Last modified by Mengting Qiu on 2024/04/02 16:44

From version 17.1
edited by Xiaoling
on 2022/06/06 16:37
Change comment: Uploaded new attachment "image-20220606163732-6.jpeg", version {1}
To version 45.4
edited by Xiaoling
on 2022/07/08 10:36
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,253 +8,428 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
63 +
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
69 -
70 70  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 71  ​
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
78 78  
79 79  
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
82 82  
83 -== 2.1 How it works ==
107 +== 2.1  How it works ==
84 84  
109 +
85 85  (((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
87 87  )))
88 88  
114 +
89 89  (((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
116 +The diagram below shows the working flow in default firmware of NSE01:
91 91  )))
92 92  
119 +[[image:image-20220708101605-2.png]]
93 93  
121 +(((
122 +
123 +)))
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
127 +== 2.2 ​ Configure the NSE01 ==
99 99  
100 -[[image:1654503992078-669.png]]
129 +=== 2.2.1 Test Requirement ===
101 101  
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 +To use NSE01 in your city, make sure meet below requirements:
104 104  
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
105 105  
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 107  
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
109 109  
110 110  
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
111 111  
112 112  
113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 114  
146 +1.
147 +11.
148 +111. Insert SIM card
115 115  
116 -**Add APP EUI in the application**
150 +Insert the NB-IoT Card get from your provider.
117 117  
118 118  
119 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
153 +User need to take out the NB-IoT module and insert the SIM card like below:
120 120  
121 121  
156 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
122 122  
123 -**Add APP KEY and DEV EUI**
124 124  
159 +1.
160 +11.
161 +111. Connect USB – TTL to NSE01 to configure it
125 125  
126 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
127 127  
128 -|(((
129 -
130 -)))
164 +User need to configure NSE01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
131 131  
132 -**Step 2**: Power on LSE01
133 133  
134 134  
135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
136 136  
169 +Connection:
137 137  
171 +USB TTL GND <~-~-~-~-> GND
138 138  
139 -|(((
140 -
141 -)))
173 +USB TTL TXD <~-~-~-~-> UART_RXD
142 142  
143 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
175 +USB TTL RXD <~-~-~-~-> UART_TXD
144 144  
145 145  
146 146  
179 +In the PC, use below serial tool settings:
147 147  
181 +* Baud: **9600**
182 +* Data bits:** 8**
183 +* Stop bits: **1**
184 +* Parity: **None**
185 +* Flow Control: **None**
148 148  
149 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 150  
151 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
152 152  
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
153 153  
192 +Note: the valid AT Commands can be found at:
154 154  
194 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
155 155  
156 -1.
157 -11. ​Uplink Payload
158 -111. MOD=0(Default Mode)
159 159  
160 -LSE01 will uplink payload via LoRaWAN with below payload format: 
197 +1.
198 +11.
199 +111. Use CoAP protocol to uplink data 
161 161  
162 162  
202 +Note: if you don’t have CoAP server, you can refer this link to set up one:
203 +
204 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
205 +
206 +
207 +Use below commands:
208 +
209 +* **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
210 +* **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
211 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
212 +
213 +
214 +For parameter description, please refer to AT command set
215 +
216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
217 +
218 +
219 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
220 +
221 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
222 +
223 +1.
224 +11.
225 +111. Use UDP protocol to uplink data(Default protocol)
226 +
227 +
228 +This feature is supported since firmware version v1.0.1
229 +
230 +
231 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
232 +* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
233 +* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
234 +
235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
236 +
237 +
238 +
239 +
240 +
241 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
242 +
243 +
244 +1.
245 +11.
246 +111. Use MQTT protocol to uplink data
247 +
248 +
249 +This feature is supported since firmware version v110
250 +
251 +
252 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
253 +* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
254 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
255 +* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
256 +* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
257 +* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
258 +* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
259 +
260 +
261 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
262 +
263 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
264 +
265 +
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +
268 +
269 +1.
270 +11.
271 +111. Use TCP protocol to uplink data
272 +
273 +
274 +This feature is supported since firmware version v110
275 +
276 +
277 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
278 +* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
279 +
280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
281 +
282 +
283 +
284 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
285 +
286 +
287 +1.
288 +11.
289 +111. Change Update Interval
290 +
291 +User can use below command to change the **uplink interval**.
292 +
293 +**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
294 +
295 +
296 +**NOTE:**
297 +
298 +1. By default, the device will send an uplink message every 1 hour.
299 +
300 +
301 +
302 +
303 +
304 +
305 +
306 +== 2.3 Uplink Payload ==
307 +
308 +
309 +=== 2.3.1 MOD~=0(Default Mode) ===
310 +
311 +LSE01 will uplink payload via LoRaWAN with below payload format: 
312 +
313 +(((
163 163  Uplink payload includes in total 11 bytes.
164 -
315 +)))
165 165  
317 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 166  |(((
167 167  **Size**
168 168  
169 169  **(bytes)**
170 170  )))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>path:#bat]]|(((
323 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 172  Temperature
173 173  
174 174  (Reserve, Ignore now)
175 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
327 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 176  MOD & Digital Interrupt
177 177  
178 178  (Optional)
179 179  )))
180 180  
181 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
333 +=== 2.3.2 MOD~=1(Original value) ===
182 182  
183 -
184 -1.
185 -11.
186 -111. MOD=1(Original value)
187 -
188 188  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
189 189  
337 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
190 190  |(((
191 191  **Size**
192 192  
193 193  **(bytes)**
194 194  )))|**2**|**2**|**2**|**2**|**2**|**1**
195 -|**Value**|[[BAT>>path:#bat]]|(((
343 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
196 196  Temperature
197 197  
198 198  (Reserve, Ignore now)
199 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
347 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
200 200  MOD & Digital Interrupt
201 201  
202 202  (Optional)
203 203  )))
204 204  
205 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
353 +=== 2.3.3 Battery Info ===
206 206  
207 -1.
208 -11.
209 -111. Battery Info
210 -
355 +(((
211 211  Check the battery voltage for LSE01.
357 +)))
212 212  
359 +(((
213 213  Ex1: 0x0B45 = 2885mV
361 +)))
214 214  
363 +(((
215 215  Ex2: 0x0B49 = 2889mV
365 +)))
216 216  
217 217  
218 218  
219 -1.
220 -11.
221 -111. Soil Moisture
369 +=== 2.3.4 Soil Moisture ===
222 222  
371 +(((
223 223  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
373 +)))
224 224  
225 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
375 +(((
376 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
377 +)))
226 226  
227 -**05DC(H) = 1500(D) /100 = 15%.**
379 +(((
380 +
381 +)))
228 228  
383 +(((
384 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
385 +)))
229 229  
230 -1.
231 -11.
232 -111. Soil Temperature
233 233  
388 +
389 +=== 2.3.5 Soil Temperature ===
390 +
391 +(((
234 234   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
393 +)))
235 235  
395 +(((
236 236  **Example**:
397 +)))
237 237  
399 +(((
238 238  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
401 +)))
239 239  
403 +(((
240 240  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
405 +)))
241 241  
242 242  
243 -1.
244 -11.
245 -111. Soil Conductivity (EC)
246 246  
247 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
409 +=== 2.3.6 Soil Conductivity (EC) ===
248 248  
411 +(((
412 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
413 +)))
414 +
415 +(((
249 249  For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
417 +)))
250 250  
251 -
419 +(((
252 252  Generally, the EC value of irrigation water is less than 800uS / cm.
421 +)))
253 253  
254 -1.
255 -11.
256 -111. MOD
423 +(((
424 +
425 +)))
257 257  
427 +(((
428 +
429 +)))
430 +
431 +=== 2.3.7 MOD ===
432 +
258 258  Firmware version at least v2.1 supports changing mode.
259 259  
260 260  For example, bytes[10]=90
... ... @@ -262,7 +262,7 @@
262 262  mod=(bytes[10]>>7)&0x01=1.
263 263  
264 264  
265 -Downlink Command:
440 +**Downlink Command:**
266 266  
267 267  If payload = 0x0A00, workmode=0
268 268  
... ... @@ -269,107 +269,127 @@
269 269  If** **payload =** **0x0A01, workmode=1
270 270  
271 271  
272 -1.
273 -11.
274 -111. ​Decode payload in The Things Network
275 275  
448 +=== 2.3.8 ​Decode payload in The Things Network ===
449 +
276 276  While using TTN network, you can add the payload format to decode the payload.
277 277  
278 278  
279 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
453 +[[image:1654505570700-128.png]]
280 280  
455 +(((
281 281  The payload decoder function for TTN is here:
457 +)))
282 282  
283 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
459 +(((
460 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
461 +)))
284 284  
285 285  
286 -1.
287 -11. Uplink Interval
464 +== 2.4 Uplink Interval ==
288 288  
289 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
466 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
290 290  
291 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
292 292  
293 -1.
294 -11. ​Downlink Payload
295 295  
470 +== 2.5 Downlink Payload ==
471 +
296 296  By default, LSE50 prints the downlink payload to console port.
297 297  
298 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
299 -|TDC (Transmit Time Interval)|Any|01|4
300 -|RESET|Any|04|2
301 -|AT+CFM|Any|05|4
302 -|INTMOD|Any|06|4
303 -|MOD|Any|0A|2
474 +[[image:image-20220606165544-8.png]]
304 304  
305 -**Examples**
306 306  
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
307 307  
308 -**Set TDC**
481 +(((
482 +
483 +)))
309 309  
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
488 +
489 +(((
310 310  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
491 +)))
311 311  
493 +(((
312 312  Payload:    01 00 00 1E    TDC=30S
495 +)))
313 313  
497 +(((
314 314  Payload:    01 00 00 3C    TDC=60S
499 +)))
315 315  
501 +(((
502 +
503 +)))
316 316  
317 -**Reset**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
318 318  
509 +(((
319 319  If payload = 0x04FF, it will reset the LSE01
511 +)))
320 320  
321 321  
322 -**CFM**
514 +* (% style="color:blue" %)**CFM**
323 323  
324 324  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
325 325  
326 -1.
327 -11. ​Show Data in DataCake IoT Server
328 328  
329 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
330 330  
520 +== 2.6 ​Show Data in DataCake IoT Server ==
331 331  
332 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
522 +(((
523 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
524 +)))
333 333  
334 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
526 +(((
527 +
528 +)))
335 335  
530 +(((
531 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
532 +)))
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
534 +(((
535 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
536 +)))
338 338  
339 339  
340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
539 +[[image:1654505857935-743.png]]
341 341  
342 342  
542 +[[image:1654505874829-548.png]]
343 343  
344 344  
545 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
345 345  
346 -Step 3: Create an account or log in Datacake.
547 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
347 347  
348 -Step 4: Search the LSE01 and add DevEUI.
349 349  
550 +[[image:1654505905236-553.png]]
350 350  
351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
352 352  
353 -
354 -
355 355  After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
356 356  
555 +[[image:1654505925508-181.png]]
357 357  
358 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
359 359  
360 360  
559 +== 2.7 Frequency Plans ==
361 361  
362 -1.
363 -11. Frequency Plans
364 -
365 365  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
366 366  
367 -1.
368 -11.
369 -111. EU863-870 (EU868)
370 370  
371 -Uplink:
564 +=== 2.7.1 EU863-870 (EU868) ===
372 372  
566 +(% style="color:#037691" %)** Uplink:**
567 +
373 373  868.1 - SF7BW125 to SF12BW125
374 374  
375 375  868.3 - SF7BW125 to SF12BW125 and SF7BW250
... ... @@ -389,7 +389,7 @@
389 389  868.8 - FSK
390 390  
391 391  
392 -Downlink:
587 +(% style="color:#037691" %)** Downlink:**
393 393  
394 394  Uplink channels 1-9 (RX1)
395 395  
... ... @@ -396,13 +396,12 @@
396 396  869.525 - SF9BW125 (RX2 downlink only)
397 397  
398 398  
399 -1.
400 -11.
401 -111. US902-928(US915)
402 402  
595 +=== 2.7.2 US902-928(US915) ===
596 +
403 403  Used in USA, Canada and South America. Default use CHE=2
404 404  
405 -Uplink:
599 +(% style="color:#037691" %)**Uplink:**
406 406  
407 407  903.9 - SF7BW125 to SF10BW125
408 408  
... ... @@ -421,7 +421,7 @@
421 421  905.3 - SF7BW125 to SF10BW125
422 422  
423 423  
424 -Downlink:
618 +(% style="color:#037691" %)**Downlink:**
425 425  
426 426  923.3 - SF7BW500 to SF12BW500
427 427  
... ... @@ -442,13 +442,12 @@
442 442  923.3 - SF12BW500(RX2 downlink only)
443 443  
444 444  
445 -1.
446 -11.
447 -111. CN470-510 (CN470)
448 448  
640 +=== 2.7.3 CN470-510 (CN470) ===
641 +
449 449  Used in China, Default use CHE=1
450 450  
451 -Uplink:
644 +(% style="color:#037691" %)**Uplink:**
452 452  
453 453  486.3 - SF7BW125 to SF12BW125
454 454  
... ... @@ -467,7 +467,7 @@
467 467  487.7 - SF7BW125 to SF12BW125
468 468  
469 469  
470 -Downlink:
663 +(% style="color:#037691" %)**Downlink:**
471 471  
472 472  506.7 - SF7BW125 to SF12BW125
473 473  
... ... @@ -488,13 +488,12 @@
488 488  505.3 - SF12BW125 (RX2 downlink only)
489 489  
490 490  
491 -1.
492 -11.
493 -111. AU915-928(AU915)
494 494  
685 +=== 2.7.4 AU915-928(AU915) ===
686 +
495 495  Default use CHE=2
496 496  
497 -Uplink:
689 +(% style="color:#037691" %)**Uplink:**
498 498  
499 499  916.8 - SF7BW125 to SF12BW125
500 500  
... ... @@ -513,7 +513,7 @@
513 513  918.2 - SF7BW125 to SF12BW125
514 514  
515 515  
516 -Downlink:
708 +(% style="color:#037691" %)**Downlink:**
517 517  
518 518  923.3 - SF7BW500 to SF12BW500
519 519  
... ... @@ -533,22 +533,22 @@
533 533  
534 534  923.3 - SF12BW500(RX2 downlink only)
535 535  
536 -1.
537 -11.
538 -111. AS920-923 & AS923-925 (AS923)
539 539  
540 -**Default Uplink channel:**
541 541  
730 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
731 +
732 +(% style="color:#037691" %)**Default Uplink channel:**
733 +
542 542  923.2 - SF7BW125 to SF10BW125
543 543  
544 544  923.4 - SF7BW125 to SF10BW125
545 545  
546 546  
547 -**Additional Uplink Channel**:
739 +(% style="color:#037691" %)**Additional Uplink Channel**:
548 548  
549 549  (OTAA mode, channel added by JoinAccept message)
550 550  
551 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
743 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
552 552  
553 553  922.2 - SF7BW125 to SF10BW125
554 554  
... ... @@ -563,7 +563,7 @@
563 563  922.0 - SF7BW125 to SF10BW125
564 564  
565 565  
566 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
758 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
567 567  
568 568  923.6 - SF7BW125 to SF10BW125
569 569  
... ... @@ -578,18 +578,16 @@
578 578  924.6 - SF7BW125 to SF10BW125
579 579  
580 580  
773 +(% style="color:#037691" %)** Downlink:**
581 581  
582 -**Downlink:**
583 -
584 584  Uplink channels 1-8 (RX1)
585 585  
586 586  923.2 - SF10BW125 (RX2)
587 587  
588 588  
589 -1.
590 -11.
591 -111. KR920-923 (KR920)
592 592  
781 +=== 2.7.6 KR920-923 (KR920) ===
782 +
593 593  Default channel:
594 594  
595 595  922.1 - SF7BW125 to SF12BW125
... ... @@ -599,7 +599,7 @@
599 599  922.5 - SF7BW125 to SF12BW125
600 600  
601 601  
602 -Uplink: (OTAA mode, channel added by JoinAccept message)
792 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
603 603  
604 604  922.1 - SF7BW125 to SF12BW125
605 605  
... ... @@ -616,7 +616,7 @@
616 616  923.3 - SF7BW125 to SF12BW125
617 617  
618 618  
619 -Downlink:
809 +(% style="color:#037691" %)**Downlink:**
620 620  
621 621  Uplink channels 1-7(RX1)
622 622  
... ... @@ -623,12 +623,11 @@
623 623  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
624 624  
625 625  
626 -1.
627 -11.
628 -111. IN865-867 (IN865)
629 629  
630 -Uplink:
817 +=== 2.7.7 IN865-867 (IN865) ===
631 631  
819 +(% style="color:#037691" %)** Uplink:**
820 +
632 632  865.0625 - SF7BW125 to SF12BW125
633 633  
634 634  865.4025 - SF7BW125 to SF12BW125
... ... @@ -636,7 +636,7 @@
636 636  865.9850 - SF7BW125 to SF12BW125
637 637  
638 638  
639 -Downlink:
828 +(% style="color:#037691" %) **Downlink:**
640 640  
641 641  Uplink channels 1-3 (RX1)
642 642  
... ... @@ -643,110 +643,129 @@
643 643  866.550 - SF10BW125 (RX2)
644 644  
645 645  
646 -1.
647 -11. LED Indicator
648 648  
649 -The LSE01 has an internal LED which is to show the status of different state.
650 650  
837 +== 2.8 LED Indicator ==
651 651  
839 +The LSE01 has an internal LED which is to show the status of different state.
840 +
652 652  * Blink once when device power on.
653 653  * Solid ON for 5 seconds once device successful Join the network.
654 654  * Blink once when device transmit a packet.
655 655  
656 -1.
657 -11. Installation in Soil
845 +== 2.9 Installation in Soil ==
658 658  
659 659  **Measurement the soil surface**
660 660  
661 661  
662 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
850 +[[image:1654506634463-199.png]] ​
663 663  
852 +(((
853 +(((
664 664  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
855 +)))
856 +)))
665 665  
666 666  
667 667  
860 +[[image:1654506665940-119.png]]
668 668  
669 -
670 -
671 -
672 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
673 -
674 -
675 -
862 +(((
676 676  Dig a hole with diameter > 20CM.
864 +)))
677 677  
866 +(((
678 678  Horizontal insert the probe to the soil and fill the hole for long term measurement.
868 +)))
679 679  
680 680  
871 +== 2.10 ​Firmware Change Log ==
681 681  
682 -
683 -1.
684 -11. ​Firmware Change Log
685 -
873 +(((
686 686  **Firmware download link:**
875 +)))
687 687  
877 +(((
688 688  [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
879 +)))
689 689  
881 +(((
882 +
883 +)))
690 690  
691 -**Firmware Upgrade Method:**
885 +(((
886 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
887 +)))
692 692  
693 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
889 +(((
890 +
891 +)))
694 694  
695 -
893 +(((
696 696  **V1.0.**
895 +)))
697 697  
897 +(((
698 698  Release
899 +)))
699 699  
700 700  
902 +== 2.11 ​Battery Analysis ==
701 701  
702 -1.
703 -11. ​Battery Analysis
704 -111. ​Battery Type
904 +=== 2.11.1 ​Battery Type ===
705 705  
906 +(((
706 706  The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
908 +)))
707 707  
708 -
910 +(((
709 709  The battery is designed to last for more than 5 years for the LSN50.
912 +)))
710 710  
914 +(((
915 +(((
916 +The battery-related documents are as below:
917 +)))
918 +)))
711 711  
712 -The battery related documents as below:
713 -
714 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
715 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
716 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
717 -
718 -|(((
719 -JST-XH-2P connector
920 +* (((
921 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
720 720  )))
923 +* (((
924 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
925 +)))
926 +* (((
927 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
928 +)))
721 721  
722 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
930 + [[image:image-20220610172436-1.png]]
723 723  
724 724  
725 725  
726 -1.
727 -11.
728 -111. ​Battery Note
934 +=== 2.11.2 ​Battery Note ===
729 729  
936 +(((
730 730  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
938 +)))
731 731  
732 732  
733 -1.
734 -11.
735 -111. ​Replace the battery
736 736  
942 +=== 2.11.3 Replace the battery ===
943 +
944 +(((
737 737  If Battery is lower than 2.7v, user should replace the battery of LSE01.
946 +)))
738 738  
739 -
948 +(((
740 740  You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
950 +)))
741 741  
742 -
952 +(((
743 743  The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
954 +)))
744 744  
745 745  
746 746  
747 -
748 -
749 -
750 750  = 3. ​Using the AT Commands =
751 751  
752 752  == 3.1 Access AT Commands ==
... ... @@ -754,13 +754,13 @@
754 754  
755 755  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
756 756  
757 -[[image:1654501986557-872.png]]
965 +[[image:1654501986557-872.png||height="391" width="800"]]
758 758  
759 759  
760 760  Or if you have below board, use below connection:
761 761  
762 762  
763 -[[image:1654502005655-729.png]]
971 +[[image:1654502005655-729.png||height="503" width="801"]]
764 764  
765 765  
766 766  
... ... @@ -767,10 +767,10 @@
767 767  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
768 768  
769 769  
770 - [[image:1654502050864-459.png]]
978 + [[image:1654502050864-459.png||height="564" width="806"]]
771 771  
772 772  
773 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
981 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
774 774  
775 775  
776 776  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -882,20 +882,38 @@
882 882  
883 883  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
884 884  
885 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
1093 +(((
1094 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
886 886  When downloading the images, choose the required image file for download. ​
1096 +)))
887 887  
1098 +(((
1099 +
1100 +)))
888 888  
1102 +(((
889 889  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1104 +)))
890 890  
1106 +(((
1107 +
1108 +)))
891 891  
1110 +(((
892 892  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1112 +)))
893 893  
1114 +(((
1115 +
1116 +)))
894 894  
1118 +(((
895 895  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1120 +)))
896 896  
897 897  [[image:image-20220606154726-3.png]]
898 898  
1124 +
899 899  When you use the TTN network, the US915 frequency bands use are:
900 900  
901 901  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -908,37 +908,47 @@
908 908  * 905.3 - SF7BW125 to SF10BW125
909 909  * 904.6 - SF8BW500
910 910  
1137 +(((
911 911  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
912 912  
913 -(% class="box infomessage" %)
914 -(((
915 -**AT+CHE=2**
1140 +* (% style="color:#037691" %)**AT+CHE=2**
1141 +* (% style="color:#037691" %)**ATZ**
916 916  )))
917 917  
918 -(% class="box infomessage" %)
919 919  (((
920 -**ATZ**
921 -)))
1145 +
922 922  
923 923  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1148 +)))
924 924  
1150 +(((
1151 +
1152 +)))
925 925  
1154 +(((
926 926  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1156 +)))
927 927  
928 928  [[image:image-20220606154825-4.png]]
929 929  
930 930  
1161 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
931 931  
1163 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1164 +
1165 +
932 932  = 5. Trouble Shooting =
933 933  
934 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1168 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
935 935  
936 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1170 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
937 937  
938 938  
939 -== 5.2 AT Command input doesnt work ==
1173 +== 5.2 AT Command input doesn't work ==
940 940  
941 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1175 +(((
1176 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1177 +)))
942 942  
943 943  
944 944  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -950,7 +950,9 @@
950 950  
951 951  (% style="color:#4f81bd" %)**Cause for this issue:**
952 952  
1189 +(((
953 953  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1191 +)))
954 954  
955 955  
956 956  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -957,7 +957,7 @@
957 957  
958 958  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
959 959  
960 -[[image:1654500929571-736.png]]
1198 +[[image:1654500929571-736.png||height="458" width="832"]]
961 961  
962 962  
963 963  = 6. ​Order Info =
... ... @@ -982,10 +982,17 @@
982 982  * (% style="color:red" %)**4**(%%): 4000mAh battery
983 983  * (% style="color:red" %)**8**(%%): 8500mAh battery
984 984  
1223 +(% class="wikigeneratedid" %)
1224 +(((
1225 +
1226 +)))
1227 +
985 985  = 7. Packing Info =
986 986  
987 987  (((
988 -**Package Includes**:
1231 +
1232 +
1233 +(% style="color:#037691" %)**Package Includes**:
989 989  )))
990 990  
991 991  * (((
... ... @@ -994,10 +994,8 @@
994 994  
995 995  (((
996 996  
997 -)))
998 998  
999 -(((
1000 -**Dimension and weight**:
1243 +(% style="color:#037691" %)**Dimension and weight**:
1001 1001  )))
1002 1002  
1003 1003  * (((
... ... @@ -1011,6 +1011,8 @@
1011 1011  )))
1012 1012  * (((
1013 1013  Weight / pcs : g
1257 +
1258 +
1014 1014  )))
1015 1015  
1016 1016  = 8. Support =
... ... @@ -1017,5 +1017,3 @@
1017 1017  
1018 1018  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1019 1019  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1020 -
1021 -
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content