Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 19 added, 0 removed)
- 1654504683289-357.png
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- image-20220606163915-7.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 848" width="848"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -8,253 +8,428 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 14 +**Table of Contents:** 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 31 31 ((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 26 + 34 34 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 35 35 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 36 36 [[image:1654503236291-817.png]] 37 37 38 38 39 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 40 40 41 41 42 42 43 43 == 1.2 Features == 44 44 45 - * LoRaWAN 1.0.3 Class A46 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 63 + 64 +== 1.3 Specification == 65 + 66 + 67 +(% style="color:#037691" %)**Common DC Characteristics:** 68 + 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 71 + 72 + 73 +(% style="color:#037691" %)**NB-IoT Spec:** 74 + 75 +* - B1 @H-FDD: 2100MHz 76 +* - B3 @H-FDD: 1800MHz 77 +* - B8 @H-FDD: 900MHz 78 +* - B5 @H-FDD: 850MHz 79 +* - B20 @H-FDD: 800MHz 80 +* - B28 @H-FDD: 700MHz 81 + 82 + 83 +(% style="color:#037691" %)**Probe Specification:** 84 + 59 59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220 606162220-5.png]]87 +[[image:image-20220708101224-1.png]] 62 62 63 63 64 64 65 -== 1.4 Applications == 91 +== 1.4 Applications == 66 66 67 67 * Smart Agriculture 68 68 69 - 70 70 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 71 72 72 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 98 +== 1.5 Pin Definitions == 75 75 76 76 77 - **LSE01v1.0 :** Release101 +[[image:1657246476176-652.png]] 78 78 79 79 80 80 81 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=105 += 2. Use NSE01 to communicate with IoT Server = 82 82 83 -== 2.1 How it works == 107 +== 2.1 How it works == 84 84 109 + 85 85 ((( 86 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 87 87 ))) 88 88 114 + 89 89 ((( 90 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.UsingtheATCommands"]].116 +The diagram below shows the working flow in default firmware of NSE01: 91 91 ))) 92 92 119 +[[image:image-20220708101605-2.png]] 93 93 121 +((( 122 + 123 +))) 94 94 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 127 +== 2.2 Configure the NSE01 == 99 99 100 - [[image:1654503992078-669.png]]129 +=== 2.2.1 Test Requirement === 101 101 102 102 103 -T heLG308 isalreadyset to connected to [[TTN network>>url:https://console.cloud.thethings.network/]],so whatweneedtonowis configuretheTTNserver.132 +To use NSE01 in your city, make sure meet below requirements: 104 104 134 +* Your local operator has already distributed a NB-IoT Network there. 135 +* The local NB-IoT network used the band that NSE01 supports. 136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 105 105 106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 107 107 108 - EachLSE01isshippedwithasticker with the defaultdeviceEUIasbelow:139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 109 109 110 110 142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]] 111 111 112 112 113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 114 114 146 +1. 147 +11. 148 +111. Insert SIM card 115 115 116 - **Add APP EUIin the application**150 +Insert the NB-IoT Card get from your provider. 117 117 118 118 119 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]153 +User need to take out the NB-IoT module and insert the SIM card like below: 120 120 121 121 156 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]] 122 122 123 -**Add APP KEY and DEV EUI** 124 124 159 +1. 160 +11. 161 +111. Connect USB – TTL to NSE01 to configure it 125 125 126 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]] 127 127 128 -|((( 129 - 130 -))) 164 +User need to configure NSE01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 131 131 132 -**Step 2**: Power on LSE01 133 133 134 134 135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 136 169 +Connection: 137 137 171 +USB TTL GND <~-~-~-~-> GND 138 138 139 -|((( 140 - 141 -))) 173 +USB TTL TXD <~-~-~-~-> UART_RXD 142 142 143 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]175 +USB TTL RXD <~-~-~-~-> UART_TXD 144 144 145 145 146 146 179 +In the PC, use below serial tool settings: 147 147 181 +* Baud: **9600** 182 +* Data bits:** 8** 183 +* Stop bits: **1** 184 +* Parity: **None** 185 +* Flow Control: **None** 148 148 149 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 150 151 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input. 152 152 190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]] 153 153 192 +Note: the valid AT Commands can be found at: 154 154 194 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 155 155 156 -1. 157 -11. Uplink Payload 158 -111. MOD=0(Default Mode) 159 159 160 -LSE01 will uplink payload via LoRaWAN with below payload format: 197 +1. 198 +11. 199 +111. Use CoAP protocol to uplink data 161 161 162 162 202 +Note: if you don’t have CoAP server, you can refer this link to set up one: 203 + 204 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]] 205 + 206 + 207 +Use below commands: 208 + 209 +* **AT+PRO=1** ~/~/ Set to use CoAP protocol to uplink 210 +* **AT+SERVADDR=120.24.4.116,5683 **~/~/ to set CoAP server address and port 211 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" **~/~/Set COAP resource path 212 + 213 + 214 +For parameter description, please refer to AT command set 215 + 216 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]] 217 + 218 + 219 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 220 + 221 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]] 222 + 223 +1. 224 +11. 225 +111. Use UDP protocol to uplink data(Default protocol) 226 + 227 + 228 +This feature is supported since firmware version v1.0.1 229 + 230 + 231 +* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 232 +* **AT+SERVADDR=120.24.4.116,5601 **~/~/ to set UDP server address and port 233 +* **AT+CFM=1 **~/~/If the server does not respond, this command is unnecessary 234 + 235 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]] 236 + 237 + 238 + 239 + 240 + 241 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]] 242 + 243 + 244 +1. 245 +11. 246 +111. Use MQTT protocol to uplink data 247 + 248 + 249 +This feature is supported since firmware version v110 250 + 251 + 252 +* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 253 +* **AT+SERVADDR=120.24.4.116,1883 **~/~/Set MQTT server address and port 254 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT 255 +* **AT+UNAME=UNAME **~/~/Set the username of MQTT 256 +* **AT+PWD=PWD **~/~/Set the password of MQTT 257 +* **AT+PUBTOPIC=NSE01_PUB **~/~/Set the sending topic of MQTT 258 +* **AT+SUBTOPIC=NSE01_SUB **~/~/Set the subscription topic of MQTT 259 + 260 + 261 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]] 262 + 263 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]] 264 + 265 + 266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 267 + 268 + 269 +1. 270 +11. 271 +111. Use TCP protocol to uplink data 272 + 273 + 274 +This feature is supported since firmware version v110 275 + 276 + 277 +* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 278 +* **AT+SERVADDR=120.24.4.116,5600 **~/~/ to set TCP server address and port 279 + 280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]] 281 + 282 + 283 + 284 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]] 285 + 286 + 287 +1. 288 +11. 289 +111. Change Update Interval 290 + 291 +User can use below command to change the **uplink interval**. 292 + 293 +**~ AT+TDC=600 **~/~/ Set Update Interval to 600s 294 + 295 + 296 +**NOTE:** 297 + 298 +1. By default, the device will send an uplink message every 1 hour. 299 + 300 + 301 + 302 + 303 + 304 + 305 + 306 +== 2.3 Uplink Payload == 307 + 308 + 309 +=== 2.3.1 MOD~=0(Default Mode) === 310 + 311 +LSE01 will uplink payload via LoRaWAN with below payload format: 312 + 313 +((( 163 163 Uplink payload includes in total 11 bytes. 164 - 315 +))) 165 165 317 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 166 166 |((( 167 167 **Size** 168 168 169 169 **(bytes)** 170 170 )))|**2**|**2**|**2**|**2**|**2**|**1** 171 -|**Value**|[[BAT>> path:#bat]]|(((323 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 172 172 Temperature 173 173 174 174 (Reserve, Ignore now) 175 -)))|[[Soil Moisture>> path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((327 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 176 176 MOD & Digital Interrupt 177 177 178 178 (Optional) 179 179 ))) 180 180 181 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]333 +=== 2.3.2 MOD~=1(Original value) === 182 182 183 - 184 -1. 185 -11. 186 -111. MOD=1(Original value) 187 - 188 188 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 189 189 337 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 190 190 |((( 191 191 **Size** 192 192 193 193 **(bytes)** 194 194 )))|**2**|**2**|**2**|**2**|**2**|**1** 195 -|**Value**|[[BAT>> path:#bat]]|(((343 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 196 196 Temperature 197 197 198 198 (Reserve, Ignore now) 199 -)))|[[Soil Moisture>> path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((347 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 200 200 MOD & Digital Interrupt 201 201 202 202 (Optional) 203 203 ))) 204 204 205 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]353 +=== 2.3.3 Battery Info === 206 206 207 -1. 208 -11. 209 -111. Battery Info 210 - 355 +((( 211 211 Check the battery voltage for LSE01. 357 +))) 212 212 359 +((( 213 213 Ex1: 0x0B45 = 2885mV 361 +))) 214 214 363 +((( 215 215 Ex2: 0x0B49 = 2889mV 365 +))) 216 216 217 217 218 218 219 -1. 220 -11. 221 -111. Soil Moisture 369 +=== 2.3.4 Soil Moisture === 222 222 371 +((( 223 223 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 373 +))) 224 224 225 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is 375 +((( 376 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 377 +))) 226 226 227 -**05DC(H) = 1500(D) /100 = 15%.** 379 +((( 380 + 381 +))) 228 228 383 +((( 384 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 385 +))) 229 229 230 -1. 231 -11. 232 -111. Soil Temperature 233 233 388 + 389 +=== 2.3.5 Soil Temperature === 390 + 391 +((( 234 234 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 393 +))) 235 235 395 +((( 236 236 **Example**: 397 +))) 237 237 399 +((( 238 238 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 401 +))) 239 239 403 +((( 240 240 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 405 +))) 241 241 242 242 243 -1. 244 -11. 245 -111. Soil Conductivity (EC) 246 246 247 - Obtainsolublesalt concentration in soil or soluble iononcentration in liquid fertilizer or planting medium,. Thevalue range of the registeris 0 - 20000(Decimal)(Can be greater than 20000).409 +=== 2.3.6 Soil Conductivity (EC) === 248 248 411 +((( 412 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 413 +))) 414 + 415 +((( 249 249 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 417 +))) 250 250 251 - 419 +((( 252 252 Generally, the EC value of irrigation water is less than 800uS / cm. 421 +))) 253 253 254 - 1.255 - 11.256 - 111. MOD423 +((( 424 + 425 +))) 257 257 427 +((( 428 + 429 +))) 430 + 431 +=== 2.3.7 MOD === 432 + 258 258 Firmware version at least v2.1 supports changing mode. 259 259 260 260 For example, bytes[10]=90 ... ... @@ -262,7 +262,7 @@ 262 262 mod=(bytes[10]>>7)&0x01=1. 263 263 264 264 265 -Downlink Command: 440 +**Downlink Command:** 266 266 267 267 If payload = 0x0A00, workmode=0 268 268 ... ... @@ -269,107 +269,127 @@ 269 269 If** **payload =** **0x0A01, workmode=1 270 270 271 271 272 -1. 273 -11. 274 -111. Decode payload in The Things Network 275 275 448 +=== 2.3.8 Decode payload in The Things Network === 449 + 276 276 While using TTN network, you can add the payload format to decode the payload. 277 277 278 278 279 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]453 +[[image:1654505570700-128.png]] 280 280 455 +((( 281 281 The payload decoder function for TTN is here: 457 +))) 282 282 283 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 459 +((( 460 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 461 +))) 284 284 285 285 286 -1. 287 -11. Uplink Interval 464 +== 2.4 Uplink Interval == 288 288 289 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 466 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 290 290 291 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 292 292 293 -1. 294 -11. Downlink Payload 295 295 470 +== 2.5 Downlink Payload == 471 + 296 296 By default, LSE50 prints the downlink payload to console port. 297 297 298 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 299 -|TDC (Transmit Time Interval)|Any|01|4 300 -|RESET|Any|04|2 301 -|AT+CFM|Any|05|4 302 -|INTMOD|Any|06|4 303 -|MOD|Any|0A|2 474 +[[image:image-20220606165544-8.png]] 304 304 305 -**Examples** 306 306 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 307 307 308 -**Set TDC** 481 +((( 482 + 483 +))) 309 309 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 488 + 489 +((( 310 310 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 491 +))) 311 311 493 +((( 312 312 Payload: 01 00 00 1E TDC=30S 495 +))) 313 313 497 +((( 314 314 Payload: 01 00 00 3C TDC=60S 499 +))) 315 315 501 +((( 502 + 503 +))) 316 316 317 -**Reset** 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 318 318 509 +((( 319 319 If payload = 0x04FF, it will reset the LSE01 511 +))) 320 320 321 321 322 -**CFM** 514 +* (% style="color:blue" %)**CFM** 323 323 324 324 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 325 325 326 -1. 327 -11. Show Data in DataCake IoT Server 328 328 329 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 330 330 520 +== 2.6 Show Data in DataCake IoT Server == 331 331 332 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 522 +((( 523 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 524 +))) 333 333 334 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 526 +((( 527 + 528 +))) 335 335 530 +((( 531 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 532 +))) 336 336 337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 534 +((( 535 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 536 +))) 338 338 339 339 340 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]539 +[[image:1654505857935-743.png]] 341 341 342 342 542 +[[image:1654505874829-548.png]] 343 343 344 344 545 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 345 345 346 -Step 3:Create an accountor log inDatacake.547 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 347 347 348 -Step 4: Search the LSE01 and add DevEUI. 349 349 550 +[[image:1654505905236-553.png]] 350 350 351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 352 352 353 - 354 - 355 355 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 356 356 555 +[[image:1654505925508-181.png]] 357 357 358 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 359 359 360 360 559 +== 2.7 Frequency Plans == 361 361 362 -1. 363 -11. Frequency Plans 364 - 365 365 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 366 366 367 -1. 368 -11. 369 -111. EU863-870 (EU868) 370 370 371 -U plink:564 +=== 2.7.1 EU863-870 (EU868) === 372 372 566 +(% style="color:#037691" %)** Uplink:** 567 + 373 373 868.1 - SF7BW125 to SF12BW125 374 374 375 375 868.3 - SF7BW125 to SF12BW125 and SF7BW250 ... ... @@ -389,7 +389,7 @@ 389 389 868.8 - FSK 390 390 391 391 392 -Downlink: 587 +(% style="color:#037691" %)** Downlink:** 393 393 394 394 Uplink channels 1-9 (RX1) 395 395 ... ... @@ -396,13 +396,12 @@ 396 396 869.525 - SF9BW125 (RX2 downlink only) 397 397 398 398 399 -1. 400 -11. 401 -111. US902-928(US915) 402 402 595 +=== 2.7.2 US902-928(US915) === 596 + 403 403 Used in USA, Canada and South America. Default use CHE=2 404 404 405 -Uplink: 599 +(% style="color:#037691" %)**Uplink:** 406 406 407 407 903.9 - SF7BW125 to SF10BW125 408 408 ... ... @@ -421,7 +421,7 @@ 421 421 905.3 - SF7BW125 to SF10BW125 422 422 423 423 424 -Downlink: 618 +(% style="color:#037691" %)**Downlink:** 425 425 426 426 923.3 - SF7BW500 to SF12BW500 427 427 ... ... @@ -442,13 +442,12 @@ 442 442 923.3 - SF12BW500(RX2 downlink only) 443 443 444 444 445 -1. 446 -11. 447 -111. CN470-510 (CN470) 448 448 640 +=== 2.7.3 CN470-510 (CN470) === 641 + 449 449 Used in China, Default use CHE=1 450 450 451 -Uplink: 644 +(% style="color:#037691" %)**Uplink:** 452 452 453 453 486.3 - SF7BW125 to SF12BW125 454 454 ... ... @@ -467,7 +467,7 @@ 467 467 487.7 - SF7BW125 to SF12BW125 468 468 469 469 470 -Downlink: 663 +(% style="color:#037691" %)**Downlink:** 471 471 472 472 506.7 - SF7BW125 to SF12BW125 473 473 ... ... @@ -488,13 +488,12 @@ 488 488 505.3 - SF12BW125 (RX2 downlink only) 489 489 490 490 491 -1. 492 -11. 493 -111. AU915-928(AU915) 494 494 685 +=== 2.7.4 AU915-928(AU915) === 686 + 495 495 Default use CHE=2 496 496 497 -Uplink: 689 +(% style="color:#037691" %)**Uplink:** 498 498 499 499 916.8 - SF7BW125 to SF12BW125 500 500 ... ... @@ -513,7 +513,7 @@ 513 513 918.2 - SF7BW125 to SF12BW125 514 514 515 515 516 -Downlink: 708 +(% style="color:#037691" %)**Downlink:** 517 517 518 518 923.3 - SF7BW500 to SF12BW500 519 519 ... ... @@ -533,22 +533,22 @@ 533 533 534 534 923.3 - SF12BW500(RX2 downlink only) 535 535 536 -1. 537 -11. 538 -111. AS920-923 & AS923-925 (AS923) 539 539 540 -**Default Uplink channel:** 541 541 730 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 731 + 732 +(% style="color:#037691" %)**Default Uplink channel:** 733 + 542 542 923.2 - SF7BW125 to SF10BW125 543 543 544 544 923.4 - SF7BW125 to SF10BW125 545 545 546 546 547 -**Additional Uplink Channel**: 739 +(% style="color:#037691" %)**Additional Uplink Channel**: 548 548 549 549 (OTAA mode, channel added by JoinAccept message) 550 550 551 -**AS920~~AS923 for Japan, Malaysia, Singapore**: 743 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 552 552 553 553 922.2 - SF7BW125 to SF10BW125 554 554 ... ... @@ -563,7 +563,7 @@ 563 563 922.0 - SF7BW125 to SF10BW125 564 564 565 565 566 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 758 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 567 567 568 568 923.6 - SF7BW125 to SF10BW125 569 569 ... ... @@ -578,18 +578,16 @@ 578 578 924.6 - SF7BW125 to SF10BW125 579 579 580 580 773 +(% style="color:#037691" %)** Downlink:** 581 581 582 -**Downlink:** 583 - 584 584 Uplink channels 1-8 (RX1) 585 585 586 586 923.2 - SF10BW125 (RX2) 587 587 588 588 589 -1. 590 -11. 591 -111. KR920-923 (KR920) 592 592 781 +=== 2.7.6 KR920-923 (KR920) === 782 + 593 593 Default channel: 594 594 595 595 922.1 - SF7BW125 to SF12BW125 ... ... @@ -599,7 +599,7 @@ 599 599 922.5 - SF7BW125 to SF12BW125 600 600 601 601 602 -Uplink: (OTAA mode, channel added by JoinAccept message) 792 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 603 603 604 604 922.1 - SF7BW125 to SF12BW125 605 605 ... ... @@ -616,7 +616,7 @@ 616 616 923.3 - SF7BW125 to SF12BW125 617 617 618 618 619 -Downlink: 809 +(% style="color:#037691" %)**Downlink:** 620 620 621 621 Uplink channels 1-7(RX1) 622 622 ... ... @@ -623,12 +623,11 @@ 623 623 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 624 625 625 626 -1. 627 -11. 628 -111. IN865-867 (IN865) 629 629 630 - Uplink:817 +=== 2.7.7 IN865-867 (IN865) === 631 631 819 +(% style="color:#037691" %)** Uplink:** 820 + 632 632 865.0625 - SF7BW125 to SF12BW125 633 633 634 634 865.4025 - SF7BW125 to SF12BW125 ... ... @@ -636,7 +636,7 @@ 636 636 865.9850 - SF7BW125 to SF12BW125 637 637 638 638 639 -Downlink: 828 +(% style="color:#037691" %) **Downlink:** 640 640 641 641 Uplink channels 1-3 (RX1) 642 642 ... ... @@ -643,110 +643,129 @@ 643 643 866.550 - SF10BW125 (RX2) 644 644 645 645 646 -1. 647 -11. LED Indicator 648 648 649 -The LSE01 has an internal LED which is to show the status of different state. 650 650 837 +== 2.8 LED Indicator == 651 651 839 +The LSE01 has an internal LED which is to show the status of different state. 840 + 652 652 * Blink once when device power on. 653 653 * Solid ON for 5 seconds once device successful Join the network. 654 654 * Blink once when device transmit a packet. 655 655 656 -1. 657 -11. Installation in Soil 845 +== 2.9 Installation in Soil == 658 658 659 659 **Measurement the soil surface** 660 660 661 661 662 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 850 +[[image:1654506634463-199.png]] 663 663 852 +((( 853 +((( 664 664 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 855 +))) 856 +))) 665 665 666 666 667 667 860 +[[image:1654506665940-119.png]] 668 668 669 - 670 - 671 - 672 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 673 - 674 - 675 - 862 +((( 676 676 Dig a hole with diameter > 20CM. 864 +))) 677 677 866 +((( 678 678 Horizontal insert the probe to the soil and fill the hole for long term measurement. 868 +))) 679 679 680 680 871 +== 2.10 Firmware Change Log == 681 681 682 - 683 -1. 684 -11. Firmware Change Log 685 - 873 +((( 686 686 **Firmware download link:** 875 +))) 687 687 877 +((( 688 688 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 879 +))) 689 689 881 +((( 882 + 883 +))) 690 690 691 -**Firmware Upgrade Method:** 885 +((( 886 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 887 +))) 692 692 693 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]] 889 +((( 890 + 891 +))) 694 694 695 - 893 +((( 696 696 **V1.0.** 895 +))) 697 697 897 +((( 698 698 Release 899 +))) 699 699 700 700 902 +== 2.11 Battery Analysis == 701 701 702 -1. 703 -11. Battery Analysis 704 -111. Battery Type 904 +=== 2.11.1 Battery Type === 705 705 906 +((( 706 706 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 908 +))) 707 707 708 - 910 +((( 709 709 The battery is designed to last for more than 5 years for the LSN50. 912 +))) 710 710 914 +((( 915 +((( 916 +The battery-related documents are as below: 917 +))) 918 +))) 711 711 712 -The battery related documents as below: 713 - 714 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 715 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]] 716 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 717 - 718 -|((( 719 -JST-XH-2P connector 920 +* ((( 921 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 720 720 ))) 923 +* ((( 924 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 925 +))) 926 +* ((( 927 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 928 +))) 721 721 722 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]930 + [[image:image-20220610172436-1.png]] 723 723 724 724 725 725 726 -1. 727 -11. 728 -111. Battery Note 934 +=== 2.11.2 Battery Note === 729 729 936 +((( 730 730 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 938 +))) 731 731 732 732 733 -1. 734 -11. 735 -111. Replace the battery 736 736 942 +=== 2.11.3 Replace the battery === 943 + 944 +((( 737 737 If Battery is lower than 2.7v, user should replace the battery of LSE01. 946 +))) 738 738 739 - 948 +((( 740 740 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 950 +))) 741 741 742 - 952 +((( 743 743 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 954 +))) 744 744 745 745 746 746 747 - 748 - 749 - 750 750 = 3. Using the AT Commands = 751 751 752 752 == 3.1 Access AT Commands == ... ... @@ -754,13 +754,13 @@ 754 754 755 755 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 756 756 757 -[[image:1654501986557-872.png]] 965 +[[image:1654501986557-872.png||height="391" width="800"]] 758 758 759 759 760 760 Or if you have below board, use below connection: 761 761 762 762 763 -[[image:1654502005655-729.png]] 971 +[[image:1654502005655-729.png||height="503" width="801"]] 764 764 765 765 766 766 ... ... @@ -767,10 +767,10 @@ 767 767 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 768 768 769 769 770 - [[image:1654502050864-459.png]] 978 + [[image:1654502050864-459.png||height="564" width="806"]] 771 771 772 772 773 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]981 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 774 774 775 775 776 776 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -882,20 +882,38 @@ 882 882 883 883 == 4.1 How to change the LoRa Frequency Bands/Region? == 884 884 885 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 1093 +((( 1094 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 886 886 When downloading the images, choose the required image file for download. 1096 +))) 887 887 1098 +((( 1099 + 1100 +))) 888 888 1102 +((( 889 889 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 1104 +))) 890 890 1106 +((( 1107 + 1108 +))) 891 891 1110 +((( 892 892 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 1112 +))) 893 893 1114 +((( 1115 + 1116 +))) 894 894 1118 +((( 895 895 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 1120 +))) 896 896 897 897 [[image:image-20220606154726-3.png]] 898 898 1124 + 899 899 When you use the TTN network, the US915 frequency bands use are: 900 900 901 901 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -908,37 +908,47 @@ 908 908 * 905.3 - SF7BW125 to SF10BW125 909 909 * 904.6 - SF8BW500 910 910 1137 +((( 911 911 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 912 912 913 -(% class="box infomessage" %) 914 -((( 915 -**AT+CHE=2** 1140 +* (% style="color:#037691" %)**AT+CHE=2** 1141 +* (% style="color:#037691" %)**ATZ** 916 916 ))) 917 917 918 -(% class="box infomessage" %) 919 919 ((( 920 -**ATZ** 921 -))) 1145 + 922 922 923 923 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1148 +))) 924 924 1150 +((( 1151 + 1152 +))) 925 925 1154 +((( 926 926 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1156 +))) 927 927 928 928 [[image:image-20220606154825-4.png]] 929 929 930 930 1161 +== 4.2 Can I calibrate LSE01 to different soil types? == 931 931 1163 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1164 + 1165 + 932 932 = 5. Trouble Shooting = 933 933 934 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==1168 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 935 935 936 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.1170 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 937 937 938 938 939 -== 5.2 AT Command input doesn ’t work ==1173 +== 5.2 AT Command input doesn't work == 940 940 941 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1175 +((( 1176 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1177 +))) 942 942 943 943 944 944 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -950,7 +950,9 @@ 950 950 951 951 (% style="color:#4f81bd" %)**Cause for this issue:** 952 952 1189 +((( 953 953 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1191 +))) 954 954 955 955 956 956 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -957,7 +957,7 @@ 957 957 958 958 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 959 959 960 -[[image:1654500929571-736.png]] 1198 +[[image:1654500929571-736.png||height="458" width="832"]] 961 961 962 962 963 963 = 6. Order Info = ... ... @@ -982,10 +982,17 @@ 982 982 * (% style="color:red" %)**4**(%%): 4000mAh battery 983 983 * (% style="color:red" %)**8**(%%): 8500mAh battery 984 984 1223 +(% class="wikigeneratedid" %) 1224 +((( 1225 + 1226 +))) 1227 + 985 985 = 7. Packing Info = 986 986 987 987 ((( 988 -**Package Includes**: 1231 + 1232 + 1233 +(% style="color:#037691" %)**Package Includes**: 989 989 ))) 990 990 991 991 * ((( ... ... @@ -994,10 +994,8 @@ 994 994 995 995 ((( 996 996 997 -))) 998 998 999 -((( 1000 -**Dimension and weight**: 1243 +(% style="color:#037691" %)**Dimension and weight**: 1001 1001 ))) 1002 1002 1003 1003 * ((( ... ... @@ -1011,6 +1011,8 @@ 1011 1011 ))) 1012 1012 * ((( 1013 1013 Weight / pcs : g 1257 + 1258 + 1014 1014 ))) 1015 1015 1016 1016 = 8. Support = ... ... @@ -1017,5 +1017,3 @@ 1017 1017 1018 1018 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1019 1019 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1020 - 1021 -
- 1654504683289-357.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.0 KB - Content
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content