Last modified by Mengting Qiu on 2024/04/02 16:44

From version 15.6
edited by Xiaoling
on 2022/06/06 16:35
Change comment: There is no comment for this version
To version 63.1
edited by Xiaoling
on 2022/07/08 14:18
Change comment: Uploaded new attachment "1657261119050-993.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,745 +8,647 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
31 31  (((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
26 +
34 34  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
35 35  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
36 36  [[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
40 40  
41 41  
42 42  
43 43  == 1.2 ​Features ==
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
62 +== 1.3  Specification ==
58 58  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
62 62  
63 63  
64 64  
65 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
66 66  
67 67  * Smart Agriculture
68 68  
69 -
70 70  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 71  ​
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
75 75  
76 76  
77 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
78 78  
79 79  
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
82 82  
83 -== 2.1 How it works ==
103 +== 2.1  How it works ==
84 84  
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 -)))
88 88  
89 89  (((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 91  )))
92 92  
93 93  
94 -
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 -
97 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 -
99 -
100 -[[image:1654503992078-669.png]]
101 -
102 -
103 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 -
105 -
106 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
107 -
108 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 -
110 -
111 -
112 -
113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 -
115 -
116 -**Add APP EUI in the application**
117 -
118 -
119 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
120 -
121 -
122 -
123 -**Add APP KEY and DEV EUI**
124 -
125 -
126 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
127 -
128 -|(((
129 -
111 +(((
112 +The diagram below shows the working flow in default firmware of NSE01:
130 130  )))
131 131  
132 -**Step 2**: Power on LSE01
115 +[[image:image-20220708101605-2.png]]
133 133  
134 -
135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
136 -
137 -
138 -
139 -|(((
117 +(((
140 140  
141 141  )))
142 142  
143 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
144 144  
145 145  
123 +== 2.2 ​ Configure the NSE01 ==
146 146  
147 147  
126 +=== 2.2.1 Test Requirement ===
148 148  
149 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 150  
151 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
129 +To use NSE01 in your city, make sure meet below requirements:
152 152  
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
153 153  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
154 154  
155 155  
156 -1.
157 -11. ​Uplink Payload
158 -111. MOD=0(Default Mode)
140 +[[image:1657249419225-449.png]]
159 159  
160 -LSE01 will uplink payload via LoRaWAN with below payload format: 
161 161  
162 162  
163 -Uplink payload includes in total 11 bytes.
164 -
144 +=== 2.2.2 Insert SIM card ===
165 165  
166 -|(((
167 -**Size**
146 +Insert the NB-IoT Card get from your provider.
168 168  
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>path:#bat]]|(((
172 -Temperature
148 +User need to take out the NB-IoT module and insert the SIM card like below:
173 173  
174 -(Reserve, Ignore now)
175 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
176 -MOD & Digital Interrupt
177 177  
178 -(Optional)
179 -)))
151 +[[image:1657249468462-536.png]]
180 180  
181 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
182 182  
183 183  
184 -1.
185 -11.
186 -111. MOD=1(Original value)
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
187 187  
188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
189 -
190 -|(((
191 -**Size**
192 -
193 -**(bytes)**
194 -)))|**2**|**2**|**2**|**2**|**2**|**1**
195 -|**Value**|[[BAT>>path:#bat]]|(((
196 -Temperature
197 -
198 -(Reserve, Ignore now)
199 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
200 -MOD & Digital Interrupt
201 -
202 -(Optional)
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
203 203  )))
161 +)))
204 204  
205 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
206 206  
207 -1.
208 -11.
209 -111. Battery Info
164 +**Connection:**
210 210  
211 -Check the battery voltage for LSE01.
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
212 212  
213 -Ex1: 0x0B45 = 2885mV
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
214 214  
215 -Ex2: 0x0B49 = 2889mV
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
216 216  
217 217  
173 +In the PC, use below serial tool settings:
218 218  
219 -1.
220 -11.
221 -111. Soil Moisture
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
222 222  
223 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
224 224  
225 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
185 +[[image:image-20220708110657-3.png]]
226 226  
227 -**05DC(H) = 1500(D) /100 = 15%.**
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
228 228  
229 229  
230 -1.
231 -11.
232 -111. Soil Temperature
233 233  
234 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
235 235  
236 -**Example**:
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
237 237  
238 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
239 239  
240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
196 +**Use below commands:**
241 241  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
242 242  
243 -1.
244 -11.
245 -111. Soil Conductivity (EC)
202 +For parameter description, please refer to AT command set
246 246  
247 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
204 +[[image:1657249793983-486.png]]
248 248  
249 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
250 250  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
251 251  
252 -Generally, the EC value of irrigation water is less than 800uS / cm.
209 +[[image:1657249831934-534.png]]
253 253  
254 -1.
255 -11.
256 -111. MOD
257 257  
258 -Firmware version at least v2.1 supports changing mode.
259 259  
260 -For example, bytes[10]=90
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
261 261  
262 -mod=(bytes[10]>>7)&0x01=1.
215 +This feature is supported since firmware version v1.0.1
263 263  
264 264  
265 -Downlink Command:
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
266 266  
267 -If payload = 0x0A00, workmode=0
222 +[[image:1657249864775-321.png]]
268 268  
269 -If** **payload =** **0x0A01, workmode=1
270 270  
225 +[[image:1657249930215-289.png]]
271 271  
272 -1.
273 -11.
274 -111. ​Decode payload in The Things Network
275 275  
276 -While using TTN network, you can add the payload format to decode the payload.
277 277  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
278 278  
279 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
231 +This feature is supported since firmware version v110
280 280  
281 -The payload decoder function for TTN is here:
282 282  
283 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
284 284  
242 +[[image:1657249978444-674.png]]
285 285  
286 -1.
287 -11. Uplink Interval
288 288  
289 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
245 +[[image:1657249990869-686.png]]
290 290  
291 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
292 292  
293 -1.
294 -11. ​Downlink Payload
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
295 295  
296 -By default, LSE50 prints the downlink payload to console port.
297 297  
298 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
299 -|TDC (Transmit Time Interval)|Any|01|4
300 -|RESET|Any|04|2
301 -|AT+CFM|Any|05|4
302 -|INTMOD|Any|06|4
303 -|MOD|Any|0A|2
304 304  
305 -**Examples**
254 +=== 2.2.7 Use TCP protocol to uplink data ===
306 306  
256 +This feature is supported since firmware version v110
307 307  
308 -**Set TDC**
309 309  
310 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
311 311  
312 -Payload:    01 00 00 1E    TDC=30S
262 +[[image:1657250217799-140.png]]
313 313  
314 -Payload:    01 00 00 3C    TDC=60S
315 315  
265 +[[image:1657250255956-604.png]]
316 316  
317 -**Reset**
318 318  
319 -If payload = 0x04FF, it will reset the LSE01
320 320  
269 +=== 2.2.8 Change Update Interval ===
321 321  
322 -**CFM**
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
323 323  
324 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
325 325  
326 -1.
327 -11. ​Show Data in DataCake IoT Server
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
328 328  
329 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
330 330  
331 331  
332 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
333 333  
334 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
285 +== 2.3  Uplink Payload ==
335 335  
287 +In this mode, uplink payload includes in total 18 bytes
336 336  
337 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
338 338  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
339 339  
340 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
341 341  
298 +[[image:image-20220708111918-4.png]]
342 342  
343 343  
301 +The payload is ASCII string, representative same HEX:
344 344  
303 +0x72403155615900640c7817075e0a8c02f900 where:
345 345  
346 -Step 3: Create an account or log in Datacake.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
347 347  
348 -Step 4: Search the LSE01 and add DevEUI.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
349 349  
315 +== 2.4  Payload Explanation and Sensor Interface ==
350 350  
351 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
352 352  
318 +=== 2.4.1  Device ID ===
353 353  
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 354  
355 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
356 356  
324 +**Example:**
357 357  
358 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
326 +AT+DEUI=A84041F15612
359 359  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
360 360  
361 361  
362 -1.
363 -11. Frequency Plans
364 364  
365 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
332 +=== 2.4.2  Version Info ===
366 366  
367 -1.
368 -11.
369 -111. EU863-870 (EU868)
334 +Specify the software version: 0x64=100, means firmware version 1.00.
370 370  
371 -Uplink:
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
372 372  
373 -868.1 - SF7BW125 to SF12BW125
374 374  
375 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
376 376  
377 -868.5 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
378 378  
379 -867.1 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
380 380  
381 -867.3 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
382 382  
383 -867.5 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
384 384  
385 -867.7 - SF7BW125 to SF12BW125
386 386  
387 -867.9 - SF7BW125 to SF12BW125
388 388  
389 -868.8 - FSK
356 +=== 2.4.4  Signal Strength ===
390 390  
358 +NB-IoT Network signal Strength.
391 391  
392 -Downlink:
360 +**Ex1: 0x1d = 29**
393 393  
394 -Uplink channels 1-9 (RX1)
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
395 395  
396 -869.525 - SF9BW125 (RX2 downlink only)
364 +(% style="color:blue" %)**1**(%%)  -111dBm
397 397  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
398 398  
399 -1.
400 -11.
401 -111. US902-928(US915)
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
402 402  
403 -Used in USA, Canada and South America. Default use CHE=2
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
404 404  
405 -Uplink:
406 406  
407 -903.9 - SF7BW125 to SF10BW125
408 408  
409 -904.1 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
410 410  
411 -904.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
412 412  
413 -904.5 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
414 414  
415 -904.7 - SF7BW125 to SF10BW125
384 +(((
385 +
386 +)))
416 416  
417 -904.9 - SF7BW125 to SF10BW125
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
418 418  
419 -905.1 - SF7BW125 to SF10BW125
420 420  
421 -905.3 - SF7BW125 to SF10BW125
422 422  
394 +=== 2.4.6  Soil Temperature ===
423 423  
424 -Downlink:
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
425 425  
426 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
427 427  
428 -923.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
429 429  
430 -924.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
431 431  
432 -925.1 - SF7BW500 to SF12BW500
433 433  
434 -925.7 - SF7BW500 to SF12BW500
435 435  
436 -926.3 - SF7BW500 to SF12BW500
414 +=== 2.4.7  Soil Conductivity (EC) ===
437 437  
438 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
439 439  
440 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
441 441  
442 -923.3 - SF12BW500(RX2 downlink only)
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
443 443  
428 +(((
429 +
430 +)))
444 444  
445 -1.
446 -11.
447 -111. CN470-510 (CN470)
432 +(((
433 +
434 +)))
448 448  
449 -Used in China, Default use CHE=1
436 +=== 2.4.8  Digital Interrupt ===
450 450  
451 -Uplink:
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
452 452  
453 -486.3 - SF7BW125 to SF12BW125
440 +The command is:
454 454  
455 -486.5 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
456 456  
457 -486.7 - SF7BW125 to SF12BW125
458 458  
459 -486.9 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
460 460  
461 -487.1 - SF7BW125 to SF12BW125
462 462  
463 -487.3 - SF7BW125 to SF12BW125
448 +Example:
464 464  
465 -487.5 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
466 466  
467 -487.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
468 468  
469 469  
470 -Downlink:
471 471  
472 -506.7 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
473 473  
474 -506.9 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
475 475  
476 -507.1 - SF7BW125 to SF12BW125
477 477  
478 -507.3 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
479 479  
480 -507.5 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
481 481  
482 -507.7 - SF7BW125 to SF12BW125
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
483 483  
484 -507.9 - SF7BW125 to SF12BW125
485 485  
486 -508.1 - SF7BW125 to SF12BW125
487 487  
488 -505.3 - SF12BW125 (RX2 downlink only)
469 +== 2.5  Downlink Payload ==
489 489  
471 +By default, NSE01 prints the downlink payload to console port.
490 490  
491 -1.
492 -11.
493 -111. AU915-928(AU915)
473 +[[image:image-20220708133731-5.png]]
494 494  
495 -Default use CHE=2
496 496  
497 -Uplink:
498 498  
499 -916.8 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
500 500  
501 -917.0 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
502 502  
503 -917.2 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
504 504  
505 -917.4 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
506 506  
507 -917.6 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
508 508  
509 -917.8 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
510 510  
511 -918.0 - SF7BW125 to SF12BW125
501 +(((
502 +
503 +)))
512 512  
513 -918.2 - SF7BW125 to SF12BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
514 514  
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
515 515  
516 -Downlink:
517 517  
518 -923.3 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
519 519  
520 -923.9 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
521 521  
522 -924.5 - SF7BW500 to SF12BW500
523 523  
524 -925.1 - SF7BW500 to SF12BW500
525 525  
526 -925.7 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
527 527  
528 -926.3 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
529 529  
530 -926.9 - SF7BW500 to SF12BW500
531 531  
532 -927.5 - SF7BW500 to SF12BW500
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
533 533  
534 -923.3 - SF12BW500(RX2 downlink only)
535 535  
536 -1.
537 -11.
538 -111. AS920-923 & AS923-925 (AS923)
539 539  
540 -**Default Uplink channel:**
541 541  
542 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
543 543  
544 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
545 545  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
546 546  
547 -**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
548 548  
549 -(OTAA mode, channel added by JoinAccept message)
550 550  
551 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
552 552  
553 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
554 554  
555 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
556 556  
557 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
558 558  
559 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
560 560  
561 -923.0 - SF7BW125 to SF10BW125
562 562  
563 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
564 564  
565 565  
566 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
567 567  
568 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
569 569  
570 -923.8 - SF7BW125 to SF10BW125
571 571  
572 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
573 573  
574 -924.2 - SF7BW125 to SF10BW125
575 575  
576 -924.4 - SF7BW125 to SF10BW125
577 577  
578 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
579 579  
577 +=== 2.9.1  ​Battery Type ===
580 580  
581 581  
582 -**Downlink:**
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
583 583  
584 -Uplink channels 1-8 (RX1)
585 585  
586 -923.2 - SF10BW125 (RX2)
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
587 587  
588 588  
589 -1.
590 -11.
591 -111. KR920-923 (KR920)
586 +The battery related documents as below:
592 592  
593 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
594 594  
595 -922.1 - SF7BW125 to SF12BW125
592 +(((
593 +[[image:image-20220708140453-6.png]]
594 +)))
596 596  
597 -922.3 - SF7BW125 to SF12BW125
598 598  
599 -922.5 - SF7BW125 to SF12BW125
600 600  
598 +=== 2.9.2  Power consumption Analyze ===
601 601  
602 -Uplink: (OTAA mode, channel added by JoinAccept message)
600 +(((
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
602 +)))
603 603  
604 -922.1 - SF7BW125 to SF12BW125
605 605  
606 -922.3 - SF7BW125 to SF12BW125
605 +(((
606 +Instruction to use as below:
607 +)))
607 607  
608 -922.5 - SF7BW125 to SF12BW125
609 +(((
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
611 +)))
609 609  
610 -922.7 - SF7BW125 to SF12BW125
611 611  
612 -922.9 - SF7BW125 to SF12BW125
614 +(((
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
616 +)))
613 613  
614 -923.1 - SF7BW125 to SF12BW125
618 +* (((
619 +Product Model
620 +)))
621 +* (((
622 +Uplink Interval
623 +)))
624 +* (((
625 +Working Mode
626 +)))
615 615  
616 -923.3 - SF7BW125 to SF12BW125
617 -
618 -
619 -Downlink:
620 -
621 -Uplink channels 1-7(RX1)
622 -
623 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
624 -
625 -
626 -1.
627 -11.
628 -111. IN865-867 (IN865)
629 -
630 -Uplink:
631 -
632 -865.0625 - SF7BW125 to SF12BW125
633 -
634 -865.4025 - SF7BW125 to SF12BW125
635 -
636 -865.9850 - SF7BW125 to SF12BW125
637 -
638 -
639 -Downlink:
640 -
641 -Uplink channels 1-3 (RX1)
642 -
643 -866.550 - SF10BW125 (RX2)
644 -
645 -
646 -1.
647 -11. LED Indicator
648 -
649 -The LSE01 has an internal LED which is to show the status of different state.
650 -
651 -
652 -* Blink once when device power on.
653 -* Solid ON for 5 seconds once device successful Join the network.
654 -* Blink once when device transmit a packet.
655 -
656 -1.
657 -11. Installation in Soil
658 -
659 -**Measurement the soil surface**
660 -
661 -
662 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
663 -
664 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
665 -
666 -
667 -
668 -
669 -
670 -
671 -
672 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
673 -
674 -
675 -
676 -Dig a hole with diameter > 20CM.
677 -
678 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
679 -
680 -
681 -
682 -
683 -1.
684 -11. ​Firmware Change Log
685 -
686 -**Firmware download link:**
687 -
688 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
689 -
690 -
691 -**Firmware Upgrade Method:**
692 -
693 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
694 -
695 -
696 -**V1.0.**
697 -
698 -Release
699 -
700 -
701 -
702 -1.
703 -11. ​Battery Analysis
704 -111. ​Battery Type
705 -
706 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
707 -
708 -
709 -The battery is designed to last for more than 5 years for the LSN50.
710 -
711 -
712 -The battery related documents as below:
713 -
714 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
715 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
716 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
717 -
718 -|(((
719 -JST-XH-2P connector
628 +(((
629 +And the Life expectation in difference case will be shown on the right.
720 720  )))
721 721  
722 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
632 +[[image:image-20220708141352-7.jpeg]]
723 723  
724 724  
725 725  
726 -1.
727 -11.
728 -111. ​Battery Note
636 +=== 2.9.3  ​Battery Note ===
729 729  
638 +(((
730 730  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
640 +)))
731 731  
732 732  
733 -1.
734 -11.
735 -111. ​Replace the battery
736 736  
737 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
644 +=== 2.9.4  Replace the battery ===
738 738  
646 +(((
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
648 +)))
739 739  
740 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
741 741  
742 742  
743 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
744 -
745 -
746 -
747 -
748 -
749 -
750 750  = 3. ​Using the AT Commands =
751 751  
752 752  == 3.1 Access AT Commands ==
... ... @@ -754,13 +754,13 @@
754 754  
755 755  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
756 756  
757 -[[image:1654501986557-872.png]]
659 +[[image:1654501986557-872.png||height="391" width="800"]]
758 758  
759 759  
760 760  Or if you have below board, use below connection:
761 761  
762 762  
763 -[[image:1654502005655-729.png]]
665 +[[image:1654502005655-729.png||height="503" width="801"]]
764 764  
765 765  
766 766  
... ... @@ -767,10 +767,10 @@
767 767  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
768 768  
769 769  
770 - [[image:1654502050864-459.png]]
672 + [[image:1654502050864-459.png||height="564" width="806"]]
771 771  
772 772  
773 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
675 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
774 774  
775 775  
776 776  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -882,20 +882,38 @@
882 882  
883 883  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
884 884  
885 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
787 +(((
788 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
886 886  When downloading the images, choose the required image file for download. ​
790 +)))
887 887  
792 +(((
793 +
794 +)))
888 888  
796 +(((
889 889  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
798 +)))
890 890  
800 +(((
801 +
802 +)))
891 891  
804 +(((
892 892  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
806 +)))
893 893  
808 +(((
809 +
810 +)))
894 894  
812 +(((
895 895  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
814 +)))
896 896  
897 897  [[image:image-20220606154726-3.png]]
898 898  
818 +
899 899  When you use the TTN network, the US915 frequency bands use are:
900 900  
901 901  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -908,37 +908,47 @@
908 908  * 905.3 - SF7BW125 to SF10BW125
909 909  * 904.6 - SF8BW500
910 910  
831 +(((
911 911  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
912 912  
913 -(% class="box infomessage" %)
914 -(((
915 -**AT+CHE=2**
834 +* (% style="color:#037691" %)**AT+CHE=2**
835 +* (% style="color:#037691" %)**ATZ**
916 916  )))
917 917  
918 -(% class="box infomessage" %)
919 919  (((
920 -**ATZ**
921 -)))
839 +
922 922  
923 923  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
842 +)))
924 924  
844 +(((
845 +
846 +)))
925 925  
848 +(((
926 926  The **AU915** band is similar. Below are the AU915 Uplink Channels.
850 +)))
927 927  
928 928  [[image:image-20220606154825-4.png]]
929 929  
930 930  
855 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
931 931  
857 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
858 +
859 +
932 932  = 5. Trouble Shooting =
933 933  
934 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
862 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
935 935  
936 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
864 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
937 937  
938 938  
939 -== 5.2 AT Command input doesnt work ==
867 +== 5.2 AT Command input doesn't work ==
940 940  
941 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
869 +(((
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
871 +)))
942 942  
943 943  
944 944  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -950,7 +950,9 @@
950 950  
951 951  (% style="color:#4f81bd" %)**Cause for this issue:**
952 952  
883 +(((
953 953  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
885 +)))
954 954  
955 955  
956 956  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -957,7 +957,7 @@
957 957  
958 958  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
959 959  
960 -[[image:1654500929571-736.png]]
892 +[[image:1654500929571-736.png||height="458" width="832"]]
961 961  
962 962  
963 963  = 6. ​Order Info =
... ... @@ -982,10 +982,17 @@
982 982  * (% style="color:red" %)**4**(%%): 4000mAh battery
983 983  * (% style="color:red" %)**8**(%%): 8500mAh battery
984 984  
917 +(% class="wikigeneratedid" %)
918 +(((
919 +
920 +)))
921 +
985 985  = 7. Packing Info =
986 986  
987 987  (((
988 -**Package Includes**:
925 +
926 +
927 +(% style="color:#037691" %)**Package Includes**:
989 989  )))
990 990  
991 991  * (((
... ... @@ -994,10 +994,8 @@
994 994  
995 995  (((
996 996  
997 -)))
998 998  
999 -(((
1000 -**Dimension and weight**:
937 +(% style="color:#037691" %)**Dimension and weight**:
1001 1001  )))
1002 1002  
1003 1003  * (((
... ... @@ -1011,6 +1011,8 @@
1011 1011  )))
1012 1012  * (((
1013 1013  Weight / pcs : g
951 +
952 +
1014 1014  )))
1015 1015  
1016 1016  = 8. Support =
... ... @@ -1017,5 +1017,3 @@
1017 1017  
1018 1018  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1019 1019  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1020 -
1021 -
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content