Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 36 added, 0 removed)
- 1654504683289-357.png
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220606163915-7.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,745 +8,630 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 - * LoRaWAN 1.0.3 Class A46 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 62 +== 1.3 Specification == 58 58 64 + 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 59 59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 62 62 63 63 64 64 65 -== 1.4 Applications == 87 +== 1.4 Applications == 66 66 67 67 * Smart Agriculture 68 68 69 - 70 70 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 71 72 72 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 94 +== 1.5 Pin Definitions == 75 75 76 76 77 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 78 78 79 79 80 80 81 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 82 82 83 -== 2.1 How it works == 103 +== 2.1 How it works == 84 84 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 88 88 89 89 ((( 90 - Incaseyoucan’tsettheOTAAkeysintheLoRaWANOTAAserver,andyouhave touse thekeys fromtheserver, youcan[[useATCommands>>||anchor="H3.UsingtheATCommands"]].107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 91 91 ))) 92 92 93 93 94 - 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 96 - 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 - 99 - 100 -[[image:1654503992078-669.png]] 101 - 102 - 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 - 105 - 106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 107 - 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 - 110 - 111 - 112 - 113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 114 - 115 - 116 -**Add APP EUI in the application** 117 - 118 - 119 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]] 120 - 121 - 122 - 123 -**Add APP KEY and DEV EUI** 124 - 125 - 126 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]] 127 - 128 -|((( 129 - 111 +((( 112 +The diagram below shows the working flow in default firmware of NSE01: 130 130 ))) 131 131 132 - **Step 2**:Power on LSE01115 +[[image:image-20220708101605-2.png]] 133 133 134 - 135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 - 137 - 138 - 139 -|((( 117 +((( 140 140 141 141 ))) 142 142 143 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]] 144 144 145 145 123 +== 2.2 Configure the NSE01 == 146 146 147 147 126 +=== 2.2.1 Test Requirement === 148 148 149 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 150 151 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]129 +To use NSE01 in your city, make sure meet below requirements: 152 152 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 153 153 135 +((( 136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 +))) 154 154 155 155 156 -1. 157 -11. Uplink Payload 158 -111. MOD=0(Default Mode) 140 +[[image:1657249419225-449.png]] 159 159 160 -LSE01 will uplink payload via LoRaWAN with below payload format: 161 161 162 162 163 -Uplink payload includes in total 11 bytes. 164 - 144 +=== 2.2.2 Insert SIM card === 165 165 166 -|((( 167 -**Size** 146 +Insert the NB-IoT Card get from your provider. 168 168 169 -**(bytes)** 170 -)))|**2**|**2**|**2**|**2**|**2**|**1** 171 -|**Value**|[[BAT>>path:#bat]]|((( 172 -Temperature 148 +User need to take out the NB-IoT module and insert the SIM card like below: 173 173 174 -(Reserve, Ignore now) 175 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 176 -MOD & Digital Interrupt 177 177 178 -(Optional) 179 -))) 151 +[[image:1657249468462-536.png]] 180 180 181 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 182 182 183 183 184 -1. 185 -11. 186 -111. MOD=1(Original value) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 187 187 188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 189 - 190 -|((( 191 -**Size** 192 - 193 -**(bytes)** 194 -)))|**2**|**2**|**2**|**2**|**2**|**1** 195 -|**Value**|[[BAT>>path:#bat]]|((( 196 -Temperature 197 - 198 -(Reserve, Ignore now) 199 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 200 -MOD & Digital Interrupt 201 - 202 -(Optional) 157 +((( 158 +((( 159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 203 203 ))) 161 +))) 204 204 205 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 206 206 207 -1. 208 -11. 209 -111. Battery Info 164 +**Connection:** 210 210 211 - Checkthettery voltage forLSE01.166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 212 212 213 - Ex1:0x0B45=2885mV168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 214 214 215 - Ex2:0x0B49=2889mV170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 216 216 217 217 173 +In the PC, use below serial tool settings: 218 218 219 -1. 220 -11. 221 -111. Soil Moisture 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 222 222 223 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 181 +((( 182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 +))) 224 224 225 - For example,if the data youget fromthe register is0x050xDC, the moisture content in the soil is185 +[[image:image-20220708110657-3.png]] 226 226 227 - **05DC(H)=1500(D)/100=15%.**187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 228 228 229 229 230 -1. 231 -11. 232 -111. Soil Temperature 233 233 234 - Get the temperature in the soil.The value range of the register is -4000-+800(Decimal), divide thisvalueby 100 toget the temperature in the soil.Forexample,ifthedatayou get from the register is 0x09 0xEC, the temperature content in the soil is191 +=== 2.2.4 Use CoAP protocol to uplink data === 235 235 236 - **Example**:193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 237 237 238 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 239 239 240 - IfpayloadisFF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C196 +**Use below commands:** 241 241 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 242 242 243 -1. 244 -11. 245 -111. Soil Conductivity (EC) 202 +For parameter description, please refer to AT command set 246 246 247 - Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or plantingmedium,. The value rangeof the register is 0 -20000(Decimal)( Canbegreater than 20000).204 +[[image:1657249793983-486.png]] 248 248 249 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 250 250 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 251 251 252 - Generally, the EC value ofirrigation water is less than800uS / cm.209 +[[image:1657249831934-534.png]] 253 253 254 -1. 255 -11. 256 -111. MOD 257 257 258 -Firmware version at least v2.1 supports changing mode. 259 259 260 - Forexample,bytes[10]=90213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 261 261 262 - mod=(bytes[10]>>7)&0x01=1.215 +This feature is supported since firmware version v1.0.1 263 263 264 264 265 -Downlink Command: 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 266 266 267 - If payload = 0x0A00, workmode=0222 +[[image:1657249864775-321.png]] 268 268 269 -If** **payload =** **0x0A01, workmode=1 270 270 225 +[[image:1657249930215-289.png]] 271 271 272 -1. 273 -11. 274 -111. Decode payload in The Things Network 275 275 276 -While using TTN network, you can add the payload format to decode the payload. 277 277 229 +=== 2.2.6 Use MQTT protocol to uplink data === 278 278 279 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]231 +This feature is supported since firmware version v110 280 280 281 -The payload decoder function for TTN is here: 282 282 283 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 284 284 242 +[[image:1657249978444-674.png]] 285 285 286 -1. 287 -11. Uplink Interval 288 288 289 - The LSE01 by default uplink the sensor dataevery20minutes.User canchange this interval by AT Command or LoRaWAN Downlink Command. See this link:245 +[[image:1657249990869-686.png]] 290 290 291 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 292 292 293 -1. 294 -11. Downlink Payload 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 295 295 296 -By default, LSE50 prints the downlink payload to console port. 297 297 298 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 299 -|TDC (Transmit Time Interval)|Any|01|4 300 -|RESET|Any|04|2 301 -|AT+CFM|Any|05|4 302 -|INTMOD|Any|06|4 303 -|MOD|Any|0A|2 304 304 305 - **Examples**254 +=== 2.2.7 Use TCP protocol to uplink data === 306 306 256 +This feature is supported since firmware version v110 307 307 308 -**Set TDC** 309 309 310 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 311 311 312 - Payload:010 001E TDC=30S262 +[[image:1657250217799-140.png]] 313 313 314 -Payload: 01 00 00 3C TDC=60S 315 315 265 +[[image:1657250255956-604.png]] 316 316 317 -**Reset** 318 318 319 -If payload = 0x04FF, it will reset the LSE01 320 320 269 +=== 2.2.8 Change Update Interval === 321 321 322 -** CFM**271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 323 323 324 - DownlinkPayload:05000001, SetAT+CFM=1 or05000000,setAT+CFM=0273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 325 325 326 -1. 327 -11. Show Data in DataCake IoT Server 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 328 328 329 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 330 330 331 331 332 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 333 333 334 - **Step2**:To configure the Applicationto forward data to DATACAKEyou will need todintegration. To add the DATACAKE integration, perform the following steps:285 +== 2.3 Uplink Payload == 335 335 287 +In this mode, uplink payload includes in total 18 bytes 336 336 337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 338 338 295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 339 339 340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 341 341 298 +[[image:image-20220708111918-4.png]] 342 342 343 343 301 +The payload is ASCII string, representative same HEX: 344 344 303 +0x72403155615900640c7817075e0a8c02f900 where: 345 345 346 -Step 3: Create an account or log in Datacake. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 347 347 348 -Step 4: Search the LSE01 and add DevEUI. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 349 349 315 +== 2.4 Payload Explanation and Sensor Interface == 350 350 351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 352 352 318 +=== 2.4.1 Device ID === 353 353 320 +By default, the Device ID equal to the last 6 bytes of IMEI. 354 354 355 - After added,the sensordata arrive TTN,itwill alsoarriveand show in Mydevices.322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 356 356 324 +**Example:** 357 357 358 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]326 +AT+DEUI=A84041F15612 359 359 328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 360 360 361 361 362 -1. 363 -11. Frequency Plans 364 364 365 - TheLSE01 uses OTAA mode and below frequency plans by default.If userwant to useit with differentfrequency plan, please refer the AT commandsets.332 +=== 2.4.2 Version Info === 366 366 367 -1. 368 -11. 369 -111. EU863-870 (EU868) 334 +Specify the software version: 0x64=100, means firmware version 1.00. 370 370 371 - Uplink:336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 372 372 373 -868.1 - SF7BW125 to SF12BW125 374 374 375 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 376 376 377 - 868.5- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 378 378 379 -867.1 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 380 380 381 -867.3 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 382 382 383 -867.5 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 384 384 385 -867.7 - SF7BW125 to SF12BW125 386 386 387 -867.9 - SF7BW125 to SF12BW125 388 388 389 - 868.8-FSK356 +=== 2.4.4 Signal Strength === 390 390 358 +NB-IoT Network signal Strength. 391 391 392 - Downlink:360 +**Ex1: 0x1d = 29** 393 393 394 - Uplinkchannels1-9(RX1)362 +(% style="color:blue" %)**0**(%%) -113dBm or less 395 395 396 - 869.525 - SF9BW125(RX2downlinkonly)364 +(% style="color:blue" %)**1**(%%) -111dBm 397 397 366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 398 398 399 -1. 400 -11. 401 -111. US902-928(US915) 368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 402 402 403 - UsedinUSA,CanadaandSouthAmerica. Default useCHE=2370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 404 404 405 -Uplink: 406 406 407 -903.9 - SF7BW125 to SF10BW125 408 408 409 - 904.1-SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 410 410 411 -904.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 412 412 413 -904.5 - SF7BW125 to SF10BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 414 414 415 -904.7 - SF7BW125 to SF10BW125 384 +((( 385 + 386 +))) 416 416 417 -904.9 - SF7BW125 to SF10BW125 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 418 418 419 -905.1 - SF7BW125 to SF10BW125 420 420 421 -905.3 - SF7BW125 to SF10BW125 422 422 394 +=== 2.4.6 Soil Temperature === 423 423 424 -Downlink: 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 425 425 426 -923.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 427 427 428 -923.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 429 429 430 -924.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 431 431 432 -925.1 - SF7BW500 to SF12BW500 433 433 434 -925.7 - SF7BW500 to SF12BW500 435 435 436 - 926.3-SF7BW500toSF12BW500414 +=== 2.4.7 Soil Conductivity (EC) === 437 437 438 -926.9 - SF7BW500 to SF12BW500 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 439 439 440 -927.5 - SF7BW500 to SF12BW500 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 441 441 442 -923.3 - SF12BW500(RX2 downlink only) 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 443 443 428 +((( 429 + 430 +))) 444 444 445 - 1.446 - 11.447 - 111. CN470-510 (CN470)432 +((( 433 + 434 +))) 448 448 449 - UsedinChina,Defaultuse CHE=1436 +=== 2.4.8 Digital Interrupt === 450 450 451 - Uplink:438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 452 452 453 - 486.3- SF7BW125 toSF12BW125440 +The command is: 454 454 455 - 486.5-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 456 456 457 -486.7 - SF7BW125 to SF12BW125 458 458 459 - 486.9-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 460 460 461 -487.1 - SF7BW125 to SF12BW125 462 462 463 - 487.3 - SF7BW125 to SF12BW125448 +Example: 464 464 465 - 487.5-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 466 466 467 - 487.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 468 468 469 469 470 -Downlink: 471 471 472 - 506.7- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 473 473 474 - 506.9-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 475 475 476 -507.1 - SF7BW125 to SF12BW125 477 477 478 -5 07.3-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 479 479 480 - 507.5- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 481 481 482 -50 7.7-SF7BW125toSF12BW125465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 483 483 484 -507.9 - SF7BW125 to SF12BW125 485 485 486 -508.1 - SF7BW125 to SF12BW125 487 487 488 - 505.3- SF12BW125(RX2 downlinkonly)469 +== 2.5 Downlink Payload == 489 489 471 +By default, NSE01 prints the downlink payload to console port. 490 490 491 -1. 492 -11. 493 -111. AU915-928(AU915) 473 +[[image:image-20220708133731-5.png]] 494 494 495 -Default use CHE=2 496 496 497 -Uplink: 498 498 499 -916.8 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 500 500 501 -917.0 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 502 502 503 -917.2 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 504 504 505 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 506 506 507 -917.6 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 508 508 509 -917.8 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 510 510 511 -918.0 - SF7BW125 to SF12BW125 501 +((( 502 + 503 +))) 512 512 513 -918.2 - SF7BW125 to SF12BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 514 514 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 515 515 516 -Downlink: 517 517 518 - 923.3-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 519 519 520 - 923.9-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 521 521 522 -924.5 - SF7BW500 to SF12BW500 523 523 524 -925.1 - SF7BW500 to SF12BW500 525 525 526 - 925.7-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 527 527 528 -926.3 - SF7BW500 to SF12BW500 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 529 529 530 -926.9 - SF7BW500 to SF12BW500 531 531 532 -927.5 - SF7BW500 to SF12BW500 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 533 533 534 -923.3 - SF12BW500(RX2 downlink only) 535 535 536 -1. 537 -11. 538 -111. AS920-923 & AS923-925 (AS923) 539 539 540 -**Default Uplink channel:** 541 541 542 - 923.2 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 543 543 544 - 923.4- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 545 545 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 546 546 547 - **Additional UplinkChannel**:541 +[[image:1657259653666-883.png]] 548 548 549 -(OTAA mode, channel added by JoinAccept message) 550 550 551 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 +((( 545 + 552 552 553 -922.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 554 554 555 -922.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 556 556 557 - 922.6 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 558 558 559 -922.8 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 560 560 561 -923.0 - SF7BW125 to SF10BW125 562 562 563 - 922.0- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 564 564 565 565 566 - **AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia,Laos,Taiwan,Thailand, Vietnam**:566 +Download URL & Firmware Change log 567 567 568 - 923.6-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 569 569 570 -923.8 - SF7BW125 to SF10BW125 571 571 572 - 924.0- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 573 573 574 -924.2 - SF7BW125 to SF10BW125 575 575 576 -924.4 - SF7BW125 to SF10BW125 577 577 578 - 924.6- SF7BW125toSF10BW125575 +== 2.9 Battery Analysis == 579 579 577 +=== 2.9.1 Battery Type === 580 580 581 581 582 - **Downlink:**580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 583 583 584 -Uplink channels 1-8 (RX1) 585 585 586 - 923.2-SF10BW125(RX2)583 +The battery is designed to last for several years depends on the actually use environment and update interval. 587 587 588 588 589 -1. 590 -11. 591 -111. KR920-923 (KR920) 586 +The battery related documents as below: 592 592 593 -Default channel: 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 594 594 595 -922.1 - SF7BW125 to SF12BW125 592 +((( 593 +[[image:image-20220708140453-6.png]] 594 +))) 596 596 597 -922.3 - SF7BW125 to SF12BW125 598 598 599 -922.5 - SF7BW125 to SF12BW125 600 600 598 +2.9.2 601 601 602 - Uplink:(OTAAmode,channeladdedbyJoinAcceptmessage)600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 603 603 604 -922.1 - SF7BW125 to SF12BW125 605 605 606 - 922.3- SF7BW125toSF12BW125603 +Instruction to use as below: 607 607 608 -922.5 - SF7BW125 to SF12BW125 609 609 610 - 922.7 -SF7BW125toSF12BW125606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 611 611 612 - 922.9 - SF7BW125toSF12BW125608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 613 613 614 -923.1 - SF7BW125 to SF12BW125 615 615 616 - 923.3 -SF7BW125toSF12BW125611 +Step 2: Open it and choose 617 617 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 618 618 619 - Downlink:617 +And the Life expectation in difference case will be shown on the right. 620 620 621 -Uplink channels 1-7(RX1) 622 622 623 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 624 621 +=== 2.9.3 Battery Note === 625 625 626 -1. 627 -11. 628 -111. IN865-867 (IN865) 629 - 630 -Uplink: 631 - 632 -865.0625 - SF7BW125 to SF12BW125 633 - 634 -865.4025 - SF7BW125 to SF12BW125 635 - 636 -865.9850 - SF7BW125 to SF12BW125 637 - 638 - 639 -Downlink: 640 - 641 -Uplink channels 1-3 (RX1) 642 - 643 -866.550 - SF10BW125 (RX2) 644 - 645 - 646 -1. 647 -11. LED Indicator 648 - 649 -The LSE01 has an internal LED which is to show the status of different state. 650 - 651 - 652 -* Blink once when device power on. 653 -* Solid ON for 5 seconds once device successful Join the network. 654 -* Blink once when device transmit a packet. 655 - 656 -1. 657 -11. Installation in Soil 658 - 659 -**Measurement the soil surface** 660 - 661 - 662 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 663 - 664 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 665 - 666 - 667 - 668 - 669 - 670 - 671 - 672 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 673 - 674 - 675 - 676 -Dig a hole with diameter > 20CM. 677 - 678 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 679 - 680 - 681 - 682 - 683 -1. 684 -11. Firmware Change Log 685 - 686 -**Firmware download link:** 687 - 688 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 689 - 690 - 691 -**Firmware Upgrade Method:** 692 - 693 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 694 - 695 - 696 -**V1.0.** 697 - 698 -Release 699 - 700 - 701 - 702 -1. 703 -11. Battery Analysis 704 -111. Battery Type 705 - 706 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 707 - 708 - 709 -The battery is designed to last for more than 5 years for the LSN50. 710 - 711 - 712 -The battery related documents as below: 713 - 714 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 715 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 716 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 717 - 718 -|((( 719 -JST-XH-2P connector 623 +((( 624 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 720 720 ))) 721 721 722 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 723 723 724 724 629 +=== 2.9.4 Replace the battery === 725 725 726 -1. 727 -11. 728 -111. Battery Note 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 729 729 730 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 731 731 732 732 733 -1. 734 -11. 735 -111. Replace the battery 736 - 737 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 738 - 739 - 740 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 741 - 742 - 743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 744 - 745 - 746 - 747 - 748 - 749 - 750 750 = 3. Using the AT Commands = 751 751 752 752 == 3.1 Access AT Commands == ... ... @@ -754,13 +754,13 @@ 754 754 755 755 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 756 756 757 -[[image:1654501986557-872.png]] 642 +[[image:1654501986557-872.png||height="391" width="800"]] 758 758 759 759 760 760 Or if you have below board, use below connection: 761 761 762 762 763 -[[image:1654502005655-729.png]] 648 +[[image:1654502005655-729.png||height="503" width="801"]] 764 764 765 765 766 766 ... ... @@ -767,10 +767,10 @@ 767 767 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 768 768 769 769 770 - [[image:1654502050864-459.png]] 655 + [[image:1654502050864-459.png||height="564" width="806"]] 771 771 772 772 773 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 774 774 775 775 776 776 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -882,20 +882,38 @@ 882 882 883 883 == 4.1 How to change the LoRa Frequency Bands/Region? == 884 884 885 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 770 +((( 771 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 886 886 When downloading the images, choose the required image file for download. 773 +))) 887 887 775 +((( 776 + 777 +))) 888 888 779 +((( 889 889 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 781 +))) 890 890 783 +((( 784 + 785 +))) 891 891 787 +((( 892 892 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 789 +))) 893 893 791 +((( 792 + 793 +))) 894 894 795 +((( 895 895 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 797 +))) 896 896 897 897 [[image:image-20220606154726-3.png]] 898 898 801 + 899 899 When you use the TTN network, the US915 frequency bands use are: 900 900 901 901 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -908,37 +908,47 @@ 908 908 * 905.3 - SF7BW125 to SF10BW125 909 909 * 904.6 - SF8BW500 910 910 814 +((( 911 911 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 912 912 913 -(% class="box infomessage" %) 914 -((( 915 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 916 916 ))) 917 917 918 -(% class="box infomessage" %) 919 919 ((( 920 -**ATZ** 921 -))) 822 + 922 922 923 923 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 825 +))) 924 924 827 +((( 828 + 829 +))) 925 925 831 +((( 926 926 The **AU915** band is similar. Below are the AU915 Uplink Channels. 833 +))) 927 927 928 928 [[image:image-20220606154825-4.png]] 929 929 930 930 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 931 931 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 932 932 = 5. Trouble Shooting = 933 933 934 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 935 935 936 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 937 937 938 938 939 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 940 940 941 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 852 +((( 853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 854 +))) 942 942 943 943 944 944 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -950,7 +950,9 @@ 950 950 951 951 (% style="color:#4f81bd" %)**Cause for this issue:** 952 952 866 +((( 953 953 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 868 +))) 954 954 955 955 956 956 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -957,7 +957,7 @@ 957 957 958 958 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 959 959 960 -[[image:1654500929571-736.png]] 875 +[[image:1654500929571-736.png||height="458" width="832"]] 961 961 962 962 963 963 = 6. Order Info = ... ... @@ -982,10 +982,17 @@ 982 982 * (% style="color:red" %)**4**(%%): 4000mAh battery 983 983 * (% style="color:red" %)**8**(%%): 8500mAh battery 984 984 900 +(% class="wikigeneratedid" %) 901 +((( 902 + 903 +))) 904 + 985 985 = 7. Packing Info = 986 986 987 987 ((( 988 -**Package Includes**: 908 + 909 + 910 +(% style="color:#037691" %)**Package Includes**: 989 989 ))) 990 990 991 991 * ((( ... ... @@ -994,10 +994,8 @@ 994 994 995 995 ((( 996 996 997 -))) 998 998 999 -((( 1000 -**Dimension and weight**: 920 +(% style="color:#037691" %)**Dimension and weight**: 1001 1001 ))) 1002 1002 1003 1003 * ((( ... ... @@ -1011,6 +1011,8 @@ 1011 1011 ))) 1012 1012 * ((( 1013 1013 Weight / pcs : g 934 + 935 + 1014 1014 ))) 1015 1015 1016 1016 = 8. Support = ... ... @@ -1017,5 +1017,3 @@ 1017 1017 1018 1018 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1019 1019 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1020 - 1021 -
- 1654504683289-357.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.0 KB - Content
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content