Last modified by Mengting Qiu on 2024/04/02 16:44

From version 15.6
edited by Xiaoling
on 2022/06/06 16:35
Change comment: There is no comment for this version
To version 65.11
edited by Xiaoling
on 2022/07/08 15:44
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,1014 +8,836 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
13 +
14 +**Table of Contents:**
15 +
16 +{{toc/}}
17 +
18 +
19 +
20 +
21 +
22 +
23 +
24 += 1.  Introduction =
25 +
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
15 15  (((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
29 +
18 18  
19 19  (((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
21 21  )))
22 22  
23 23  (((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
25 25  )))
26 26  
27 27  (((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
29 29  )))
30 30  
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
33 33  )))
34 34  
47 +
48 +)))
35 35  
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +== 1.3  Specification ==
60 60  
61 -[[image:image-20220606162220-5.png]]
62 62  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
63 63  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
64 64  
65 -== ​1.4 Applications ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
66 66  
67 -* Smart Agriculture
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
68 68  
90 +Probe(% style="color:#037691" %)** Specification:**
69 69  
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
94 +[[image:image-20220708101224-1.png]]
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
78 78  
98 +== ​1.4  Applications ==
79 79  
100 +* Smart Agriculture
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
82 82  
83 -== 2.1 How it works ==
105 +== 1.5  Pin Definitions ==
84 84  
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 -)))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
108 +[[image:1657246476176-652.png]]
92 92  
93 93  
94 94  
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
112 += 2.  Use NSE01 to communicate with IoT Server =
96 96  
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 +== 2. How it works ==
98 98  
99 99  
100 -[[image:1654503992078-669.png]]
117 +(((
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
119 +)))
101 101  
102 102  
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 -
105 -
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 -
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 -
110 -
111 -
112 -
113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 -
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -
126 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
127 -
128 -|(((
129 -
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
130 130  )))
131 131  
132 -**Step 2**: Power on LSE01
126 +[[image:image-20220708101605-2.png]]
133 133  
134 -
135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
136 -
137 -
138 -
139 -|(((
128 +(((
140 140  
141 141  )))
142 142  
143 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
144 144  
145 145  
134 +== 2.2 ​ Configure the NSE01 ==
146 146  
147 147  
137 +=== 2.2.1 Test Requirement ===
148 148  
149 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 150  
151 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
140 +(((
141 +To use NSE01 in your city, make sure meet below requirements:
142 +)))
152 152  
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
153 153  
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
150 +)))
154 154  
155 155  
156 -1.
157 -11. ​Uplink Payload
158 -111. MOD=0(Default Mode)
153 +[[image:1657249419225-449.png]]
159 159  
160 -LSE01 will uplink payload via LoRaWAN with below payload format: 
161 161  
162 162  
163 -Uplink payload includes in total 11 bytes.
164 -
157 +=== 2.2.2 Insert SIM card ===
165 165  
166 -|(((
167 -**Size**
159 +(((
160 +Insert the NB-IoT Card get from your provider.
161 +)))
168 168  
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>path:#bat]]|(((
172 -Temperature
173 -
174 -(Reserve, Ignore now)
175 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
176 -MOD & Digital Interrupt
177 -
178 -(Optional)
163 +(((
164 +User need to take out the NB-IoT module and insert the SIM card like below:
179 179  )))
180 180  
181 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
182 182  
168 +[[image:1657249468462-536.png]]
183 183  
184 -1.
185 -11.
186 -111. MOD=1(Original value)
187 187  
188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
189 189  
190 -|(((
191 -**Size**
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
192 192  
193 -**(bytes)**
194 -)))|**2**|**2**|**2**|**2**|**2**|**1**
195 -|**Value**|[[BAT>>path:#bat]]|(((
196 -Temperature
197 -
198 -(Reserve, Ignore now)
199 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
200 -MOD & Digital Interrupt
201 -
202 -(Optional)
174 +(((
175 +(((
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
203 203  )))
178 +)))
204 204  
205 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
206 206  
207 -1.
208 -11.
209 -111. Battery Info
181 +**Connection:**
210 210  
211 -Check the battery voltage for LSE01.
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
212 212  
213 -Ex1: 0x0B45 = 2885mV
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
214 214  
215 -Ex2: 0x0B49 = 2889mV
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
216 216  
217 217  
190 +In the PC, use below serial tool settings:
218 218  
219 -1.
220 -11.
221 -111. Soil Moisture
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
222 222  
223 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
198 +(((
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
200 +)))
224 224  
225 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
202 +[[image:image-20220708110657-3.png]]
226 226  
227 -**05DC(H) = 1500(D) /100 = 15%.**
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
228 228  
229 229  
230 -1.
231 -11.
232 -111. Soil Temperature
233 233  
234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
208 +=== 2.2.4 Use CoAP protocol to uplink data ===
235 235  
236 -**Example**:
210 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
237 237  
238 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
239 239  
240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
213 +**Use below commands:**
241 241  
215 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
216 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
217 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
242 242  
243 -1.
244 -11.
245 -111. Soil Conductivity (EC)
219 +For parameter description, please refer to AT command set
246 246  
247 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
221 +[[image:1657249793983-486.png]]
248 248  
249 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
250 250  
224 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
251 251  
252 -Generally, the EC value of irrigation water is less than 800uS / cm.
226 +[[image:1657249831934-534.png]]
253 253  
254 -1.
255 -11.
256 -111. MOD
257 257  
258 -Firmware version at least v2.1 supports changing mode.
259 259  
260 -For example, bytes[10]=90
230 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
261 261  
262 -mod=(bytes[10]>>7)&0x01=1.
232 +This feature is supported since firmware version v1.0.1
263 263  
264 264  
265 -Downlink Command:
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
266 266  
267 -If payload = 0x0A00, workmode=0
239 +[[image:1657249864775-321.png]]
268 268  
269 -If** **payload =** **0x0A01, workmode=1
270 270  
242 +[[image:1657249930215-289.png]]
271 271  
272 -1.
273 -11.
274 -111. ​Decode payload in The Things Network
275 275  
276 -While using TTN network, you can add the payload format to decode the payload.
277 277  
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
278 278  
279 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
248 +This feature is supported since firmware version v110
280 280  
281 -The payload decoder function for TTN is here:
282 282  
283 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
251 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
284 284  
259 +[[image:1657249978444-674.png]]
285 285  
286 -1.
287 -11. Uplink Interval
288 288  
289 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
262 +[[image:1657249990869-686.png]]
290 290  
291 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
292 292  
293 -1.
294 -11. ​Downlink Payload
265 +(((
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +)))
295 295  
296 -By default, LSE50 prints the downlink payload to console port.
297 297  
298 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
299 -|TDC (Transmit Time Interval)|Any|01|4
300 -|RESET|Any|04|2
301 -|AT+CFM|Any|05|4
302 -|INTMOD|Any|06|4
303 -|MOD|Any|0A|2
304 304  
305 -**Examples**
271 +=== 2.2.7 Use TCP protocol to uplink data ===
306 306  
273 +This feature is supported since firmware version v110
307 307  
308 -**Set TDC**
309 309  
310 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
276 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
311 311  
312 -Payload:    01 00 00 1E    TDC=30S
279 +[[image:1657250217799-140.png]]
313 313  
314 -Payload:    01 00 00 3C    TDC=60S
315 315  
282 +[[image:1657250255956-604.png]]
316 316  
317 -**Reset**
318 318  
319 -If payload = 0x04FF, it will reset the LSE01
320 320  
286 +=== 2.2.8 Change Update Interval ===
321 321  
322 -**CFM**
288 +User can use below command to change the (% style="color:green" %)**uplink interval**.
323 323  
324 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
290 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
325 325  
326 -1.
327 -11. ​Show Data in DataCake IoT Server
292 +(((
293 +(% style="color:red" %)**NOTE:**
294 +)))
328 328  
329 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
296 +(((
297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
298 +)))
330 330  
331 331  
332 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
333 333  
334 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
302 +== 2.3  Uplink Payload ==
335 335  
304 +In this mode, uplink payload includes in total 18 bytes
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 +|=(% style="width: 50px;" %)(((
308 +**Size(bytes)**
309 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
338 338  
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
339 339  
340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
341 341  
315 +[[image:image-20220708111918-4.png]]
342 342  
343 343  
318 +The payload is ASCII string, representative same HEX:
344 344  
320 +0x72403155615900640c7817075e0a8c02f900 where:
345 345  
346 -Step 3: Create an account or log in Datacake.
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
347 347  
348 -Step 4: Search the LSE01 and add DevEUI.
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
349 349  
350 350  
351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
333 +== 2.4  Payload Explanation and Sensor Interface ==
352 352  
353 353  
336 +=== 2.4.1  Device ID ===
354 354  
355 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
338 +By default, the Device ID equal to the last 6 bytes of IMEI.
356 356  
340 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
357 357  
358 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
342 +**Example:**
359 359  
344 +AT+DEUI=A84041F15612
360 360  
346 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
361 361  
362 -1.
363 -11. Frequency Plans
364 364  
365 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
366 366  
367 -1.
368 -11.
369 -111. EU863-870 (EU868)
350 +=== 2.4.2  Version Info ===
370 370  
371 -Uplink:
352 +Specify the software version: 0x64=100, means firmware version 1.00.
372 372  
373 -868.1 - SF7BW125 to SF12BW125
354 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
374 374  
375 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
376 376  
377 -868.5 - SF7BW125 to SF12BW125
378 378  
379 -867.1 - SF7BW125 to SF12BW125
358 +=== 2.4.3  Battery Info ===
380 380  
381 -867.3 - SF7BW125 to SF12BW125
360 +(((
361 +Check the battery voltage for LSE01.
362 +)))
382 382  
383 -867.5 - SF7BW125 to SF12BW125
364 +(((
365 +Ex1: 0x0B45 = 2885mV
366 +)))
384 384  
385 -867.7 - SF7BW125 to SF12BW125
368 +(((
369 +Ex2: 0x0B49 = 2889mV
370 +)))
386 386  
387 -867.9 - SF7BW125 to SF12BW125
388 388  
389 -868.8 - FSK
390 390  
374 +=== 2.4.4  Signal Strength ===
391 391  
392 -Downlink:
376 +NB-IoT Network signal Strength.
393 393  
394 -Uplink channels 1-9 (RX1)
378 +**Ex1: 0x1d = 29**
395 395  
396 -869.525 - SF9BW125 (RX2 downlink only)
380 +(% style="color:blue" %)**0**(%%)  -113dBm or less
397 397  
382 +(% style="color:blue" %)**1**(%%)  -111dBm
398 398  
399 -1.
400 -11.
401 -111. US902-928(US915)
384 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
402 402  
403 -Used in USA, Canada and South America. Default use CHE=2
386 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
404 404  
405 -Uplink:
388 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 406  
407 -903.9 - SF7BW125 to SF10BW125
408 408  
409 -904.1 - SF7BW125 to SF10BW125
410 410  
411 -904.3 - SF7BW125 to SF10BW125
392 +=== 2.4. Soil Moisture ===
412 412  
413 -904.5 - SF7BW125 to SF10BW125
394 +(((
395 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 +)))
414 414  
415 -904.7 - SF7BW125 to SF10BW125
398 +(((
399 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 +)))
416 416  
417 -904.9 - SF7BW125 to SF10BW125
402 +(((
403 +
404 +)))
418 418  
419 -905.1 - SF7BW125 to SF10BW125
406 +(((
407 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
408 +)))
420 420  
421 -905.3 - SF7BW125 to SF10BW125
422 422  
423 423  
424 -Downlink:
412 +=== 2.4.6  Soil Temperature ===
425 425  
426 -923.3 - SF7BW500 to SF12BW500
414 +(((
415 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 +)))
427 427  
428 -923.9 - SF7BW500 to SF12BW500
418 +(((
419 +**Example**:
420 +)))
429 429  
430 -924.5 - SF7BW500 to SF12BW500
422 +(((
423 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
424 +)))
431 431  
432 -925.1 - SF7BW500 to SF12BW500
426 +(((
427 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
428 +)))
433 433  
434 -925.7 - SF7BW500 to SF12BW500
435 435  
436 -926.3 - SF7BW500 to SF12BW500
437 437  
438 -926.9 - SF7BW500 to SF12BW500
432 +=== 2.4.7  Soil Conductivity (EC) ===
439 439  
440 -927.5 - SF7BW500 to SF12BW500
434 +(((
435 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
436 +)))
441 441  
442 -923.3 - SF12BW500(RX2 downlink only)
438 +(((
439 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
440 +)))
443 443  
442 +(((
443 +Generally, the EC value of irrigation water is less than 800uS / cm.
444 +)))
444 444  
445 -1.
446 -11.
447 -111. CN470-510 (CN470)
446 +(((
447 +
448 +)))
448 448  
449 -Used in China, Default use CHE=1
450 +(((
451 +
452 +)))
450 450  
451 -Uplink:
454 +=== 2.4.8  Digital Interrupt ===
452 452  
453 -486.3 - SF7BW125 to SF12BW125
456 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
454 454  
455 -486.5 - SF7BW125 to SF12BW125
458 +The command is:
456 456  
457 -486.7 - SF7BW125 to SF12BW125
460 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
458 458  
459 -486.9 - SF7BW125 to SF12BW125
460 460  
461 -487.1 - SF7BW125 to SF12BW125
463 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
462 462  
463 -487.3 - SF7BW125 to SF12BW125
464 464  
465 -487.5 - SF7BW125 to SF12BW125
466 +Example:
466 466  
467 -487.7 - SF7BW125 to SF12BW125
468 +0x(00): Normal uplink packet.
468 468  
470 +0x(01): Interrupt Uplink Packet.
469 469  
470 -Downlink:
471 471  
472 -506.7 - SF7BW125 to SF12BW125
473 473  
474 -506.9 - SF7BW125 to SF12BW125
474 +=== 2.4.9  ​+5V Output ===
475 475  
476 -507.1 - SF7BW125 to SF12BW125
476 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
477 477  
478 -507.3 - SF7BW125 to SF12BW125
479 479  
480 -507.5 - SF7BW125 to SF12BW125
479 +The 5V output time can be controlled by AT Command.
481 481  
482 -507.7 - SF7BW125 to SF12BW125
481 +(% style="color:blue" %)**AT+5VT=1000**
483 483  
484 -507.9 - SF7BW125 to SF12BW125
483 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
485 485  
486 -508.1 - SF7BW125 to SF12BW125
487 487  
488 -505.3 - SF12BW125 (RX2 downlink only)
489 489  
487 +== 2.5  Downlink Payload ==
490 490  
491 -1.
492 -11.
493 -111. AU915-928(AU915)
489 +By default, NSE01 prints the downlink payload to console port.
494 494  
495 -Default use CHE=2
491 +[[image:image-20220708133731-5.png]]
496 496  
497 -Uplink:
498 498  
499 -916.8 - SF7BW125 to SF12BW125
494 +(((
495 +(% style="color:blue" %)**Examples:**
496 +)))
500 500  
501 -917.0 - SF7BW125 to SF12BW125
498 +(((
499 +
500 +)))
502 502  
503 -917.2 - SF7BW125 to SF12BW125
502 +* (((
503 +(% style="color:blue" %)**Set TDC**
504 +)))
504 504  
505 -917.4 - SF7BW125 to SF12BW125
506 +(((
507 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
508 +)))
506 506  
507 -917.6 - SF7BW125 to SF12BW125
510 +(((
511 +Payload:    01 00 00 1E    TDC=30S
512 +)))
508 508  
509 -917.8 - SF7BW125 to SF12BW125
514 +(((
515 +Payload:    01 00 00 3C    TDC=60S
516 +)))
510 510  
511 -918.0 - SF7BW125 to SF12BW125
518 +(((
519 +
520 +)))
512 512  
513 -918.2 - SF7BW125 to SF12BW125
522 +* (((
523 +(% style="color:blue" %)**Reset**
524 +)))
514 514  
526 +(((
527 +If payload = 0x04FF, it will reset the NSE01
528 +)))
515 515  
516 -Downlink:
517 517  
518 -923.3 - SF7BW500 to SF12BW500
531 +* (% style="color:blue" %)**INTMOD**
519 519  
520 -923.9 - SF7BW500 to SF12BW500
533 +Downlink Payload: 06000003, Set AT+INTMOD=3
521 521  
522 -924.5 - SF7BW500 to SF12BW500
523 523  
524 -925.1 - SF7BW500 to SF12BW500
525 525  
526 -925.7 - SF7BW500 to SF12BW500
537 +== 2. ​LED Indicator ==
527 527  
528 -926.3 - SF7BW500 to SF12BW500
539 +(((
540 +The NSE01 has an internal LED which is to show the status of different state.
529 529  
530 -926.9 - SF7BW500 to SF12BW500
531 531  
532 -927.5 - SF7BW500 to SF12BW500
543 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
544 +* Then the LED will be on for 1 second means device is boot normally.
545 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
546 +* For each uplink probe, LED will be on for 500ms.
547 +)))
533 533  
534 -923.3 - SF12BW500(RX2 downlink only)
535 535  
536 -1.
537 -11.
538 -111. AS920-923 & AS923-925 (AS923)
539 539  
540 -**Default Uplink channel:**
541 541  
542 -923.2 - SF7BW125 to SF10BW125
552 +== 2.7  Installation in Soil ==
543 543  
544 -923.4 - SF7BW125 to SF10BW125
554 +__**Measurement the soil surface**__
545 545  
556 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
546 546  
547 -**Additional Uplink Channel**:
558 +[[image:1657259653666-883.png]]
548 548  
549 -(OTAA mode, channel added by JoinAccept message)
550 550  
551 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
561 +(((
562 +
552 552  
553 -922.2 - SF7BW125 to SF10BW125
554 -
555 -922.4 - SF7BW125 to SF10BW125
556 -
557 -922.6 - SF7BW125 to SF10BW125
558 -
559 -922.8 - SF7BW125 to SF10BW125
560 -
561 -923.0 - SF7BW125 to SF10BW125
562 -
563 -922.0 - SF7BW125 to SF10BW125
564 -
565 -
566 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
567 -
568 -923.6 - SF7BW125 to SF10BW125
569 -
570 -923.8 - SF7BW125 to SF10BW125
571 -
572 -924.0 - SF7BW125 to SF10BW125
573 -
574 -924.2 - SF7BW125 to SF10BW125
575 -
576 -924.4 - SF7BW125 to SF10BW125
577 -
578 -924.6 - SF7BW125 to SF10BW125
579 -
580 -
581 -
582 -**Downlink:**
583 -
584 -Uplink channels 1-8 (RX1)
585 -
586 -923.2 - SF10BW125 (RX2)
587 -
588 -
589 -1.
590 -11.
591 -111. KR920-923 (KR920)
592 -
593 -Default channel:
594 -
595 -922.1 - SF7BW125 to SF12BW125
596 -
597 -922.3 - SF7BW125 to SF12BW125
598 -
599 -922.5 - SF7BW125 to SF12BW125
600 -
601 -
602 -Uplink: (OTAA mode, channel added by JoinAccept message)
603 -
604 -922.1 - SF7BW125 to SF12BW125
605 -
606 -922.3 - SF7BW125 to SF12BW125
607 -
608 -922.5 - SF7BW125 to SF12BW125
609 -
610 -922.7 - SF7BW125 to SF12BW125
611 -
612 -922.9 - SF7BW125 to SF12BW125
613 -
614 -923.1 - SF7BW125 to SF12BW125
615 -
616 -923.3 - SF7BW125 to SF12BW125
617 -
618 -
619 -Downlink:
620 -
621 -Uplink channels 1-7(RX1)
622 -
623 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
624 -
625 -
626 -1.
627 -11.
628 -111. IN865-867 (IN865)
629 -
630 -Uplink:
631 -
632 -865.0625 - SF7BW125 to SF12BW125
633 -
634 -865.4025 - SF7BW125 to SF12BW125
635 -
636 -865.9850 - SF7BW125 to SF12BW125
637 -
638 -
639 -Downlink:
640 -
641 -Uplink channels 1-3 (RX1)
642 -
643 -866.550 - SF10BW125 (RX2)
644 -
645 -
646 -1.
647 -11. LED Indicator
648 -
649 -The LSE01 has an internal LED which is to show the status of different state.
650 -
651 -
652 -* Blink once when device power on.
653 -* Solid ON for 5 seconds once device successful Join the network.
654 -* Blink once when device transmit a packet.
655 -
656 -1.
657 -11. Installation in Soil
658 -
659 -**Measurement the soil surface**
660 -
661 -
662 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
663 -
664 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
665 -
666 -
667 -
668 -
669 -
670 -
671 -
672 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
673 -
674 -
675 -
564 +(((
676 676  Dig a hole with diameter > 20CM.
566 +)))
677 677  
568 +(((
678 678  Horizontal insert the probe to the soil and fill the hole for long term measurement.
570 +)))
571 +)))
679 679  
573 +[[image:1654506665940-119.png]]
680 680  
575 +(((
576 +
577 +)))
681 681  
682 682  
683 -1.
684 -11. ​Firmware Change Log
580 +== 2.8  ​Firmware Change Log ==
685 685  
686 -**Firmware download link:**
687 687  
688 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
583 +Download URL & Firmware Change log
689 689  
585 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
690 690  
691 -**Firmware Upgrade Method:**
692 692  
693 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
588 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
694 694  
695 695  
696 -**V1.0.**
697 697  
698 -Release
592 +== 2.9  ​Battery Analysis ==
699 699  
594 +=== 2.9.1  ​Battery Type ===
700 700  
701 701  
702 -1.
703 -11. ​Battery Analysis
704 -111. ​Battery Type
597 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
705 705  
706 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
707 707  
600 +The battery is designed to last for several years depends on the actually use environment and update interval. 
708 708  
709 -The battery is designed to last for more than 5 years for the LSN50.
710 710  
711 -
712 712  The battery related documents as below:
713 713  
714 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
715 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
716 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
605 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
717 717  
718 -|(((
719 -JST-XH-2P connector
609 +(((
610 +[[image:image-20220708140453-6.png]]
720 720  )))
721 721  
722 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
723 723  
724 724  
615 +=== 2.9.2  Power consumption Analyze ===
725 725  
726 -1.
727 -11.
728 -111. ​Battery Note
617 +(((
618 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
619 +)))
729 729  
730 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
731 731  
622 +(((
623 +Instruction to use as below:
624 +)))
732 732  
733 -1.
734 -11.
735 -111. ​Replace the battery
626 +(((
627 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
628 +)))
736 736  
737 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 738  
631 +(((
632 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
633 +)))
739 739  
740 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
635 +* (((
636 +Product Model
637 +)))
638 +* (((
639 +Uplink Interval
640 +)))
641 +* (((
642 +Working Mode
643 +)))
741 741  
645 +(((
646 +And the Life expectation in difference case will be shown on the right.
647 +)))
742 742  
743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
649 +[[image:image-20220708141352-7.jpeg]]
744 744  
745 745  
746 746  
653 +=== 2.9.3  ​Battery Note ===
747 747  
655 +(((
656 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
657 +)))
748 748  
749 749  
750 -= 3. ​Using the AT Commands =
751 751  
752 -== 3.1 Access AT Commands ==
661 +=== 2.9.4  Replace the battery ===
753 753  
663 +(((
664 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
665 +)))
754 754  
755 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
756 756  
757 -[[image:1654501986557-872.png]]
758 758  
669 += 3. ​ Access NB-IoT Module =
759 759  
760 -Or if you have below board, use below connection:
671 +(((
672 +Users can directly access the AT command set of the NB-IoT module.
673 +)))
761 761  
675 +(((
676 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
677 +)))
762 762  
763 -[[image:1654502005655-729.png]]
679 +[[image:1657261278785-153.png]]
764 764  
765 765  
766 766  
767 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
683 += 4.  Using the AT Commands =
768 768  
685 +== 4.1  Access AT Commands ==
769 769  
770 - [[image:1654502050864-459.png]]
687 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
771 771  
772 772  
773 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
690 +AT+<CMD>?  : Help on <CMD>
774 774  
692 +AT+<CMD>         : Run <CMD>
775 775  
776 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
694 +AT+<CMD>=<value> : Set the value
777 777  
778 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
696 +AT+<CMD>=?  : Get the value
779 779  
780 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
783 -
784 -
785 785  (% style="color:#037691" %)**General Commands**(%%)      
786 786  
787 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
701 +AT  : Attention       
788 788  
789 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
703 +AT?  : Short Help     
790 790  
791 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
705 +ATZ  : MCU Reset    
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
707 +AT+TDC  : Application Data Transmission Interval
794 794  
709 +AT+CFG  : Print all configurations
795 795  
796 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
711 +AT+CFGMOD           : Working mode selection
797 797  
798 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
713 +AT+INTMOD            : Set the trigger interrupt mode
799 799  
800 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
715 +AT+5VT  : Set extend the time of 5V power  
801 801  
802 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
717 +AT+PRO  : Choose agreement
803 803  
804 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
719 +AT+WEIGRE  : Get weight or set weight to 0
805 805  
806 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
721 +AT+WEIGAP  : Get or Set the GapValue of weight
807 807  
808 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
723 +AT+RXDL  : Extend the sending and receiving time
809 809  
810 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
725 +AT+CNTFAC  : Get or set counting parameters
811 811  
812 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
727 +AT+SERVADDR  : Server Address
813 813  
814 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
815 815  
816 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
730 +(% style="color:#037691" %)**COAP Management**      
817 817  
818 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
732 +AT+URI            : Resource parameters
819 819  
820 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
821 821  
822 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
735 +(% style="color:#037691" %)**UDP Management**
823 823  
824 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
737 +AT+CFM          : Upload confirmation mode (only valid for UDP)
825 825  
826 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
740 +(% style="color:#037691" %)**MQTT Management**
829 829  
742 +AT+CLIENT               : Get or Set MQTT client
830 830  
831 -(% style="color:#037691" %)**LoRa Network Management**
744 +AT+UNAME  : Get or Set MQTT Username
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
746 +AT+PWD                  : Get or Set MQTT password
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
748 +AT+PUBTOPI : Get or Set MQTT publish topic
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
750 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
753 +(% style="color:#037691" %)**Information**          
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
755 +AT+FDR  : Factory Data Reset
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
757 +AT+PWOR : Serial Access Password
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
761 += ​5.  FAQ =
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
763 +== 5.1 How to Upgrade Firmware ==
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
766 +(((
767 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
768 +)))
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
860 -
861 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
862 -
863 -
864 -(% style="color:#037691" %)**Information** 
865 -
866 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
867 -
868 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
869 -
870 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
871 -
872 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
873 -
874 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
875 -
876 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
877 -
878 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
879 -
880 -
881 -= ​4. FAQ =
882 -
883 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
884 -
885 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
886 -When downloading the images, choose the required image file for download. ​
887 -
888 -
889 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
890 -
891 -
892 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
893 -
894 -
895 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
896 -
897 -[[image:image-20220606154726-3.png]]
898 -
899 -When you use the TTN network, the US915 frequency bands use are:
900 -
901 -* 903.9 - SF7BW125 to SF10BW125
902 -* 904.1 - SF7BW125 to SF10BW125
903 -* 904.3 - SF7BW125 to SF10BW125
904 -* 904.5 - SF7BW125 to SF10BW125
905 -* 904.7 - SF7BW125 to SF10BW125
906 -* 904.9 - SF7BW125 to SF10BW125
907 -* 905.1 - SF7BW125 to SF10BW125
908 -* 905.3 - SF7BW125 to SF10BW125
909 -* 904.6 - SF8BW500
910 -
911 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
912 -
913 -(% class="box infomessage" %)
914 914  (((
915 -**AT+CHE=2**
771 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
916 916  )))
917 917  
918 -(% class="box infomessage" %)
919 919  (((
920 -**ATZ**
775 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
921 921  )))
922 922  
923 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
924 924  
925 925  
926 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
780 += 6.  Trouble Shooting =
927 927  
928 -[[image:image-20220606154825-4.png]]
782 +== 6.1  ​Connection problem when uploading firmware ==
929 929  
930 930  
785 +(% class="wikigeneratedid" %)
786 +(((
787 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
788 +)))
931 931  
932 -= 5. Trouble Shooting =
933 933  
934 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
935 935  
936 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
792 +== 6. AT Command input doesn't work ==
937 937  
794 +(((
795 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
796 +)))
938 938  
939 -== 5.2 AT Command input doesn’t work ==
940 940  
941 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
942 942  
800 += 7. ​ Order Info =
943 943  
944 -== 5.3 Device rejoin in at the second uplink packet ==
945 945  
946 -(% style="color:#4f81bd" %)**Issue describe as below:**
803 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
947 947  
948 -[[image:1654500909990-784.png]]
949 949  
806 +(% class="wikigeneratedid" %)
807 +(((
808 +
809 +)))
950 950  
951 -(% style="color:#4f81bd" %)**Cause for this issue:**
811 += 8 Packing Info =
952 952  
953 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
813 +(((
814 +
954 954  
816 +(% style="color:#037691" %)**Package Includes**:
955 955  
956 -(% style="color:#4f81bd" %)**Solution: **
957 957  
958 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
819 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 +* External antenna x 1
821 +)))
959 959  
960 -[[image:1654500929571-736.png]]
823 +(((
824 +
961 961  
826 +(% style="color:#037691" %)**Dimension and weight**:
962 962  
963 -= 6. ​Order Info =
964 964  
965 -
966 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
967 -
968 -
969 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
970 -
971 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
972 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
973 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
974 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
975 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
976 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
977 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
978 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
979 -
980 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
981 -
982 -* (% style="color:red" %)**4**(%%): 4000mAh battery
983 -* (% style="color:red" %)**8**(%%): 8500mAh battery
984 -
985 -= 7. Packing Info =
986 -
987 -(((
988 -**Package Includes**:
829 +* Size: 195 x 125 x 55 mm
830 +* Weight:   420g
989 989  )))
990 990  
991 -* (((
992 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
993 -)))
994 -
995 995  (((
996 996  
997 -)))
998 998  
999 -(((
1000 -**Dimension and weight**:
1001 -)))
1002 1002  
1003 -* (((
1004 -Device Size: cm
837 +
1005 1005  )))
1006 -* (((
1007 -Device Weight: g
1008 -)))
1009 -* (((
1010 -Package Size / pcs : cm
1011 -)))
1012 -* (((
1013 -Weight / pcs : g
1014 -)))
1015 1015  
1016 -= 8. Support =
840 += 9.  Support =
1017 1017  
1018 1018  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1019 1019  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1020 -
1021 -
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content