Last modified by Mengting Qiu on 2024/04/02 16:44

From version 15.5
edited by Xiaoling
on 2022/06/06 16:29
Change comment: There is no comment for this version
To version 65.3
edited by Xiaoling
on 2022/07/08 15:04
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
... ... @@ -8,1009 +8,829 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
14 +**Table of Contents:**
22 22  
23 -(((
24 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
16 +{{toc/}}
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
23 += 1.  Introduction =
40 40  
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
41 41  
27 +(((
28 +
42 42  
43 -== 1.2 Features ==
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Ultra low power consumption
47 -* Monitor Soil Moisture
48 -* Monitor Soil Temperature
49 -* Monitor Soil Conductivity
50 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 -* AT Commands to change parameters
52 -* Uplink on periodically
53 -* Downlink to change configure
54 -* IP66 Waterproof Enclosure
55 -* 4000mAh or 8500mAh Battery for long term use
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
56 56  
57 -== 1.3 Specification ==
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
58 58  
59 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
60 60  
61 -[[image:image-20220606162220-5.png]]
38 +
39 +)))
62 62  
41 +[[image:1654503236291-817.png]]
63 63  
64 64  
65 -== ​1.4 Applications ==
44 +[[image:1657245163077-232.png]]
66 66  
67 -* Smart Agriculture
68 68  
69 -== ​1.5 Firmware Change log ==
70 70  
48 +== 1.2 ​ Features ==
71 71  
72 -**LSE01 v1.0 :**  Release
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* AT Commands to change parameters
55 +* Uplink on periodically
56 +* Downlink to change configure
57 +* IP66 Waterproof Enclosure
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
73 73  
74 74  
75 75  
76 -= 2. Configure LSE01 to connect to LoRaWAN network =
77 77  
78 -== 2.1 How it works ==
66 +== 1.3  Specification ==
79 79  
80 -(((
81 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
82 -)))
83 83  
84 -(((
85 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
86 -)))
69 +(% style="color:#037691" %)**Common DC Characteristics:**
87 87  
71 +* Supply Voltage: 2.1v ~~ 3.6v
72 +* Operating Temperature: -40 ~~ 85°C
88 88  
89 89  
90 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
91 91  
92 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
76 +(% style="color:#037691" %)**NB-IoT Spec:**
93 93  
78 +* - B1 @H-FDD: 2100MHz
79 +* - B3 @H-FDD: 1800MHz
80 +* - B8 @H-FDD: 900MHz
81 +* - B5 @H-FDD: 850MHz
82 +* - B20 @H-FDD: 800MHz
83 +* - B28 @H-FDD: 700MHz
94 94  
95 -[[image:1654503992078-669.png]]
96 96  
97 97  
98 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
87 +Probe(% style="color:#037691" %)** Specification:**
99 99  
89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
100 100  
101 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
91 +[[image:image-20220708101224-1.png]]
102 102  
103 -Each LSE01 is shipped with a sticker with the default device EUI as below:
104 104  
105 105  
95 +== ​1.4  Applications ==
106 106  
97 +* Smart Agriculture
107 107  
108 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
109 109  
102 +== 1.5  Pin Definitions ==
110 110  
111 -**Add APP EUI in the application**
112 112  
105 +[[image:1657246476176-652.png]]
113 113  
114 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
115 115  
116 116  
109 += 2.  Use NSE01 to communicate with IoT Server =
117 117  
118 -**Add APP KEY and DEV EUI**
111 +== 2.1  How it works ==
119 119  
120 120  
121 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
122 -
123 -|(((
124 -
114 +(((
115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
125 125  )))
126 126  
127 -**Step 2**: Power on LSE01
128 128  
119 +(((
120 +The diagram below shows the working flow in default firmware of NSE01:
121 +)))
129 129  
130 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
123 +[[image:image-20220708101605-2.png]]
131 131  
132 -
133 -
134 -|(((
125 +(((
135 135  
136 136  )))
137 137  
138 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
139 139  
140 140  
131 +== 2.2 ​ Configure the NSE01 ==
141 141  
142 142  
134 +=== 2.2.1 Test Requirement ===
143 143  
144 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
145 145  
146 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
137 +To use NSE01 in your city, make sure meet below requirements:
147 147  
139 +* Your local operator has already distributed a NB-IoT Network there.
140 +* The local NB-IoT network used the band that NSE01 supports.
141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
148 148  
143 +(((
144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
145 +)))
149 149  
150 150  
151 -1.
152 -11. ​Uplink Payload
153 -111. MOD=0(Default Mode)
148 +[[image:1657249419225-449.png]]
154 154  
155 -LSE01 will uplink payload via LoRaWAN with below payload format: 
156 156  
157 157  
158 -Uplink payload includes in total 11 bytes.
159 -
152 +=== 2.2.2 Insert SIM card ===
160 160  
161 -|(((
162 -**Size**
154 +Insert the NB-IoT Card get from your provider.
163 163  
164 -**(bytes)**
165 -)))|**2**|**2**|**2**|**2**|**2**|**1**
166 -|**Value**|[[BAT>>path:#bat]]|(((
167 -Temperature
156 +User need to take out the NB-IoT module and insert the SIM card like below:
168 168  
169 -(Reserve, Ignore now)
170 -)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
171 -MOD & Digital Interrupt
172 172  
173 -(Optional)
174 -)))
159 +[[image:1657249468462-536.png]]
175 175  
176 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
177 177  
178 178  
179 -1.
180 -11.
181 -111. MOD=1(Original value)
163 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
182 182  
183 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
184 -
185 -|(((
186 -**Size**
187 -
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>path:#bat]]|(((
191 -Temperature
192 -
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
195 -MOD & Digital Interrupt
196 -
197 -(Optional)
165 +(((
166 +(((
167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
198 198  )))
169 +)))
199 199  
200 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
201 201  
202 -1.
203 -11.
204 -111. Battery Info
172 +**Connection:**
205 205  
206 -Check the battery voltage for LSE01.
174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
207 207  
208 -Ex1: 0x0B45 = 2885mV
176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
209 209  
210 -Ex2: 0x0B49 = 2889mV
178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
211 211  
212 212  
181 +In the PC, use below serial tool settings:
213 213  
214 -1.
215 -11.
216 -111. Soil Moisture
183 +* Baud:  (% style="color:green" %)**9600**
184 +* Data bits:** (% style="color:green" %)8(%%)**
185 +* Stop bits: (% style="color:green" %)**1**
186 +* Parity:  (% style="color:green" %)**None**
187 +* Flow Control: (% style="color:green" %)**None**
217 217  
218 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
189 +(((
190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
191 +)))
219 219  
220 -For example, if the data you get from the register is 0x05 0xDC, the moisture content in the soil is
193 +[[image:image-20220708110657-3.png]]
221 221  
222 -**05DC(H) = 1500(D) /100 = 15%.**
195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
223 223  
224 224  
225 -1.
226 -11.
227 -111. Soil Temperature
228 228  
229 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
199 +=== 2.2.4 Use CoAP protocol to uplink data ===
230 230  
231 -**Example**:
201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
232 232  
233 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
234 234  
235 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
204 +**Use below commands:**
236 236  
206 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
237 237  
238 -1.
239 -11.
240 -111. Soil Conductivity (EC)
210 +For parameter description, please refer to AT command set
241 241  
242 -Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
212 +[[image:1657249793983-486.png]]
243 243  
244 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
245 245  
215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
246 246  
247 -Generally, the EC value of irrigation water is less than 800uS / cm.
217 +[[image:1657249831934-534.png]]
248 248  
249 -1.
250 -11.
251 -111. MOD
252 252  
253 -Firmware version at least v2.1 supports changing mode.
254 254  
255 -For example, bytes[10]=90
221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
256 256  
257 -mod=(bytes[10]>>7)&0x01=1.
223 +This feature is supported since firmware version v1.0.1
258 258  
259 259  
260 -Downlink Command:
226 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
228 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
261 261  
262 -If payload = 0x0A00, workmode=0
230 +[[image:1657249864775-321.png]]
263 263  
264 -If** **payload =** **0x0A01, workmode=1
265 265  
233 +[[image:1657249930215-289.png]]
266 266  
267 -1.
268 -11.
269 -111. ​Decode payload in The Things Network
270 270  
271 -While using TTN network, you can add the payload format to decode the payload.
272 272  
237 +=== 2.2.6 Use MQTT protocol to uplink data ===
273 273  
274 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
239 +This feature is supported since firmware version v110
275 275  
276 -The payload decoder function for TTN is here:
277 277  
278 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
242 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
245 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
246 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
279 279  
250 +[[image:1657249978444-674.png]]
280 280  
281 -1.
282 -11. Uplink Interval
283 283  
284 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
253 +[[image:1657249990869-686.png]]
285 285  
286 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
287 287  
288 -1.
289 -11. ​Downlink Payload
256 +(((
257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 +)))
290 290  
291 -By default, LSE50 prints the downlink payload to console port.
292 292  
293 -|**Downlink Control Type**|**FPort**|**Type Code**|**Downlink payload size(bytes)**
294 -|TDC (Transmit Time Interval)|Any|01|4
295 -|RESET|Any|04|2
296 -|AT+CFM|Any|05|4
297 -|INTMOD|Any|06|4
298 -|MOD|Any|0A|2
299 299  
300 -**Examples**
262 +=== 2.2.7 Use TCP protocol to uplink data ===
301 301  
264 +This feature is supported since firmware version v110
302 302  
303 -**Set TDC**
304 304  
305 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
267 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
306 306  
307 -Payload:    01 00 00 1E    TDC=30S
270 +[[image:1657250217799-140.png]]
308 308  
309 -Payload:    01 00 00 3C    TDC=60S
310 310  
273 +[[image:1657250255956-604.png]]
311 311  
312 -**Reset**
313 313  
314 -If payload = 0x04FF, it will reset the LSE01
315 315  
277 +=== 2.2.8 Change Update Interval ===
316 316  
317 -**CFM**
279 +User can use below command to change the (% style="color:green" %)**uplink interval**.
318 318  
319 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
281 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
320 320  
321 -1.
322 -11. ​Show Data in DataCake IoT Server
283 +(((
284 +(% style="color:red" %)**NOTE:**
285 +)))
323 323  
324 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
287 +(((
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
289 +)))
325 325  
326 326  
327 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
328 328  
329 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
293 +== 2.3  Uplink Payload ==
330 330  
295 +In this mode, uplink payload includes in total 18 bytes
331 331  
332 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 +|=(% style="width: 50px;" %)(((
299 +**Size(bytes)**
300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
333 333  
303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
334 334  
335 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
336 336  
306 +[[image:image-20220708111918-4.png]]
337 337  
338 338  
309 +The payload is ASCII string, representative same HEX:
339 339  
311 +0x72403155615900640c7817075e0a8c02f900 where:
340 340  
341 -Step 3: Create an account or log in Datacake.
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
342 342  
343 -Step 4: Search the LSE01 and add DevEUI.
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
344 344  
345 345  
346 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
347 347  
348 348  
326 +== 2.4  Payload Explanation and Sensor Interface ==
349 349  
350 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
351 351  
329 +=== 2.4.1  Device ID ===
352 352  
353 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
331 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 354  
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
355 355  
335 +**Example:**
356 356  
357 -1.
358 -11. Frequency Plans
337 +AT+DEUI=A84041F15612
359 359  
360 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
361 361  
362 -1.
363 -11.
364 -111. EU863-870 (EU868)
365 365  
366 -Uplink:
367 367  
368 -868.1 - SF7BW125 to SF12BW125
343 +=== 2.4.2  Version Info ===
369 369  
370 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
345 +Specify the software version: 0x64=100, means firmware version 1.00.
371 371  
372 -868.5 - SF7BW125 to SF12BW125
347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
373 373  
374 -867.1 - SF7BW125 to SF12BW125
375 375  
376 -867.3 - SF7BW125 to SF12BW125
377 377  
378 -867.5 - SF7BW125 to SF12BW125
351 +=== 2.4.3  Battery Info ===
379 379  
380 -867.7 - SF7BW125 to SF12BW125
353 +(((
354 +Check the battery voltage for LSE01.
355 +)))
381 381  
382 -867.9 - SF7BW125 to SF12BW125
357 +(((
358 +Ex1: 0x0B45 = 2885mV
359 +)))
383 383  
384 -868.8 - FSK
361 +(((
362 +Ex2: 0x0B49 = 2889mV
363 +)))
385 385  
386 386  
387 -Downlink:
388 388  
389 -Uplink channels 1-9 (RX1)
367 +=== 2.4.4  Signal Strength ===
390 390  
391 -869.525 - SF9BW125 (RX2 downlink only)
369 +NB-IoT Network signal Strength.
392 392  
371 +**Ex1: 0x1d = 29**
393 393  
394 -1.
395 -11.
396 -111. US902-928(US915)
373 +(% style="color:blue" %)**0**(%%)  -113dBm or less
397 397  
398 -Used in USA, Canada and South America. Default use CHE=2
375 +(% style="color:blue" %)**1**(%%)  -111dBm
399 399  
400 -Uplink:
377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
401 401  
402 -903.9 - SF7BW125 to SF10BW125
379 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
403 403  
404 -904.1 - SF7BW125 to SF10BW125
381 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
405 405  
406 -904.3 - SF7BW125 to SF10BW125
407 407  
408 -904.5 - SF7BW125 to SF10BW125
409 409  
410 -904.7 - SF7BW125 to SF10BW125
385 +=== 2.4. Soil Moisture ===
411 411  
412 -904.9 - SF7BW125 to SF10BW125
387 +(((
388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
389 +)))
413 413  
414 -905.1 - SF7BW125 to SF10BW125
391 +(((
392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
393 +)))
415 415  
416 -905.3 - SF7BW125 to SF10BW125
395 +(((
396 +
397 +)))
417 417  
399 +(((
400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
401 +)))
418 418  
419 -Downlink:
420 420  
421 -923.3 - SF7BW500 to SF12BW500
422 422  
423 -923.9 - SF7BW500 to SF12BW500
405 +=== 2.4.6  Soil Temperature ===
424 424  
425 -924.5 - SF7BW500 to SF12BW500
407 +(((
408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
409 +)))
426 426  
427 -925.1 - SF7BW500 to SF12BW500
411 +(((
412 +**Example**:
413 +)))
428 428  
429 -925.7 - SF7BW500 to SF12BW500
415 +(((
416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
417 +)))
430 430  
431 -926.3 - SF7BW500 to SF12BW500
419 +(((
420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
421 +)))
432 432  
433 -926.9 - SF7BW500 to SF12BW500
434 434  
435 -927.5 - SF7BW500 to SF12BW500
436 436  
437 -923.3 - SF12BW500(RX2 downlink only)
425 +=== 2.4.7  Soil Conductivity (EC) ===
438 438  
427 +(((
428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
429 +)))
439 439  
440 -1.
441 -11.
442 -111. CN470-510 (CN470)
431 +(((
432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
433 +)))
443 443  
444 -Used in China, Default use CHE=1
435 +(((
436 +Generally, the EC value of irrigation water is less than 800uS / cm.
437 +)))
445 445  
446 -Uplink:
439 +(((
440 +
441 +)))
447 447  
448 -486.3 - SF7BW125 to SF12BW125
443 +(((
444 +
445 +)))
449 449  
450 -486.5 - SF7BW125 to SF12BW125
447 +=== 2.4. Digital Interrupt ===
451 451  
452 -486.7 - SF7BW125 to SF12BW125
449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
453 453  
454 -486.9 - SF7BW125 to SF12BW125
451 +The command is:
455 455  
456 -487.1 - SF7BW125 to SF12BW125
453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
457 457  
458 -487.3 - SF7BW125 to SF12BW125
459 459  
460 -487.5 - SF7BW125 to SF12BW125
456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
461 461  
462 -487.7 - SF7BW125 to SF12BW125
463 463  
459 +Example:
464 464  
465 -Downlink:
461 +0x(00): Normal uplink packet.
466 466  
467 -506.7 - SF7BW125 to SF12BW125
463 +0x(01): Interrupt Uplink Packet.
468 468  
469 -506.9 - SF7BW125 to SF12BW125
470 470  
471 -507.1 - SF7BW125 to SF12BW125
472 472  
473 -507.3 - SF7BW125 to SF12BW125
467 +=== 2.4.9  ​+5V Output ===
474 474  
475 -507.5 - SF7BW125 to SF12BW125
469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
476 476  
477 -507.7 - SF7BW125 to SF12BW125
478 478  
479 -507.9 - SF7BW125 to SF12BW125
472 +The 5V output time can be controlled by AT Command.
480 480  
481 -508.1 - SF7BW125 to SF12BW125
474 +(% style="color:blue" %)**AT+5VT=1000**
482 482  
483 -505.3 - SF12BW125 (RX2 downlink only)
476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
484 484  
485 485  
486 -1.
487 -11.
488 -111. AU915-928(AU915)
489 489  
490 -Default use CHE=2
480 +== 2.5  Downlink Payload ==
491 491  
492 -Uplink:
482 +By default, NSE01 prints the downlink payload to console port.
493 493  
494 -916.8 - SF7BW125 to SF12BW125
484 +[[image:image-20220708133731-5.png]]
495 495  
496 -917.0 - SF7BW125 to SF12BW125
497 497  
498 -917.2 - SF7BW125 to SF12BW125
487 +(((
488 +(% style="color:blue" %)**Examples:**
489 +)))
499 499  
500 -917.4 - SF7BW125 to SF12BW125
491 +(((
492 +
493 +)))
501 501  
502 -917.6 - SF7BW125 to SF12BW125
495 +* (((
496 +(% style="color:blue" %)**Set TDC**
497 +)))
503 503  
504 -917.8 - SF7BW125 to SF12BW125
499 +(((
500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
501 +)))
505 505  
506 -918.0 - SF7BW125 to SF12BW125
503 +(((
504 +Payload:    01 00 00 1E    TDC=30S
505 +)))
507 507  
508 -918.2 - SF7BW125 to SF12BW125
507 +(((
508 +Payload:    01 00 00 3C    TDC=60S
509 +)))
509 509  
511 +(((
512 +
513 +)))
510 510  
511 -Downlink:
515 +* (((
516 +(% style="color:blue" %)**Reset**
517 +)))
512 512  
513 -923.3 - SF7BW500 to SF12BW500
519 +(((
520 +If payload = 0x04FF, it will reset the NSE01
521 +)))
514 514  
515 -923.9 - SF7BW500 to SF12BW500
516 516  
517 -924.5 - SF7BW500 to SF12BW500
524 +* (% style="color:blue" %)**INTMOD**
518 518  
519 -925.1 - SF7BW500 to SF12BW500
526 +Downlink Payload: 06000003, Set AT+INTMOD=3
520 520  
521 -925.7 - SF7BW500 to SF12BW500
522 522  
523 -926.3 - SF7BW500 to SF12BW500
524 524  
525 -926.9 - SF7BW500 to SF12BW500
530 +== 2. ​LED Indicator ==
526 526  
527 -927.5 - SF7BW500 to SF12BW500
532 +(((
533 +The NSE01 has an internal LED which is to show the status of different state.
528 528  
529 -923.3 - SF12BW500(RX2 downlink only)
530 530  
531 -1.
532 -11.
533 -111. AS920-923 & AS923-925 (AS923)
536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
537 +* Then the LED will be on for 1 second means device is boot normally.
538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
539 +* For each uplink probe, LED will be on for 500ms.
540 +)))
534 534  
535 -**Default Uplink channel:**
536 536  
537 -923.2 - SF7BW125 to SF10BW125
538 538  
539 -923.4 - SF7BW125 to SF10BW125
540 540  
545 +== 2.7  Installation in Soil ==
541 541  
542 -**Additional Uplink Channel**:
547 +__**Measurement the soil surface**__
543 543  
544 -(OTAA mode, channel added by JoinAccept message)
549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
545 545  
546 -**AS920~~AS923 for Japan, Malaysia, Singapore**:
551 +[[image:1657259653666-883.png]] ​
547 547  
548 -922.2 - SF7BW125 to SF10BW125
549 549  
550 -922.4 - SF7BW125 to SF10BW125
554 +(((
555 +
551 551  
552 -922.6 - SF7BW125 to SF10BW125
553 -
554 -922.8 - SF7BW125 to SF10BW125
555 -
556 -923.0 - SF7BW125 to SF10BW125
557 -
558 -922.0 - SF7BW125 to SF10BW125
559 -
560 -
561 -**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
562 -
563 -923.6 - SF7BW125 to SF10BW125
564 -
565 -923.8 - SF7BW125 to SF10BW125
566 -
567 -924.0 - SF7BW125 to SF10BW125
568 -
569 -924.2 - SF7BW125 to SF10BW125
570 -
571 -924.4 - SF7BW125 to SF10BW125
572 -
573 -924.6 - SF7BW125 to SF10BW125
574 -
575 -
576 -
577 -**Downlink:**
578 -
579 -Uplink channels 1-8 (RX1)
580 -
581 -923.2 - SF10BW125 (RX2)
582 -
583 -
584 -1.
585 -11.
586 -111. KR920-923 (KR920)
587 -
588 -Default channel:
589 -
590 -922.1 - SF7BW125 to SF12BW125
591 -
592 -922.3 - SF7BW125 to SF12BW125
593 -
594 -922.5 - SF7BW125 to SF12BW125
595 -
596 -
597 -Uplink: (OTAA mode, channel added by JoinAccept message)
598 -
599 -922.1 - SF7BW125 to SF12BW125
600 -
601 -922.3 - SF7BW125 to SF12BW125
602 -
603 -922.5 - SF7BW125 to SF12BW125
604 -
605 -922.7 - SF7BW125 to SF12BW125
606 -
607 -922.9 - SF7BW125 to SF12BW125
608 -
609 -923.1 - SF7BW125 to SF12BW125
610 -
611 -923.3 - SF7BW125 to SF12BW125
612 -
613 -
614 -Downlink:
615 -
616 -Uplink channels 1-7(RX1)
617 -
618 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
619 -
620 -
621 -1.
622 -11.
623 -111. IN865-867 (IN865)
624 -
625 -Uplink:
626 -
627 -865.0625 - SF7BW125 to SF12BW125
628 -
629 -865.4025 - SF7BW125 to SF12BW125
630 -
631 -865.9850 - SF7BW125 to SF12BW125
632 -
633 -
634 -Downlink:
635 -
636 -Uplink channels 1-3 (RX1)
637 -
638 -866.550 - SF10BW125 (RX2)
639 -
640 -
641 -1.
642 -11. LED Indicator
643 -
644 -The LSE01 has an internal LED which is to show the status of different state.
645 -
646 -
647 -* Blink once when device power on.
648 -* Solid ON for 5 seconds once device successful Join the network.
649 -* Blink once when device transmit a packet.
650 -
651 -1.
652 -11. Installation in Soil
653 -
654 -**Measurement the soil surface**
655 -
656 -
657 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] ​
658 -
659 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
660 -
661 -
662 -
663 -
664 -
665 -
666 -
667 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
668 -
669 -
670 -
557 +(((
671 671  Dig a hole with diameter > 20CM.
559 +)))
672 672  
561 +(((
673 673  Horizontal insert the probe to the soil and fill the hole for long term measurement.
563 +)))
564 +)))
674 674  
566 +[[image:1654506665940-119.png]]
675 675  
568 +(((
569 +
570 +)))
676 676  
677 677  
678 -1.
679 -11. ​Firmware Change Log
573 +== 2.8  ​Firmware Change Log ==
680 680  
681 -**Firmware download link:**
682 682  
683 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
576 +Download URL & Firmware Change log
684 684  
578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
685 685  
686 -**Firmware Upgrade Method:**
687 687  
688 -[[http:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction>>url:http://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Introduction]]
581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
689 689  
690 690  
691 -**V1.0.**
692 692  
693 -Release
585 +== 2.9  ​Battery Analysis ==
694 694  
587 +=== 2.9.1  ​Battery Type ===
695 695  
696 696  
697 -1.
698 -11. ​Battery Analysis
699 -111. ​Battery Type
590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
700 700  
701 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
702 702  
593 +The battery is designed to last for several years depends on the actually use environment and update interval. 
703 703  
704 -The battery is designed to last for more than 5 years for the LSN50.
705 705  
706 -
707 707  The battery related documents as below:
708 708  
709 -* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 -* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet-EN.pdf]] datasheet, [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/ER18505_datasheet_PM-ER18505-S-02-LF_EN.pdf]]
711 -* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
712 712  
713 -|(((
714 -JST-XH-2P connector
602 +(((
603 +[[image:image-20220708140453-6.png]]
715 715  )))
716 716  
717 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
718 718  
719 719  
608 +=== 2.9.2  Power consumption Analyze ===
720 720  
721 -1.
722 -11.
723 -111. ​Battery Note
610 +(((
611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
612 +)))
724 724  
725 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
726 726  
615 +(((
616 +Instruction to use as below:
617 +)))
727 727  
728 -1.
729 -11.
730 -111. ​Replace the battery
619 +(((
620 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
621 +)))
731 731  
732 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
733 733  
624 +(((
625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
626 +)))
734 734  
735 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
628 +* (((
629 +Product Model
630 +)))
631 +* (((
632 +Uplink Interval
633 +)))
634 +* (((
635 +Working Mode
636 +)))
736 736  
638 +(((
639 +And the Life expectation in difference case will be shown on the right.
640 +)))
737 737  
738 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
642 +[[image:image-20220708141352-7.jpeg]]
739 739  
740 740  
741 741  
646 +=== 2.9.3  ​Battery Note ===
742 742  
648 +(((
649 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
650 +)))
743 743  
744 744  
745 -= 3. ​Using the AT Commands =
746 746  
747 -== 3.1 Access AT Commands ==
654 +=== 2.9.4  Replace the battery ===
748 748  
656 +(((
657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
658 +)))
749 749  
750 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
751 751  
752 -[[image:1654501986557-872.png]]
753 753  
662 += 3. ​ Access NB-IoT Module =
754 754  
755 -Or if you have below board, use below connection:
664 +(((
665 +Users can directly access the AT command set of the NB-IoT module.
666 +)))
756 756  
668 +(((
669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
670 +)))
757 757  
758 -[[image:1654502005655-729.png]]
672 +[[image:1657261278785-153.png]]
759 759  
760 760  
761 761  
762 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
676 += 4.  Using the AT Commands =
763 763  
678 +== 4.1  Access AT Commands ==
764 764  
765 - [[image:1654502050864-459.png]]
680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
766 766  
767 767  
768 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
683 +AT+<CMD>?  : Help on <CMD>
769 769  
685 +AT+<CMD>         : Run <CMD>
770 770  
771 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
687 +AT+<CMD>=<value> : Set the value
772 772  
773 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
689 +AT+<CMD>=?  : Get the value
774 774  
775 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
776 776  
777 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
778 -
779 -
780 780  (% style="color:#037691" %)**General Commands**(%%)      
781 781  
782 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
694 +AT  : Attention       
783 783  
784 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
696 +AT?  : Short Help     
785 785  
786 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
698 +ATZ  : MCU Reset    
787 787  
788 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
700 +AT+TDC  : Application Data Transmission Interval
789 789  
702 +AT+CFG  : Print all configurations
790 790  
791 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
704 +AT+CFGMOD           : Working mode selection
792 792  
793 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
706 +AT+INTMOD            : Set the trigger interrupt mode
794 794  
795 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
708 +AT+5VT  : Set extend the time of 5V power  
796 796  
797 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
710 +AT+PRO  : Choose agreement
798 798  
799 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
712 +AT+WEIGRE  : Get weight or set weight to 0
800 800  
801 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
714 +AT+WEIGAP  : Get or Set the GapValue of weight
802 802  
803 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
716 +AT+RXDL  : Extend the sending and receiving time
804 804  
805 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
718 +AT+CNTFAC  : Get or set counting parameters
806 806  
807 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
720 +AT+SERVADDR  : Server Address
808 808  
809 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
810 810  
811 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
723 +(% style="color:#037691" %)**COAP Management**      
812 812  
813 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
725 +AT+URI            : Resource parameters
814 814  
815 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
816 816  
817 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
728 +(% style="color:#037691" %)**UDP Management**
818 818  
819 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
730 +AT+CFM          : Upload confirmation mode (only valid for UDP)
820 820  
821 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
822 822  
823 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
733 +(% style="color:#037691" %)**MQTT Management**
824 824  
735 +AT+CLIENT               : Get or Set MQTT client
825 825  
826 -(% style="color:#037691" %)**LoRa Network Management**
737 +AT+UNAME  : Get or Set MQTT Username
827 827  
828 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
739 +AT+PWD                  : Get or Set MQTT password
829 829  
830 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
741 +AT+PUBTOPI : Get or Set MQTT publish topic
831 831  
832 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
743 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
833 833  
834 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
835 835  
836 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
746 +(% style="color:#037691" %)**Information**          
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
748 +AT+FDR  : Factory Data Reset
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
750 +AT+PWOR : Serial Access Password
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
754 += ​5.  FAQ =
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
756 +== 5.1 How to Upgrade Firmware ==
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
759 +(((
760 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
761 +)))
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
855 -
856 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
857 -
858 -
859 -(% style="color:#037691" %)**Information** 
860 -
861 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
862 -
863 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
864 -
865 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
866 -
867 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
868 -
869 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
870 -
871 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
872 -
873 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
874 -
875 -
876 -= ​4. FAQ =
877 -
878 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
879 -
880 -You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
881 -When downloading the images, choose the required image file for download. ​
882 -
883 -
884 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
885 -
886 -
887 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
888 -
889 -
890 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
891 -
892 -[[image:image-20220606154726-3.png]]
893 -
894 -When you use the TTN network, the US915 frequency bands use are:
895 -
896 -* 903.9 - SF7BW125 to SF10BW125
897 -* 904.1 - SF7BW125 to SF10BW125
898 -* 904.3 - SF7BW125 to SF10BW125
899 -* 904.5 - SF7BW125 to SF10BW125
900 -* 904.7 - SF7BW125 to SF10BW125
901 -* 904.9 - SF7BW125 to SF10BW125
902 -* 905.1 - SF7BW125 to SF10BW125
903 -* 905.3 - SF7BW125 to SF10BW125
904 -* 904.6 - SF8BW500
905 -
906 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
907 -
908 -(% class="box infomessage" %)
909 909  (((
910 -**AT+CHE=2**
764 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
911 911  )))
912 912  
913 -(% class="box infomessage" %)
914 914  (((
915 -**ATZ**
768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
916 916  )))
917 917  
918 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
919 919  
920 920  
921 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
773 += 6.  Trouble Shooting =
922 922  
923 -[[image:image-20220606154825-4.png]]
775 +== 6.1  ​Connection problem when uploading firmware ==
924 924  
925 925  
778 +(% class="wikigeneratedid" %)
779 +(((
780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
781 +)))
926 926  
927 -= 5. Trouble Shooting =
928 928  
929 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
930 930  
931 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
785 +== 6. AT Command input doesn't work ==
932 932  
787 +(((
788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
789 +)))
933 933  
934 -== 5.2 AT Command input doesn’t work ==
935 935  
936 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
937 937  
793 += 7. ​ Order Info =
938 938  
939 -== 5.3 Device rejoin in at the second uplink packet ==
940 940  
941 -(% style="color:#4f81bd" %)**Issue describe as below:**
796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
942 942  
943 -[[image:1654500909990-784.png]]
944 944  
799 +(% class="wikigeneratedid" %)
800 +(((
801 +
802 +)))
945 945  
946 -(% style="color:#4f81bd" %)**Cause for this issue:**
804 += 8 Packing Info =
947 947  
948 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
806 +(((
807 +
949 949  
809 +(% style="color:#037691" %)**Package Includes**:
950 950  
951 -(% style="color:#4f81bd" %)**Solution: **
952 952  
953 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
813 +* External antenna x 1
814 +)))
954 954  
955 -[[image:1654500929571-736.png]]
816 +(((
817 +
956 956  
819 +(% style="color:#037691" %)**Dimension and weight**:
957 957  
958 -= 6. ​Order Info =
959 959  
960 -
961 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
962 -
963 -
964 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
965 -
966 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
967 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
968 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
969 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
970 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
971 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
972 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
973 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
974 -
975 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
976 -
977 -* (% style="color:red" %)**4**(%%): 4000mAh battery
978 -* (% style="color:red" %)**8**(%%): 8500mAh battery
979 -
980 -= 7. Packing Info =
981 -
982 -(((
983 -**Package Includes**:
822 +* Size: 195 x 125 x 55 mm
823 +* Weight:   420g
984 984  )))
985 985  
986 -* (((
987 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
988 -)))
989 -
990 990  (((
991 991  
992 -)))
993 993  
994 -(((
995 -**Dimension and weight**:
996 -)))
997 997  
998 -* (((
999 -Device Size: cm
830 +
1000 1000  )))
1001 -* (((
1002 -Device Weight: g
1003 -)))
1004 -* (((
1005 -Package Size / pcs : cm
1006 -)))
1007 -* (((
1008 -Weight / pcs : g
1009 -)))
1010 1010  
1011 -= 8. Support =
833 += 9.  Support =
1012 1012  
1013 1013  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1014 1014  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1015 -
1016 -
1654504596150-405.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +66.7 KB
Content
1654504683289-357.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.0 KB
Content
1654504778294-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504881641-514.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.4 KB
Content
1654504907647-967.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.7 KB
Content
1654505570700-128.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654505857935-743.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +86.0 KB
Content
1654505874829-548.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +129.9 KB
Content
1654505905236-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654505925508-181.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +69.5 KB
Content
1654506634463-199.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1654506665940-119.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +423.3 KB
Content
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220606163732-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +16.5 KB
Content
image-20220606163915-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +94.8 KB
Content
image-20220606165544-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.6 KB
Content
image-20220606171726-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +171.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content