Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 41 added, 0 removed)
- 1654504596150-405.png
- 1654504683289-357.png
- 1654504778294-788.png
- 1654504881641-514.png
- 1654504907647-967.png
- 1654505570700-128.png
- 1654505857935-743.png
- 1654505874829-548.png
- 1654505905236-553.png
- 1654505925508-181.png
- 1654506634463-199.png
- 1654506665940-119.png
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220606163732-6.jpeg
- image-20220606163915-7.png
- image-20220606165544-8.png
- image-20220606171726-9.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="848" width="848"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 ... ... @@ -8,1014 +8,910 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 13 +**Table of Contents:** 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 34 34 35 35 36 -[[image:1654503236291-817.png]] 37 37 21 += 1. Introduction = 38 38 39 - [[image:1654503265560-120.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 40 40 25 +((( 26 + 41 41 28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 42 42 43 - ==1.2Features==30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 44 44 45 -* LoRaWAN 1.0.3 Class A 46 -* Ultra low power consumption 47 -* Monitor Soil Moisture 48 -* Monitor Soil Temperature 49 -* Monitor Soil Conductivity 50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 -* AT Commands to change parameters 52 -* Uplink on periodically 53 -* Downlink to change configure 54 -* IP66 Waterproof Enclosure 55 -* 4000mAh or 8500mAh Battery for long term use 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 56 56 57 - ==1.3Specification==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 58 58 59 - MeasureVolume:Base onthe centrapinof theprobe,acylinderwith 7cm diameter and10cmheight.36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 -[[image:image-20220606162220-5.png]] 62 - 63 - 64 - 65 -== 1.4 Applications == 66 - 67 -* Smart Agriculture 68 - 69 - 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 72 - 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 75 - 76 - 77 -**LSE01 v1.0 :** Release 78 - 79 - 80 - 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 - 83 -== 2.1 How it works == 84 - 85 85 ((( 86 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 87 87 ))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 42 + 91 91 ))) 92 92 45 +[[image:1654503236291-817.png]] 93 93 94 94 95 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==48 +[[image:1657245163077-232.png]] 96 96 97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 99 99 100 - [[image:1654503992078-669.png]]52 +== 1.2 Features == 101 101 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 102 102 103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 104 104 105 105 106 - **Step1**:Create a devicein TTN with the OTAA keys fromLSE01.69 +== 1.3 Specification == 107 107 108 -Each LSE01 is shipped with a sticker with the default device EUI as below: 109 109 72 +(% style="color:#037691" %)**Common DC Characteristics:** 110 110 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 111 111 77 +(% style="color:#037691" %)**NB-IoT Spec:** 112 112 113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 114 114 86 +Probe(% style="color:#037691" %)** Specification:** 115 115 116 - **AddAPPEUIin the application**88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 117 117 90 +[[image:image-20220708101224-1.png]] 118 118 119 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]] 120 120 121 121 94 +== 1.4 Applications == 122 122 123 -* *AddAPP KEYandDEV EUI**96 +* Smart Agriculture 124 124 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 125 125 126 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]101 +== 1.5 Pin Definitions == 127 127 128 -|((( 129 - 130 -))) 131 131 132 - **Step 2**:Power on LSE01104 +[[image:1657246476176-652.png]] 133 133 134 134 135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 136 108 += 2. Use NSE01 to communicate with IoT Server = 137 137 110 +== 2.1 How it works == 138 138 139 -|((( 140 - 112 + 113 +((( 114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 141 141 ))) 142 142 143 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]] 144 144 118 +((( 119 +The diagram below shows the working flow in default firmware of NSE01: 120 +))) 145 145 122 +[[image:image-20220708101605-2.png]] 146 146 147 - 148 - 149 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 - 151 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 152 - 153 - 154 - 155 - 156 -1. 157 -11. Uplink Payload 158 -111. MOD=0(Default Mode) 159 - 160 -LSE01 will uplink payload via LoRaWAN with below payload format: 161 - 162 - 163 -Uplink payload includes in total 11 bytes. 124 +((( 164 164 165 - 166 -|((( 167 -**Size** 168 - 169 -**(bytes)** 170 -)))|**2**|**2**|**2**|**2**|**2**|**1** 171 -|**Value**|[[BAT>>path:#bat]]|((( 172 -Temperature 173 - 174 -(Reserve, Ignore now) 175 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 176 -MOD & Digital Interrupt 177 - 178 -(Optional) 179 179 ))) 180 180 181 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]] 182 182 183 183 184 -1. 185 -11. 186 -111. MOD=1(Original value) 130 +== 2.2 Configure the NSE01 == 187 187 188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 189 189 190 -|((( 191 -**Size** 133 +=== 2.2.1 Test Requirement === 192 192 193 -**(bytes)** 194 -)))|**2**|**2**|**2**|**2**|**2**|**1** 195 -|**Value**|[[BAT>>path:#bat]]|((( 196 -Temperature 197 197 198 -(Reserve, Ignore now) 199 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 200 -MOD & Digital Interrupt 201 - 202 -(Optional) 136 +((( 137 +To use NSE01 in your city, make sure meet below requirements: 203 203 ))) 204 204 205 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 206 206 207 - 1.208 -11. 209 - 111. Battery Info144 +((( 145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 146 +))) 210 210 211 -Check the battery voltage for LSE01. 212 212 213 - Ex1:0x0B45=2885mV149 +[[image:1657249419225-449.png]] 214 214 215 -Ex2: 0x0B49 = 2889mV 216 216 217 217 153 +=== 2.2.2 Insert SIM card === 218 218 219 - 1.220 - 11.221 - 111. Soil Moisture155 +((( 156 +Insert the NB-IoT Card get from your provider. 157 +))) 222 222 223 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 159 +((( 160 +User need to take out the NB-IoT module and insert the SIM card like below: 161 +))) 224 224 225 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is 226 226 227 - **05DC(H) =1500(D) /100 = 15%.**164 +[[image:1657249468462-536.png]] 228 228 229 229 230 -1. 231 -11. 232 -111. Soil Temperature 233 233 234 - Get the temperature in the soil.Thevalue rangeof the register is -4000 - +800(Decimal), dividethisvalueby100togetthe temperature in the soil.For example, ifthe data you get from the register is 0x09 0xEC, the temperaturecontentinthesoil is168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 235 235 236 -**Example**: 170 +((( 171 +((( 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 173 +))) 174 +))) 237 237 238 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 239 239 240 - If payloadis FF7EH:((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C177 +**Connection:** 241 241 179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 242 242 243 -1. 244 -11. 245 -111. Soil Conductivity (EC) 181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 246 246 247 - Obtainsolublesaltconcentration in soilsolubleion concentration inliquid fertilizerorplantingmedium,.Thevaluerange of the register is 0-20000(Decimal)( Can be greater than 20000).183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 248 248 249 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 250 250 186 +In the PC, use below serial tool settings: 251 251 252 -Generally, the EC value of irrigation water is less than 800uS / cm. 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 253 253 254 - 1.255 -11. 256 - 111. MOD194 +((( 195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 +))) 257 257 258 - Firmwareversionat least v2.1supports changing mode.198 +[[image:image-20220708110657-3.png]] 259 259 260 -For example, bytes[10]=90 200 +((( 201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 +))) 261 261 262 -mod=(bytes[10]>>7)&0x01=1. 263 263 264 264 265 - DownlinkCommand:206 +=== 2.2.4 Use CoAP protocol to uplink data === 266 266 267 - Ifpayload=0x0A00,workmode=0208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 268 268 269 -If** **payload =** **0x0A01, workmode=1 270 270 211 +**Use below commands:** 271 271 272 -1 .273 -1 1.274 - 111.DecodepayloadinTheThingsNetwork213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 275 275 276 - While using TTN network,you canaddthe payloadformattodecodethepayload.217 +For parameter description, please refer to AT command set 277 277 219 +[[image:1657249793983-486.png]] 278 278 279 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]] 280 280 281 - Thepayload decoderfunctionforTTN ishere:222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 282 282 283 - LSE01 TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]224 +[[image:1657249831934-534.png]] 284 284 285 285 286 -1. 287 -11. Uplink Interval 288 288 289 - TheLSE01bydefault uplinkthe sensordatavery 20 minutes.Usercan changethis interval by AT Commandor LoRaWAN DownlinkCommand. See this link:228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 290 290 291 - [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]230 +This feature is supported since firmware version v1.0.1 292 292 293 -1. 294 -11. Downlink Payload 295 295 296 -By default, LSE50 prints the downlink payload to console port. 233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 297 297 298 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)** 299 -|TDC (Transmit Time Interval)|Any|01|4 300 -|RESET|Any|04|2 301 -|AT+CFM|Any|05|4 302 -|INTMOD|Any|06|4 303 -|MOD|Any|0A|2 237 +[[image:1657249864775-321.png]] 304 304 305 -**Examples** 306 306 240 +[[image:1657249930215-289.png]] 307 307 308 -**Set TDC** 309 309 310 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 311 311 312 - Payload:0100001ETDC=30S244 +=== 2.2.6 Use MQTT protocol to uplink data === 313 313 314 - Payload:0100003C TDC=60S246 +This feature is supported since firmware version v110 315 315 316 316 317 -**Reset** 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 318 318 319 - If payload = 0x04FF,it will reset the LSE01257 +[[image:1657249978444-674.png]] 320 320 321 321 322 - **CFM**260 +[[image:1657249990869-686.png]] 323 323 324 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 325 325 326 -1. 327 -11. Show Data in DataCake IoT Server 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 328 328 329 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 330 330 331 331 332 - **Step1**:Besurethatyour device isprogrammed and properlyconnectedtothenetwork atthis time.269 +=== 2.2.7 Use TCP protocol to uplink data === 333 333 334 - **Step 2**:ToconfiguretheApplication to forward data to DATACAKE you will needto addintegration. To add theDATACAKE integration,perform the following steps:271 +This feature is supported since firmware version v110 335 335 336 336 337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]] 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 338 338 277 +[[image:1657250217799-140.png]] 339 339 340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]] 341 341 280 +[[image:1657250255956-604.png]] 342 342 343 343 344 344 284 +=== 2.2.8 Change Update Interval === 345 345 346 - Step3:Create anaccountorlog inDatacake.286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 347 347 348 - Step4:Search theLSE01andaddDevEUI.288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 349 349 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 350 350 351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]] 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 352 352 353 353 354 354 355 - Afteradded,the sensordata arrive TTN, it will alsorrive andshow in Mydevices.300 +== 2.3 Uplink Payload == 356 356 302 +In this mode, uplink payload includes in total 18 bytes 357 357 358 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 359 359 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 360 360 361 361 362 -1. 363 -11. Frequency Plans 315 +[[image:image-20220708111918-4.png]] 364 364 365 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 366 366 367 -1. 368 -11. 369 -111. EU863-870 (EU868) 318 +The payload is ASCII string, representative same HEX: 370 370 371 - Uplink:320 +0x72403155615900640c7817075e0a8c02f900 where: 372 372 373 -868.1 - SF7BW125 to SF12BW125 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 374 374 375 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 376 376 377 -868.5 - SF7BW125 to SF12BW125 378 378 379 -867.1 - SF7BW125 to SF12BW125 380 380 381 - 867.3- SF7BW125to SF12BW125334 +== 2.4 Payload Explanation and Sensor Interface == 382 382 383 -867.5 - SF7BW125 to SF12BW125 384 384 385 - 867.7- SF7BW125toSF12BW125337 +=== 2.4.1 Device ID === 386 386 387 -867.9 - SF7BW125 to SF12BW125 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 388 388 389 -868.8 - FSK 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 390 390 347 +((( 348 +**Example:** 349 +))) 391 391 392 -Downlink: 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 393 393 394 -Uplink channels 1-9 (RX1) 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 395 395 396 -869.525 - SF9BW125 (RX2 downlink only) 397 397 398 398 399 -1. 400 -11. 401 -111. US902-928(US915) 361 +=== 2.4.2 Version Info === 402 402 403 -Used in USA, Canada and South America. Default use CHE=2 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 404 404 405 -Uplink: 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 406 406 407 -903.9 - SF7BW125 to SF10BW125 408 408 409 -904.1 - SF7BW125 to SF10BW125 410 410 411 - 904.3- SF7BW125toSF10BW125373 +=== 2.4.3 Battery Info === 412 412 413 -904.5 - SF7BW125 to SF10BW125 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 414 414 415 -904.7 - SF7BW125 to SF10BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 416 416 417 -904.9 - SF7BW125 to SF10BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 418 418 419 -905.1 - SF7BW125 to SF10BW125 420 420 421 -905.3 - SF7BW125 to SF10BW125 422 422 389 +=== 2.4.4 Signal Strength === 423 423 424 -Downlink: 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 425 425 426 -923.3 - SF7BW500 to SF12BW500 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 427 427 428 -923.9 - SF7BW500 to SF12BW500 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 429 429 430 -924.5 - SF7BW500 to SF12BW500 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 431 431 432 -925.1 - SF7BW500 to SF12BW500 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 433 433 434 -925.7 - SF7BW500 to SF12BW500 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 435 435 436 -926.3 - SF7BW500 to SF12BW500 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 437 437 438 -926.9 - SF7BW500 to SF12BW500 439 439 440 -927.5 - SF7BW500 to SF12BW500 441 441 442 - 923.3- SF12BW500(RX2downlinkonly)421 +=== 2.4.5 Soil Moisture === 443 443 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 444 444 445 -1. 446 -11. 447 -111. CN470-510 (CN470) 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 448 448 449 -Used in China, Default use CHE=1 435 +((( 436 + 437 +))) 450 450 451 -Uplink: 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 452 452 453 -486.3 - SF7BW125 to SF12BW125 454 454 455 -486.5 - SF7BW125 to SF12BW125 456 456 457 -4 86.7-SF7BW125toSF12BW125445 +=== 2.4.6 Soil Temperature === 458 458 459 -486.9 - SF7BW125 to SF12BW125 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 460 460 461 -487.1 - SF7BW125 to SF12BW125 451 +((( 452 +**Example**: 453 +))) 462 462 463 -487.3 - SF7BW125 to SF12BW125 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 464 464 465 -487.5 - SF7BW125 to SF12BW125 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 466 466 467 -487.7 - SF7BW125 to SF12BW125 468 468 469 469 470 - Downlink:465 +=== 2.4.7 Soil Conductivity (EC) === 471 471 472 -506.7 - SF7BW125 to SF12BW125 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 473 473 474 -506.9 - SF7BW125 to SF12BW125 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 475 475 476 -507.1 - SF7BW125 to SF12BW125 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 477 477 478 -507.3 - SF7BW125 to SF12BW125 479 +((( 480 + 481 +))) 479 479 480 -507.5 - SF7BW125 to SF12BW125 483 +((( 484 + 485 +))) 481 481 482 - 507.7- SF7BW125toSF12BW125487 +=== 2.4.8 Digital Interrupt === 483 483 484 -507.9 - SF7BW125 to SF12BW125 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 485 485 486 -508.1 - SF7BW125 to SF12BW125 493 +((( 494 +The command is: 495 +))) 487 487 488 -505.3 - SF12BW125 (RX2 downlink only) 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 489 489 490 490 491 - 1.492 - 11.493 - 111. AU915-928(AU915)502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 494 494 495 -Default use CHE=2 496 496 497 -Uplink: 507 +((( 508 +Example: 509 +))) 498 498 499 -916.8 - SF7BW125 to SF12BW125 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 500 500 501 -917.0 - SF7BW125 to SF12BW125 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 502 502 503 -917.2 - SF7BW125 to SF12BW125 504 504 505 -917.4 - SF7BW125 to SF12BW125 506 506 507 - 917.6- SF7BW125 toSF12BW125521 +=== 2.4.9 +5V Output === 508 508 509 -917.8 - SF7BW125 to SF12BW125 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 510 510 511 -918.0 - SF7BW125 to SF12BW125 512 512 513 -918.2 - SF7BW125 to SF12BW125 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 514 514 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 515 515 516 -Downlink: 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 517 517 518 -923.3 - SF7BW500 to SF12BW500 519 519 520 -923.9 - SF7BW500 to SF12BW500 521 521 522 - 924.5-SF7BW500 toSF12BW500542 +== 2.5 Downlink Payload == 523 523 524 - 925.1-SF7BW500toSF12BW500544 +By default, NSE01 prints the downlink payload to console port. 525 525 526 - 925.7-SF7BW500 to SF12BW500546 +[[image:image-20220708133731-5.png]] 527 527 528 -926.3 - SF7BW500 to SF12BW500 529 529 530 -926.9 - SF7BW500 to SF12BW500 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 531 531 532 -927.5 - SF7BW500 to SF12BW500 553 +((( 554 + 555 +))) 533 533 534 -923.3 - SF12BW500(RX2 downlink only) 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 535 535 536 - 1.537 -11. 538 - 111. AS920-923 & AS923-925 (AS923)561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 539 539 540 -**Default Uplink channel:** 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 541 541 542 -923.2 - SF7BW125 to SF10BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 543 543 544 -923.4 - SF7BW125 to SF10BW125 573 +((( 574 + 575 +))) 545 545 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 546 546 547 -**Additional Uplink Channel**: 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 548 548 549 -(OTAA mode, channel added by JoinAccept message) 550 550 551 -* *AS920~~AS923forJapan, Malaysia, Singapore**:586 +* (% style="color:blue" %)**INTMOD** 552 552 553 -922.2 - SF7BW125 to SF10BW125 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 554 554 555 -922.4 - SF7BW125 to SF10BW125 556 556 557 -922.6 - SF7BW125 to SF10BW125 558 558 559 - 922.8-SF7BW125toSF10BW125594 +== 2.6 LED Indicator == 560 560 561 -923.0 - SF7BW125 to SF10BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 562 562 563 -922.0 - SF7BW125 to SF10BW125 564 564 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 565 565 566 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 567 567 568 -923.6 - SF7BW125 to SF10BW125 569 569 570 -923.8 - SF7BW125 to SF10BW125 571 571 572 - 924.0 - SF7BW125to SF10BW125609 +== 2.7 Installation in Soil == 573 573 574 - 924.2- SF7BW125toSF10BW125611 +__**Measurement the soil surface**__ 575 575 576 -924.4 - SF7BW125 to SF10BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 577 577 578 - 924.6- SF7BW125to SF10BW125617 +[[image:1657259653666-883.png]] 579 579 580 580 620 +((( 621 + 581 581 582 -**Downlink:** 583 - 584 -Uplink channels 1-8 (RX1) 585 - 586 -923.2 - SF10BW125 (RX2) 587 - 588 - 589 -1. 590 -11. 591 -111. KR920-923 (KR920) 592 - 593 -Default channel: 594 - 595 -922.1 - SF7BW125 to SF12BW125 596 - 597 -922.3 - SF7BW125 to SF12BW125 598 - 599 -922.5 - SF7BW125 to SF12BW125 600 - 601 - 602 -Uplink: (OTAA mode, channel added by JoinAccept message) 603 - 604 -922.1 - SF7BW125 to SF12BW125 605 - 606 -922.3 - SF7BW125 to SF12BW125 607 - 608 -922.5 - SF7BW125 to SF12BW125 609 - 610 -922.7 - SF7BW125 to SF12BW125 611 - 612 -922.9 - SF7BW125 to SF12BW125 613 - 614 -923.1 - SF7BW125 to SF12BW125 615 - 616 -923.3 - SF7BW125 to SF12BW125 617 - 618 - 619 -Downlink: 620 - 621 -Uplink channels 1-7(RX1) 622 - 623 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 - 625 - 626 -1. 627 -11. 628 -111. IN865-867 (IN865) 629 - 630 -Uplink: 631 - 632 -865.0625 - SF7BW125 to SF12BW125 633 - 634 -865.4025 - SF7BW125 to SF12BW125 635 - 636 -865.9850 - SF7BW125 to SF12BW125 637 - 638 - 639 -Downlink: 640 - 641 -Uplink channels 1-3 (RX1) 642 - 643 -866.550 - SF10BW125 (RX2) 644 - 645 - 646 -1. 647 -11. LED Indicator 648 - 649 -The LSE01 has an internal LED which is to show the status of different state. 650 - 651 - 652 -* Blink once when device power on. 653 -* Solid ON for 5 seconds once device successful Join the network. 654 -* Blink once when device transmit a packet. 655 - 656 -1. 657 -11. Installation in Soil 658 - 659 -**Measurement the soil surface** 660 - 661 - 662 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 663 - 664 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 665 - 666 - 667 - 668 - 669 - 670 - 671 - 672 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 673 - 674 - 675 - 623 +((( 676 676 Dig a hole with diameter > 20CM. 625 +))) 677 677 627 +((( 678 678 Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 679 679 632 +[[image:1654506665940-119.png]] 680 680 634 +((( 635 + 636 +))) 681 681 682 682 683 -1. 684 -11. Firmware Change Log 639 +== 2.8 Firmware Change Log == 685 685 686 -**Firmware download link:** 687 687 688 - [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]642 +Download URL & Firmware Change log 689 689 644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 690 690 691 -**Firmware Upgrade Method:** 692 692 693 - [[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 694 694 695 695 696 -**V1.0.** 697 697 698 - Release651 +== 2.9 Battery Analysis == 699 699 653 +=== 2.9.1 Battery Type === 700 700 701 701 702 - 1.703 -1 1.Battery Analysis704 - 111. Battery Type656 +((( 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 658 +))) 705 705 706 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 707 707 661 +((( 662 +The battery is designed to last for several years depends on the actually use environment and update interval. 663 +))) 708 708 709 -The battery is designed to last for more than 5 years for the LSN50. 710 710 711 - 666 +((( 712 712 The battery related documents as below: 668 +))) 713 713 714 -* [[Battery Dimension>> url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],715 -* [[Lithium-Thionyl Chloride Battery >>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]716 -* [[Lithium-ion Battery-Capacitor datasheet>> url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[TechSpec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 717 717 718 - |(((719 - JST-XH-2P connector674 +((( 675 +[[image:image-20220708140453-6.png]] 720 720 ))) 721 721 722 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 723 723 724 724 680 +=== 2.9.2 Power consumption Analyze === 725 725 726 - 1.727 - 11.728 - 111. Battery Note682 +((( 683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 684 +))) 729 729 730 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 731 731 687 +((( 688 +Instruction to use as below: 689 +))) 732 732 733 - 1.734 -1 1.735 - 111. Replace the battery691 +((( 692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 693 +))) 736 736 737 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 738 738 696 +((( 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 698 +))) 739 739 740 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 700 +* ((( 701 +Product Model 702 +))) 703 +* ((( 704 +Uplink Interval 705 +))) 706 +* ((( 707 +Working Mode 708 +))) 741 741 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 742 742 743 - The default battery pack of LSE01includesaER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case.The SPC can enlarge the battery life for high frequency use (updateperiod below 5 minutes)714 +[[image:image-20220708141352-7.jpeg]] 744 744 745 745 746 746 718 +=== 2.9.3 Battery Note === 747 747 720 +((( 721 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 +))) 748 748 749 749 750 -= 3. Using the AT Commands = 751 751 752 -== 3.1AccessATCommands==726 +=== 2.9.4 Replace the battery === 753 753 728 +((( 729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 730 +))) 754 754 755 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 756 756 757 -[[image:1654501986557-872.png]] 758 758 734 += 3. Access NB-IoT Module = 759 759 760 -Or if you have below board, use below connection: 736 +((( 737 +Users can directly access the AT command set of the NB-IoT module. 738 +))) 761 761 740 +((( 741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 742 +))) 762 762 763 -[[image:165 4502005655-729.png]]744 +[[image:1657261278785-153.png]] 764 764 765 765 766 766 767 - InthePC, you need toset the serial baud rate to (% style="color:green"%)**9600**(%%)to access theserialconsole for LSE01. LSE01 will output systeminfo once power onasbelow:748 += 4. Using the AT Commands = 768 768 750 +== 4.1 Access AT Commands == 769 769 770 - [[ima ge:1654502050864-459.png]]752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 771 771 772 772 773 - Belowaretheavailablecommands,amoredetailedATCommandmanualcanbefoundat[[ATCommandManual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]755 +AT+<CMD>? : Help on <CMD> 774 774 757 +AT+<CMD> : Run <CMD> 775 775 776 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>?**(%%)Helpon<CMD>759 +AT+<CMD>=<value> : Set the value 777 777 778 - (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>**(%%): Run <CMD>761 +AT+<CMD>=? : Get the value 779 779 780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 781 781 782 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 783 - 784 - 785 785 (% style="color:#037691" %)**General Commands**(%%) 786 786 787 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 788 788 789 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 790 790 791 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 792 792 793 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 794 794 774 +AT+CFG : Print all configurations 795 795 796 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 797 797 798 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 799 799 800 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 801 801 802 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 803 803 804 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 805 805 806 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 807 807 808 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 809 809 810 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 811 811 812 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 813 813 814 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 815 815 816 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 817 817 818 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 819 819 820 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 821 821 822 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 823 823 824 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 825 825 826 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 827 827 828 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 829 829 807 +AT+CLIENT : Get or Set MQTT client 830 830 831 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 832 832 833 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 834 834 835 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 840 840 841 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 844 844 845 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 846 846 847 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 848 848 849 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 850 850 851 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 852 852 853 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 854 854 855 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 856 856 857 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 831 +((( 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 833 +))) 858 858 859 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 835 +((( 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 837 +))) 860 860 861 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 839 +((( 840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 841 +))) 862 862 863 863 864 -(% style="color:#037691" %)**Information** 865 865 866 - (% style="background-color:#dcdcdc"%)**AT+RSSI**(%%):RSSIoftheLastReceivedPacket845 +== 5.2 Can I calibrate NSE01 to different soil types? == 867 867 868 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 847 +((( 848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 849 +))) 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 871 871 872 - (% style="background-color:#dcdcdc"%)**AT+FDR**(%%) : Factory DataReset852 += 6. Trouble Shooting = 873 873 874 - (%style="background-color:#dcdcdc"%)**AT+PORT**(%%): ApplicationPort854 +== 6.1 Connection problem when uploading firmware == 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 877 877 878 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 879 - 880 - 881 -= 4. FAQ = 882 - 883 -== 4.1 How to change the LoRa Frequency Bands/Region? == 884 - 885 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]]. 886 -When downloading the images, choose the required image file for download. 887 - 888 - 889 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 890 - 891 - 892 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 893 - 894 - 895 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 896 - 897 -[[image:image-20220606154726-3.png]] 898 - 899 -When you use the TTN network, the US915 frequency bands use are: 900 - 901 -* 903.9 - SF7BW125 to SF10BW125 902 -* 904.1 - SF7BW125 to SF10BW125 903 -* 904.3 - SF7BW125 to SF10BW125 904 -* 904.5 - SF7BW125 to SF10BW125 905 -* 904.7 - SF7BW125 to SF10BW125 906 -* 904.9 - SF7BW125 to SF10BW125 907 -* 905.1 - SF7BW125 to SF10BW125 908 -* 905.3 - SF7BW125 to SF10BW125 909 -* 904.6 - SF8BW500 910 - 911 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 912 - 913 -(% class="box infomessage" %) 914 914 ((( 915 -** AT+CHE=2**858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 916 916 ))) 917 917 918 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 919 919 ((( 920 - **ATZ**863 + 921 921 ))) 922 922 923 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 924 924 867 +== 6.2 AT Command input doesn't work == 925 925 926 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 869 +((( 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 927 927 928 -[[image:image-20220606154825-4.png]] 872 + 873 +))) 929 929 930 930 876 += 7. Order Info = 931 931 932 -= 5. Trouble Shooting = 933 933 934 - == 5.1 Why I can’tjoin TTNin US915 / AU915bands?==879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 935 935 936 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 937 937 882 +(% class="wikigeneratedid" %) 883 +((( 884 + 885 +))) 938 938 939 -= =5.2AT Commandinputdoesn’t work==887 += 8. Packing Info = 940 940 941 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 889 +((( 890 + 942 942 892 +(% style="color:#037691" %)**Package Includes**: 943 943 944 -== 5.3 Device rejoin in at the second uplink packet == 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 896 +))) 945 945 946 -(% style="color:#4f81bd" %)**Issue describe as below:** 898 +((( 899 + 947 947 948 - [[image:1654500909990-784.png]]901 +(% style="color:#037691" %)**Dimension and weight**: 949 949 950 - 951 -(% style="color:#4f81bd" %)**Cause for this issue:** 952 - 953 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 954 - 955 - 956 -(% style="color:#4f81bd" %)**Solution: ** 957 - 958 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 959 - 960 -[[image:1654500929571-736.png]] 961 - 962 - 963 -= 6. Order Info = 964 - 965 - 966 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 967 - 968 - 969 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 970 - 971 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 972 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 973 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 974 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 975 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 976 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 977 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 978 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 979 - 980 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 981 - 982 -* (% style="color:red" %)**4**(%%): 4000mAh battery 983 -* (% style="color:red" %)**8**(%%): 8500mAh battery 984 - 985 -= 7. Packing Info = 986 - 987 -((( 988 -**Package Includes**: 903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 989 989 ))) 990 990 991 -* ((( 992 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 993 -))) 994 - 995 995 ((( 996 996 997 -))) 998 998 999 -((( 1000 -**Dimension and weight**: 1001 -))) 1002 1002 1003 -* ((( 1004 -Device Size: cm 911 + 1005 1005 ))) 1006 -* ((( 1007 -Device Weight: g 1008 -))) 1009 -* ((( 1010 -Package Size / pcs : cm 1011 -))) 1012 -* ((( 1013 -Weight / pcs : g 1014 -))) 1015 1015 1016 -= 8. Support =914 += 9. Support = 1017 1017 1018 1018 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1019 1019 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1020 - 1021 -
- 1654504596150-405.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +66.7 KB - Content
- 1654504683289-357.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.0 KB - Content
- 1654504778294-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504881641-514.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.4 KB - Content
- 1654504907647-967.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.7 KB - Content
- 1654505570700-128.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654505857935-743.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +86.0 KB - Content
- 1654505874829-548.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +129.9 KB - Content
- 1654505905236-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654505925508-181.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +69.5 KB - Content
- 1654506634463-199.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1654506665940-119.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +423.3 KB - Content
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220606163732-6.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +16.5 KB - Content
- image-20220606163915-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +94.8 KB - Content
- image-20220606165544-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.6 KB - Content
- image-20220606171726-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +171.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content