516  923.3 - SF7BW500 to SF12BW500
517 517  
... ... @@ -531,22 +531,22 @@
531 531  
532 532  923.3 - SF12BW500(RX2 downlink only)
533 533  
534 -1.
535 -11.
536 -111. AS920-923 & AS923-925 (AS923)
537 537  
538 -**Default Uplink channel:**
539 539  
718 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
719 +
720 +(% style="color:#037691" %)**Default Uplink channel:**
721 +
540 540  923.2 - SF7BW125 to SF10BW125
541 541  
542 542  923.4 - SF7BW125 to SF10BW125
543 543  
544 544  
545 -**Additional Uplink Channel**:
727 +(% style="color:#037691" %)**Additional Uplink Channel**:
546 546  
547 547  (OTAA mode, channel added by JoinAccept message)
548 548  
549 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
731 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
550 550  
551 551  922.2 - SF7BW125 to SF10BW125
552 552  
... ... @@ -561,7 +561,7 @@
561 561  922.0 - SF7BW125 to SF10BW125
562 562  
563 563  
564 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
565 565  
566 566  923.6 - SF7BW125 to SF10BW125
567 567  
... ... @@ -576,18 +576,16 @@
576 576  924.6 - SF7BW125 to SF10BW125
577 577  
578 578  
761 +(% style="color:#037691" %)** Downlink:**
579 579  
580 -**Downlink:**
581 -
582 582  Uplink channels 1-8 (RX1)
583 583  
584 584  923.2 - SF10BW125 (RX2)
585 585  
586 586  
587 -1.
588 -11.
589 -111. KR920-923 (KR920)
590 590  
769 +=== 2.7.6 KR920-923 (KR920) ===
770 +
591 591  Default channel:
592 592  
593 593  922.1 - SF7BW125 to SF12BW125
... ... @@ -597,7 +597,7 @@
597 597  922.5 - SF7BW125 to SF12BW125
598 598  
599 599  
600 -Uplink: (OTAA mode, channel added by JoinAccept message)
780 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
601 601  
602 602  922.1 - SF7BW125 to SF12BW125
603 603  
... ... @@ -614,7 +614,7 @@
614 614  923.3 - SF7BW125 to SF12BW125
615 615  
616 616  
617 -Downlink:
797 +(% style="color:#037691" %)**Downlink:**
618 618  
619 619  Uplink channels 1-7(RX1)
620 620  
... ... @@ -621,12 +621,11 @@
621 621  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
622 622  
623 623  
624 -1.
625 -11.
626 -111. IN865-867 (IN865)
627 627  
628 -Uplink:
805 +=== 2.7.7 IN865-867 (IN865) ===
629 629  
807 +(% style="color:#037691" %)** Uplink:**
808 +
630 630  865.0625 - SF7BW125 to SF12BW125
631 631  
632 632  865.4025 - SF7BW125 to SF12BW125
... ... @@ -634,7 +634,7 @@
634 634  865.9850 - SF7BW125 to SF12BW125
635 635  
636 636  
637 -Downlink:
816 +(% style="color:#037691" %) **Downlink:**
638 638  
639 639  Uplink channels 1-3 (RX1)
640 640  
... ... @@ -641,110 +641,129 @@
641 641  866.550 - SF10BW125 (RX2)
642 642  
643 643  
644 -1.
645 -11. LED Indicator
646 646  
647 -The LSE01 has an internal LED which is to show the status of different state.
648 648  
825 +== 2.8 LED Indicator ==
649 649  
827 +The LSE01 has an internal LED which is to show the status of different state.
828 +
650 650  * Blink once when device power on.
651 651  * Solid ON for 5 seconds once device successful Join the network.
652 652  * Blink once when device transmit a packet.
653 653  
654 -1.
655 -11. Installation in Soil
833 +== 2.9 Installation in Soil ==
656 656  
657 657  **Measurement the soil surface**
658 658  
659 659  
660 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
838 +[[image:1654506634463-199.png]] ​
661 661  
840 +(((
841 +(((
662 662  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
843 +)))
844 +)))
663 663  
664 664  
665 665  
848 +[[image:1654506665940-119.png]]
666 666  
667 -
668 -
669 -
670 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
671 -
672 -
673 -
850 +(((
674 674  Dig a hole with diameter > 20CM.
852 +)))
675 675  
854 +(((
676 676  Horizontal insert the probe to the soil and fill the hole for long term measurement.
856 +)))
677 677  
678 678  
859 +== 2.10 ​Firmware Change Log ==
679 679  
680 -
681 -1.
682 -11. ​Firmware Change Log
683 -
861 +(((
684 684  **Firmware download link:**
863 +)))
685 685  
865 +(((
686 686  [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
867 +)))
687 687  
869 +(((
870 +
871 +)))
688 688  
689 -**Firmware Upgrade Method:**
873 +(((
874 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
875 +)))
690 690  
691 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
877 +(((
878 +
879 +)))
692 692  
693 -
881 +(((
694 694  **V1.0.**
883 +)))
695 695  
885 +(((
696 696  Release
887 +)))
697 697  
698 698  
890 +== 2.11 ​Battery Analysis ==
699 699  
700 -1.
701 -11. ​Battery Analysis
702 -111. ​Battery Type
892 +=== 2.11.1 ​Battery Type ===
703 703  
894 +(((
704 704  The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
896 +)))
705 705  
706 -
898 +(((
707 707  The battery is designed to last for more than 5 years for the LSN50.
900 +)))
708 708  
902 +(((
903 +(((
904 +The battery-related documents are as below:
905 +)))
906 +)))
709 709  
710 -The battery related documents as below:
711 -
712 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
713 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
714 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
715 -
716 -|(((
717 -JST-XH-2P connector
908 +* (((
909 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
718 718  )))
911 +* (((
912 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
913 +)))
914 +* (((
915 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
916 +)))
719 719  
720 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
918 + [[image:image-20220610172436-1.png]]
721 721  
722 722  
723 723  
724 -1.
725 -11.
726 -111. ​Battery Note
922 +=== 2.11.2 ​Battery Note ===
727 727  
924 +(((
728 728  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
926 +)))
729 729  
730 730  
731 -1.
732 -11.
733 -111. ​Replace the battery
734 734  
930 +=== 2.11.3 Replace the battery ===
931 +
932 +(((
735 735  If Battery is lower than 2.7v, user should replace the battery of LSE01.
934 +)))
736 736  
737 -
936 +(((
738 738  You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
938 +)))
739 739  
740 -
940 +(((
741 741  The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
942 +)))
742 742  
743 743  
744 744  
745 -
746 -
747 -
748 748  = 3. ​Using the AT Commands =
749 749  
750 750  == 3.1 Access AT Commands ==
... ... @@ -752,13 +752,13 @@
752 752  
753 753  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
754 754  
755 -[[image:1654501986557-872.png]]
953 +[[image:1654501986557-872.png||height="391" width="800"]]
756 756  
757 757  
758 758  Or if you have below board, use below connection:
759 759  
760 760  
761 -[[image:1654502005655-729.png]]
959 +[[image:1654502005655-729.png||height="503" width="801"]]
762 762  
763 763  
764 764  
... ... @@ -765,10 +765,10 @@
765 765  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
766 766  
767 767  
768 - [[image:1654502050864-459.png]]
966 + [[image:1654502050864-459.png||height="564" width="806"]]
769 769  
770 770  
771 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
969 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
772 772  
773 773  
774 774  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -880,20 +880,38 @@
880 880  
881 881  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
882 882  
883 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
1081 +(((
1082 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
884 884  When downloading the images, choose the required image file for download. ​
1084 +)))
885 885  
1086 +(((
1087 +
1088 +)))
886 886  
1090 +(((
887 887  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1092 +)))
888 888  
1094 +(((
1095 +
1096 +)))
889 889  
1098 +(((
890 890  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1100 +)))
891 891  
1102 +(((
1103 +
1104 +)))
892 892  
1106 +(((
893 893  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1108 +)))
894 894  
895 895  [[image:image-20220606154726-3.png]]
896 896  
1112 +
897 897  When you use the TTN network, the US915 frequency bands use are:
898 898  
899 899  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -906,37 +906,47 @@
906 906  * 905.3 - SF7BW125 to SF10BW125
907 907  * 904.6 - SF8BW500
908 908  
1125 +(((
909 909  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
910 910  
911 -(% class="box infomessage" %)
912 -(((
913 -**AT+CHE=2**
1128 +* (% style="color:#037691" %)**AT+CHE=2**
1129 +* (% style="color:#037691" %)**ATZ**
914 914  )))
915 915  
916 -(% class="box infomessage" %)
917 917  (((
918 -**ATZ**
919 -)))
1133 +
920 920  
921 921  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1136 +)))
922 922  
1138 +(((
1139 +
1140 +)))
923 923  
1142 +(((
924 924  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1144 +)))
925 925  
926 926  [[image:image-20220606154825-4.png]]
927 927  
928 928  
1149 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
929 929  
1151 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1152 +
1153 +
930 930  = 5. Trouble Shooting =
931 931  
932 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1156 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
933 933  
934 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1158 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
935 935  
936 936  
937 -== 5.2 AT Command input doesnt work ==
1161 +== 5.2 AT Command input doesn't work ==
938 938  
939 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1163 +(((
1164 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1165 +)))
940 940  
941 941  
942 942  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -948,7 +948,9 @@
948 948  
949 949  (% style="color:#4f81bd" %)**Cause for this issue:**
950 950  
1177 +(((
951 951  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1179 +)))
952 952  
953 953  
954 954  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -955,7 +955,7 @@
955 955  
956 956  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
957 957  
958 -[[image:1654500929571-736.png]]
1186 +[[image:1654500929571-736.png||height="458" width="832"]]
959 959  
960 960  
961 961  = 6. ​Order Info =
... ... @@ -980,10 +980,17 @@
980 980  * (% style="color:red" %)**4**(%%): 4000mAh battery
981 981  * (% style="color:red" %)**8**(%%): 8500mAh battery
982 982  
1211 +(% class="wikigeneratedid" %)
1212 +(((
1213 +
1214 +)))
1215 +
983 983  = 7. Packing Info =
984 984  
985 985  (((
986 -**Package Includes**:
1219 +
1220 +
1221 +(% style="color:#037691" %)**Package Includes**:
987 987  )))
988 988  
989 989  * (((
... ... @@ -992,10 +992,8 @@
992 992  
993 993  (((
994 994  
995 -)))
996 996  
997 -(((
998 -**Dimension and weight**:
1231 +(% style="color:#037691" %)**Dimension and weight**:
999 999  )))
1000 1000  
1001 1001  * (((
... ... @@ -1009,6 +1009,8 @@
1009 1009  )))
1010 1010  * (((
1011 1011  Weight / pcs : g
1245 +
1246 +
1012 1012  )))
1013 1013  
1014 1014  = 8. Support =
... ... @@ -1015,4 +1015,3 @@
1015 1015  
1016 1016  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1017 1017  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1018 -
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content